757
Views
32
CrossRef citations to date
0
Altmetric
Reviews

Liver X receptor modulators: a review of recently patented compounds (2009 – 2012)

, , &
Pages 1317-1335 | Published online: 05 Jul 2013

Bibliography

  • Kalaany NY, Mangelsdorf DJ. LXRs and FXR: the yin and yang of cholesterol and fat metabolism. Annu Rev Physiol 2006;68:159-91
  • Tontonoz P, Mangelsdorf DJ. Liver x receptor signaling pathways in cardiovascular disease. Mol Endocrinol 2003;17:985-93
  • Janowski BA, Willy PJ, Devi TR, et al. An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature 1996;383:728-31
  • Lehmann JM, Kliewer SA, Moore LB, et al. Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J Biol Chem 1997;272:3137-40
  • Perissi V, Aggarwal A, Glass CK, et al. A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell 2004;116:511-26
  • Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 2000;14:121-41
  • McKenna NJ, O'Malley BW. Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 2002;108:465-74
  • Rosenfeld MG, Glass CK. Coregulator codes of transcriptional regulation by nuclear receptors. J Biol Chem 2001;276:36865-8
  • Chen JD, Evans RM. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 1995;377:454-7
  • Hörlein AJ, Näär AM, Heinzel T, et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 1995;377:397-404
  • Joseph SB, Castrillo A, Laffitte BA, et al. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med 2003;9:213-19
  • Hoberg JE, Yeung F, Mayo MW. SMRT derepression by the IκB kinase α: a prerequisite to NF-κB transcription and survival. Mol Cell 2004;16:245-55
  • Ogawa S, Lozach J, Jepsen K, et al. A nuclear receptor corepressor transcriptional checkpoint controlling activator protein 1-dependent gene networks required for macrophage activation. Proc Natl Acad Sci 2004;101:14461-6
  • Pascual G, Fong AL, Ogawa S, et al. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-γ. Nature 2004;437:759-63
  • Ghisletti S, Huang W, Ogawa S, et al. Parallel SUMOylationdependent pathways mediate gene- and signal-specific transrepression by LXRs and PPAR γ. Mol Cell 2007;25:57-70
  • Peet DJ, Turley SD, Ma W, et al. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell 1998;93:693-704
  • Alberti S, Schuster G, Parini P, et al. Hepatic cholesterol metabolism and resistance to dietary cholesterol in LXRbeta-deficient mice. J Clin Invest 2001;107:565-73
  • Venkateswaran A, Laffitte BA, Joseph SB, et al. Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha. Proc Natl Acad Sci USA 2000;97:12097-102
  • Chawla A, Boisvert WA, Lee CH, et al. A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 2001;7:161-71
  • Costet P, Luo Y, Wang N, et al. Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. J Biol Chem 2000;275:28240-5
  • Laffitte BA, Repa JJ, Joseph SB, et al. LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes. Proc Natl Acad Sci USA 2001;98:507-12
  • Repa JJ, Turley SD, Lobaccaro JA, et al. Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science 2000;289:1524-9
  • Bodzioch M, Orsó E, Klucken J, et al. The gene encoding ATP binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 1999;22:347-51
  • Brooks-Wilson A, Marcil M, Clee SM, et al. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet 1999;22:336-45
  • Rust S, Rosier M, Funke H, et al. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet 1999;22:352-5
  • Curtiss LK, Boisvert WA. Apolipoprotein E and atherosclerosis. Curr Opin Lipidol 2000;11:243-51
