422
Views
29
CrossRef citations to date
0
Altmetric
Reviews

Metalloenzyme inhibitors for the treatment of Gram-negative bacterial infections: a patent review (2009 – 2012)

, &
Pages 777-788 | Published online: 04 Mar 2013

Bibliography

  • Raetz CRH. Molecular genetics of membrane phospholipid synthesis. Annu Rev Genet 1986;20:253-95
  • Wyckoff TJO, Raetz CRH, Jackman JE. Antibacterial and anti-inflammatory agents that target endotoxin. Trends Microbiol 1998;6:154-9
  • Raetz CRH. Bacterial endotoxins: extraordinary lipids that activate eucaryotic signal aq: transduction. J Bacteriol 1993;175:5745-53
  • Xilinas ME. Method for treating drug-resistant bacteria and other infections with clioquinol, phanquinone, and related compounds. WO140215; 2009
  • Kappers J, Hearn JM, Qui R. Therapeutic compositions and methods for treating gram-negative bacterial infections. US0038917; 2011
  • White JR, Margolis PS, Trias J, Yuan Z. Targeting metalloenzymes: a strategy that works. Curr Opin Pharmacol 2003;3:502-7
  • Adams E. The enzymatic synthesis of histidine from histidinol. J Biol Chem 1954;209:829-46
  • Gorish H, Holke W. Binding of histidinal to histidinol dehydrogenase. Eur J Biochem 1985;150:305-8
  • Gorish H. Steady-state investigations of the mechanism of histidinol dehydrogenase. Biochem J 1979;181:153-7
  • Parish T. Starvation survival response of Mycobacterium tuberculosis. J Bacteriol 2003;185:6702-6
  • Fields PI, Swanson RW, Haidaris CG, Heffron F. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci USA 1986;83:5189-93
  • Pilatz S, Breitbach K, Hein N, Identification of burkholderia pseudomallei genes required for the intracellular life cycle and in vivo virulence. Infect Immun 2006;74:3576-86
  • Available from: http://www.cdc.gov/
  • Abdo M-R, Joseph P, Boigegrain R-A, Brucella suis histidinol dehydrogenase: synthesis and inhibition studies of a series of substituted benzylic ketones derived from histidine. Bioorg Med Chem 2007;15:4427-33
  • Winum JY, Montero JL, Kohler S. Histidinol dehydrogenase inhibitors, and use thereof as medicaments. US0129907; 2012
  • Kohler S, Foulongne V, Ouahrani-Bettache S, Nonlinear partial differential equations and applications: the analysis of the intramacrophagic virulome of Brucella suis deciphers the environment encountered by the pathogen inside the macrophage host cell. Proc Natl Acad Sci USA 2002;99:15711-16
  • Black TM, Hodgson JE, Knowles DJC, Novel histidinol dehydrogenase. US0064848; 2002
  • Tanzer M, Shuster J R, Hamer L, Methods for the identification of inhibitors of histidinol dehydrogenase as antibiotics. WO089156; 2005
  • Whittington D A, Rusche K M, Shin H, Crystal structure of LpxC, a zinc-dependent deacetylase essential for endotoxin biosynthesis. Proc Natl Acad Sci USA 2003;100:8146-50
  • Nikaido H, Vaara M. Molecular basis of bacterial outer membrane permeability. Microbiol Rev 1985;49:1-32
  • Anderson MS, Bulawa CE, Raetz CRH. The biosynthesis of gram-negative endotoxin. Formation of lipid A precursors from UDP-GlcNAc in extracts of Escherichia coli. Biol Chem 1985;260:15536-41
  • Beall B, Lutkenhaus J. Sequence analysis, transcriptional organization, and insertional mutagenesis of the envA gene of Escherichia coli. J Bacteriol 1987;169:5408-15
  • Patchet AA, Nargund R, Chen M-H, Onishi H. Antibacterial agents. WO42179; 1997
  • Onishi HR, Pelak BA, Gerckens LS, Antibacterial agentsthat inhibit lipid A biosynthesis. Science 1996;274:980-2
  • Anderson NH, Bowman J, Erwin A, Antibacterial agents. WO062601; 2004
  • Patten PA, Armstrong ES. Combinations comprising a LpxC inhibitor and an antibiotic for use in the treatment of infections caused by gram negative bacteria. WO005355; 2011
  • Siddiqui MA, Mansoor UF, Reddy PA, Madison PS. Compounds for the treatment of inflamatory disorders and microbial diseases. WO064732; 2007
  • Takashima H, Yoshinaga M, Ushiki Y, Novel hydroxamic acid derivatives. WO105515; 2008
  • Takashima H, Suga Y, Urabe H, Novel hydroxamic acid derivatives having naphthyridine N-oxide. WO024356; 2010
  • Takashima H, Tsuruta R, Yabiuuchi T, Novel hydroxamic acid derivative. WO132712; 2011
  • Reddy PAP, Mansoor UF, Siddiqui MA. Synthesis and use of antibacterial agents. US0212078; 2011