  • Spann NJ, Garmire LX, McDonald JG, et al. Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell 2012;151:138-52
  • Tangirala RK, Bischoff ED, Joseph SB, et al. Identification of macrophage liver X receptors as inhibitors of atherosclerosis. Proc Natl Acad Sci USA 2002;99:11896-901
  • Schuster GU, Parini P, Wang L, et al. Accumulation of foam cells in liver X receptor-deficient mice. Circulation 2002;106:1147-53
  • Repa JJ, Berge KE, Pomajzl C, et al. Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors alpha and beta. J Biol Chem 2002;277:18793-800
  • Yu L, York J, von Bergmann K, et al. Stimulation of cholesterol excretion by the liver X receptor agonist requires ATP-binding cassette transporters G5 and G8. J Biol Chem 2003;278:15565-70
  • Berge KE, Tian H, Graf GA, et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 2000;29:1771-5
  • Allayee H, Laffitte BA, Lusis AJ. An absorbing study of cholesterol. Science 2000;290:1709-11
  • Lee MH, Lu K, Hazard S, et al. Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption. Nat Genet 2001;27:79-83
  • Naik SU, Wang X, Da Silva JS, et al. Pharmacological activation of liver X receptors promotes reverse cholesterol transport in vivo. Circulation 2006;113:90-7
  • Bradley MN, Hong C, Chen M, et al. Ligand activation of LXR beta reverses atherosclerosis and cellular cholesterol overload in mice lacking LXR alpha and apoE. J Clin Invest 2007;117:2337-46
  • Schultz JR, Tu H, Luk A, et al. Role of LXRs in control of lipogenesis. Genes Dev 2000;14:2831-8
  • Repa JJ, Liang G, Ou J, et al. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev 2000;14:2819-30
  • Joseph SB, Laffitte BA, Patel PH, et al. Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. J Biol Chem 2002;277:11019-25
  • Grefhorst A, Elzinga BM, Voshol PJ, et al. Stimulation of lipogenesis by pharmacological activation of the liver X receptor leads to production of large, triglyceride-rich very low density lipoprotein particles. J Biol Chem 2002;277:34182-90
  • Laffitte BA, Joseph SB, Chen M, et al. The phospholipid transfer protein gene is a liver X receptor target expressed by macrophages in atherosclerotic lesions. Mol Cell Biol 2003;23:2182-91
  • Groot PH, Pearce NJ, Yates JW, et al. Synthetic LXR agonists increase LDL in CETP species. J Lipid Res 2005;46:2182-91
  • Joseph SB, Castrillo A, Laffitte BA, et al. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med 2003;9:213-19
  • Castrillo A, Joseph SB, Marathe C, et al. Liver X receptor-dependent repression of matrix metalloproteinase-9 expression in macrophages. J Biol Chem 2003;278:10443-9
  • Terasaka N, Hiroshima A, Ariga A, et al. Liver X receptor agonists inhibit tissue factor expression in macrophages. FEBS J 2005;272:1546-56
  • Ogawa D, Stone J, Takata Y, et al. Liver X receptor agonists inhibit cytokine-induced osteopontin expression in macrophages through interference with activator protein-1 signaling pathways. Circ Res 2005;96:e59-67
  • Fowler AJ, Sheu MY, Schmuth M, et al. Liver X receptor activators display anti-inflammatory activity in irritant and allergic contact dermatitis models: liver-X receptor-specific inhibition of inflammation and primary cytokine production. J Invest Dermatol 2003;120:246-55
  • Castrillo A, Joseph SB, Vaidya SA, et al. Crosstalk between LXR and toll-like receptor signaling mediates bacterial and viral antagonism of cholesterol metabolism. Mol Cell 2003;12:805-16
  • Joseph SB, Bradley MN, Castrillo A, et al. LXR-dependent gene expression is important for macrophage survival and the innate immune response. Cell 2004;119:299-309
  • Valledor AF, Hsu LC, Ogawa S, et al. Activation of liver X receptors and retinoid X receptors prevents bacterial-induced macrophage apoptosis. Proc Natl Acad Sci USA 2004;101:17813-18
  • A-Gonzalez N, Bensinger SJ, Hong C, et al. Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 2009;31:245-58
  • Bensinger SJ, Bradley MN, Joseph SB, et al. LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell 2008;134:97-111
  • Lusis AJ. Atherosclerosis. Nature 2000;407:233-41
  • Fan J, Watanabe T. Inflammatory reactions in the pathogenesis of atherosclerosis. J Atheroscler Thromb 2003;10:63-71
  • Joseph SB, McKilligin E, Pei L, et al. Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci USA 2002;99:7604-9
  • Levin N, Bischoff ED, Daige CL, et al. Macrophage liver X receptor is required for antiatherogenic activity of LXR agonists. Arterioscler Thromb Vasc Biol 2005;25:135-42
  • Bradley MN, Hong C, Chen M, et al. Ligand activation of LXR beta reverses atherosclerosis and cellular cholesterol overload in mice lacking LXR alpha and apoE. J Clin Invest 2007;117:2337-46
  • Bischoff ED, Daige CL, Petrowski M, et al. Non-redundant roles for LXRalpha and LXRbeta in atherosclerosis susceptibility in low density lipoprotein receptor knockout mice. J Lipid Res 2010;51:900-6
  • Verschuren L, de Vries-van der Weij J, Zadelaar S, et al. LXR agonist suppresses atherosclerotic lesion growth and promotes lesion regression in apoE*3Leiden mice: time course and mechanisms. J Lipid Res 2009;50:301-11
  • Hong C, Bradley MN, Rong X, et al. LXRα is uniquely required for maximal reverse cholesterol transport and atheroprotection in ApoE-deficient mice. J Lipid Res 2012;53:1126-33
  • Feig JE, Pineda-Torra I, Sanson M, et al. LXR promotes the maximal egress of monocyte-derived cells from mouse aortic plaques during atherosclerosis regression. J Clin Invest 2010;120:4415-24
  • Srivastava RA. Evaluation of anti-atherosclerotic activities of PPAR-α, PPAR-γ, and LXR agonists in hyperlipidemic atherosclerosis-susceptible F(1)B hamsters. Atherosclerosis 2011;214:86-93
  • Honzumi S, Shima A, Hiroshima A, et al. Synthetic LXR agonist inhibits the development of atherosclerosis in New Zealand White rabbits. Biochim Biophys Acta 2011;1811:1136-45
  • Laffitte BA, Chao LC, Li J, et al. Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue. Proc Natl Acad Sci USA 2003;100:5419-24
  • Cao G, Liang Y, Broderick CL, et al. Antidiabetic action of a liver x receptor agonist mediated by inhibition of hepatic gluconeogenesis. J Biol Chem 2003;278:1131-6
  • Commerford SR, Vargas L, Dorfman SE, et al. Dissection of the insulin-sensitizing effect of liver X receptor ligands. Mol Endocrinol 2007;21:3002-12
  • Ogihara T, Chuang JC, Vestermark GL, et al. Liver X receptor agonists augment human islet function through activation of anaplerotic pathways and glycerolipid/free fatty acid cycling. J Biol Chem 2010;285:5392-404
  • Koldamova RP, Lefterov IM, Staufenbiel M, et al. The liver X receptor ligand T0901317 decreases amyloid beta production in vitro and in a mouse model of Alzheimer's disease. J Biol Chem 2005;280:4079-88
  • Zelcer N, Khanlou N, Clare R, et al. Attenuation of neuroinflammation and Alzheimer's disease pathology by liver x receptors. Proc Natl Acad Sci USA 2007;104:10601-6
  • Jiang Q, Lee CY, Mandrekar S, et al. ApoE promotes the proteolytic degradation of Abeta. Neuron 2008;58:681-93