  • Mansoor UF, Reddy PAP, Siddiqui MA. Urea derivatives as antibacterial agents. US0212080; 2011
  • Brown MF, Che Y, Melnick MJ, Fluoro-pyridinone derivatives usefuls as antibacterial agents. WO120397; 2012
  • Mansoor UF, Reddy PAP, Siddiqui MA. Hydantoin derivatives usefuls as antibacterial agents. WO027466; 2008
  • Clements JM, Coignard F, Johnson I, Antibacterial activities and characterisation on novel inhibitors of LpxC. Antimicrob Agents Chemother 2002;46:1793-9
  • Meinnel T, Blanquet S. Evidence that peptide deformylase and methionyl-tRNA(fMet) formyltransferase are encoded within the same operon in Escherichia coli. J Bacteriol 1993;175:7737-40
  • Meinnel T, Blanquet S. Enzymatic properties of Escherichia coli peptide deformylase. J Bacteriol 1995;177:1883-7
  • Rajagopalan PTR, Yu C, Pei D. Peptide deformylase: a new type of mononuclear iron protein. J Am Chem Soc 1997;119:12418-19
  • Guilloteau J-P, Mathieu M, Giglione C, The crystal structure of four peptide deformylase bound to the antibiotic actinonin reveal two distinct types: a platform for the structure-based design of antibacterial agents. J Mol Biol 2002;320:951-62
  • Serero A, Giglione C, Sardini A, An unusual peptide deformylase features in the human mitochondrial N-terminal methionine excision pathway. J Biol Chem 2003;278:52953-63
  • Takeuchi N, Vial L, Panvert M, Recognition of tRNAs by methionyl-tRNA transformylase from mammalian mitochondria. J Biol Chem 2001;276:20064-8
  • Djaballah H, AntezaK C. Benzofuran 4,5-diones as selective peptide deformylase inhibitors. US0071523; 2012
  • Frechette R, Davis S, Jaeger C, Methods of use peptide deformylase inhibitors as novel antibacterial agents. WO38561; 2001
  • Sergeeva MV, Doppallapudi VR. Peptide deformylase activated prodrugs. WO089739; 2002
  • Meinnel T, Artaud I, Boularot A. Peptide deformylase inhibitors, their use, and pharmaceutical compositions containing the same. WO077139; 2006
  • Thormann M. Peptide deformylase (PDF) inhibitors 3. WO131340; 2006
  • Thormann M. Imidazo (1,2a) pyridine derivatives as peptide deformylase (PDF) inhibitors. WO114261; 2006
  • Christensen SB IV, Cummings MD, Lee J, Xiang J-N. Peptide deformylase inhibitors. US0229341; 2006
  • Leber JD, Li M, Lee J, Peptide deformylase inhibitors. US0052423; 2006
  • Axten JM, Medina JR. Peptide deformylase inhibitors. WO016364; 2007
  • Lee J. Peptide deformylase inhibitors. WO067904; 2007
  • Lee J. Peptide deformylase inhibitors. WO067906; 2007
  • Qin D, Norton B, Liao X, Peptide deformylase inhibitors. WO061879; 2009
  • Aubart KM, Benowitz AB, Fang Y, Peptide deformylase inhibitors. WO122450; 2012
  • Cali P, Hjelmencrantz A, Nauerum L. Isoxazoles as peptide deformylase inhibitors. US0043062; 2007
  • Hjelmencrantz A, Cali P, Groth T, Benzimidazole derivatives and use thereof as peptide deformylase inhibitors. US0066672; 2007
  • Kang J-H, Yu S-W, Lee H-Y, Novel hydroxamic acid derivative as peptide deformylase inhibitor and manifacturing method thereof. US0234333; 2008
  • Kang J-H, Yu S-W, Lee H-Y, A new peptide deformylase inhibitor compound and manifacturing method thereof. US0168421; 2010
  • Pei D. Peptide deformylase inhibitors as novel antibiotics. US0203631; 2009
  • Hu W, Shi W, Ma H, Peptide deformylase inhibitors containing 4-methylene pyrrolidine. WO000322; 2012
  • Hase CC, Filkenstein R. Bacterial extracellular zinc-containing metalloproteases. Microbiol Rev 1993;57:823-37
  • Supuran CT, Winum JY. Introduction to zinc enzymes as drug targets. In: Supuran CT, Winum JY, editors. Drug design of zinc-enzyme inhibitors: functional, structural, and disease applications. Wiley, Hoboken; 2009. p. 3-12
  • Winum JY, Montero JL, Scozzafava A, Supuran CT. Zinc binding functions in the design of carbonic anhydrase inhibitors. In: Supuran CT, Winum JY, editors. Drug design of zinc-enzyme inhibitors: functional, structural, and disease applications. Wiley, Hoboken; 2009. p. 39-72
  • Galloway DR. Pseudomonas aeruginosa elastase and elastolysis revisited: recent developments. Mol Microbiol 1991;5:2315-21
  • Fukushima J, Yamamaoto S, Morihara K, Structural gene and complete aminoacid sequence of Pseudomonas aeruginosa IFO 3455 elastase. J Bacteriol 1989;171:1698-04
  • Chen DZ, Patel DV, Hackbarth CJ, Actinonin, a natural occurring antibacterial agent, is a potent deformylase inhibitor. Biochemistry 2000;39:1256-62
  • Ramanatha-Girish S, McColm J, Clements JM, Pharmacokinetics in animals and humans of a first-in-class peptide deformylase inhibitor. Antimicrob Agents Chemother 2004;48:4835-42
  • Leeds JA, Dean CR. Peptide deformylase as an antibacterial target: a critical assesment. Curr Opin Pharmacol 2006;8:8
  • Dowling JN, Saha AK, Glew RH. Virulence factors of the family Legionellaceae. Microbiol Rev 1992;56:32-60
  • Filkenstein RA, Filkenstein-Boesman M, Holt P. Vibrio cholerae hemagglutinin/lectin/protease hydrolyzes fibronectin and ovomucin: F. M. Burnet revisited. Proc Natl Acad Sci USA 1983;80:1092-5
  • Del Prete S, Isik S, Vullo D, DNA cloning, characterization and inhibition studies of an alpha-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae. J Med Chem 2012;55:10742-8
  • Miyoshi N, Miyoshi SI, Sugiyama K, Activation of the plasma kallicrein-kinin system by Vibrio vulnificus protease. Infect Immun 1987;55:1936-9
  • Miyoshi S, Shinoda S. Role of the protease in the permeability enhancement by Vibrio vulnificus. Microbiol Immunol 1988;32:1025-32
  • Norqvist A, Norman B, Wolf-Watz H. Identification and charcterization of a zinc metalloprotease associated with invasion by the fish pathogen Vibrio anguillarum. Infect Immun 1990;58:3731-6
  • Montecucco C. Green tea and polyphenol inhibitors of bacterial protease. WO105779; 2004
  • Appelbaum J. Pharmaceutical compositions for inhibiting metal ion dependent enzymatic activity and methods for their use thereof. WO084799; 2004
  • Bavari S, Gussio R, Burnett JC. Small molecule inhibitors of botulinum neurotoxins. US0086877; 2011
  • Bebrone C. Metallo-beta-lactamases (classification, activity genetic organisation, structure, zinc coordination) and their superfamily. Biochem Pharmacol 2007;74:1686-701
  • Crowder MW, Spencer J, Vila AJ. Metallo-beta-lactamases: novel weaponry for antibiotic resistance in bacteria. Acc Chem Res 2006;39:721-8
  • Supuran CT, Scozzafava A, Clare BW. Bacterial protease inhibitors. Med Res Rev 2002;22:329-72
  • Shoichet BK, Prati F. Nanomolar beta-lactamase inhibitors. US7928129; 2011
  • Dmitrienko GI, Johson WJ, Ramadhar TR, Beta-lactamase inhibitors. US0046101; 2011
  • Maiti SM, Ling R, Yip J, Novel fused bridged byciclic heteroaryl substituted 6-alkylidene penems as potent beta-lactamase inhibitors. US0288063; 2011
  • Dmitrienko GI, Ghavami A, Goodfellow VJ, Cephalosporine derivatives useful as beta-lactamase inhibitors and compositions and methods of use thereof. WO103686; 2011
  • Horton L, Palzkill T, Chen P, Song Y. Small molecle compounds as broad-spectrum inhibitors of metallo-beta-lactamases. WO088283; 2012
  • Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 2008;7:168-81
  • Nishimori I, Minakuchi T, Morimoto K, Carbonic anhydrase inhibitors. DNA cloning and inhibition studies of the alpha−carbonic anhydrase from Helicobacter pylori: a new target for developing sulfonamide and sulfamate gastric drugs. J Med Chem 2006;49:2117-26
  • Nishimori I, Minakuchi T, Kohsaki T, Carbonic anhydrase inhibitors. The beta-carbonic anhydrase from Helicobacter pylori is a new target for sulfonamide and sulfamate inhibitors. Bioorg Med Chem Lett 2007;17:3585-94
  • Nishimori I, Onishi S, Takeuchi H, Supuran CT. The alpha- and beta-classes carbonic anhydrases from Helicobacter pylori as novel drug targets. Curr Pharm Des 2008;14:622-30
  • Nishimori I, Takeuchi H, Supuran CT. Inhibition of beta- and alpha-CAs from Helicobacter pylori as potential novel gastric drugs. In: Supuran CT, Winum JY, editors. Drug design of zinc-enzyme inhibitors: functional, structural, and disease applications. Wiley, Hoboken; 2009. p. 359-74
  • Dean RC, Ryder NS. Methods for increasing susceptibility of peptide deformylase inhibitors by using efflux pump inhibitors. US0156645; 2009
  • Ammendola A, Wieber T, Wuzik A, Lang M. Inhibitors of biofilm formation of gram-positive and gram-negative bacteria. US0192192; 2009
  • Prince A, Tong L. Neuroamidase inhibitors and use thereof. WO054475; 2008
  • Opperman TJ, Williams JD, Peet NP, Inhibitors of bacterial biofilm formation. WO142720; 2009
  • Lopez D, Hatton B, Kolter R. Inhibitors of biofilm formation. WO031964; 2011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.