  • Fitz NF, Cronican A, Pham T, et al. Liver X receptor agonist treatment ameliorates amyloid pathology and memory deficits caused by high-fat diet in APP23 mice. J Neurosci 2010;30:6862-72
  • Vanmierlo T, Rutten K, Dederen J, et al. Liver X receptor activation restores memory in aged AD mice without reducing amyloid. Neurobiol Aging 2011;32:1262-72
  • Dai YB, Tan XJ, Wu WF, et al. Liver X receptor β protects dopaminergic neurons in a mouse model of Parkinson disease. Proc Natl Acad Sci USA 2012;109:13112-17
  • Loane DJ, Washington PM, Vardanian L, et al. Modulation of ABCA1 by an LXR agonist reduces β-amyloid levels and improves outcome after traumatic brain injury. J Neurotrauma 2011;28:225-36
  • Namjoshi DR, Martin G, Donkin J, et al. The liver X receptor agonist GW3965 improves recovery from mild repetitive traumatic brain injury in mice partly through apolipoprotein E. PLoS One 2013;8:e53529
  • Guo D, Reinitz F, Youssef M, et al. An LXR agonist promotes glioblastoma cell death through inhibition of an EGFR/AKT/SREBP-1/LDLR-dependent pathway. Cancer Discov 2011;1:442-56
  • Katz A, Udata C, Ott E, et al. Safety, pharmacokinetics, and pharmacodynamics of single doses of LXR-623, a novel liver X-receptor agonist, in healthy participants. J Clin Pharm 2009;49:643-9
  • Effects of Multiple Doses of CS-8080 in Healthy Volunteers, NCT00796575. 2008. Available from: clinicaltrials.gov
  • Multiple-Dose Study to Evaluate the Safety, Pharmacokinetics and Pharmacodynamics of BMS-779788 in Healthy Subjects, NCT00836602. 2008. Available from: clinicaltrials.gov
  • A Safety Study of BMS-852927 in Subjects With Hypercholesterolemia, NCT01651273. 2012. Available from: clinicaltrials.gov
  • Bernotas RC, Singhaus RR, Kaufman DH, et al. 4-(3-Aryloxyaryl)quinoline sulfones are potent liver X receptor agonists. Bioorg Med Chem Lett 2010;20:209-12
  • Singhaus RR, Bernotas RC, Steffan R, et al. 3-(3-Aryloxyaryl)imidazo[1,2-a]pyridine sulfones as liver X receptor agonists. Bioorg Med Chem Lett 2010;20:521-5
  • Travins JM, Bernotas RC, Kaufman DH, et al. 1-(3-Aryloxyaryl)benzimidazole sulfones are liver X receptor agonists. Bioorg Med Chem Lett 2010;20:526-30
  • Hu B, Bernotas RC, Unwalla R, et al. Quinoline-3-carboxyamide containing sulfones as liver X receptor (LXR) agonists with binding selectivity for LXRβ and low blood-brain penetration. Bioorg Med Chem Lett 2010;20:689-93
  • Ullrich JW, Morris R, Bernotas RC, et al. Synthesis of 4-(3-biaryl)quinoline sulfones as potent liver X receptor agonsit. Bioorg Med Chem Lett 2010;20:2903-7
  • Wyeth. Quinoline compounds. WO2008049047
  • Wyeth. Quinoxaline-based LXR modulators. WO2010054229
  • Wyeth. Polar quinazolines as liver X receptors (LXRs) modulators. WO2010059627
  • Wyeth. Novel quinoline esters useful for treating skin disorders. WO2012004748
  • Hu B, Unwalla RJ, Goljer I, et al. Identification of phenylsulfone-substituted quinoxaline (WYE-672) as a tissue selective liver x-receptor (LXR) agonist. J Med Chem 2010;53:3296-304
  • Wyeth. Quinazoline compounds. WO2009020683
  • Bodor, NS. Inactive metabolite approach to soft drug design. US6610675
  • Kowa. 2-Oxochromene derivatives. WO2009107387, (US2009286780
  • Kowa. 1,3-Dihydroisobenzofuran derivatives. WO2009122707, (US7951822)
  • Kowa. Quinoline compounds. WO2009133692, (US8008306)
  • Kowa. Carbinol derivatives having cyclic linkers. WO2009144961, (US8153634)
  • Kowa. Carbinol derivatives having heterocyclic linkers. WO2010125811, (US2010280013)
  • Kowa. Substituted carbinol compounds. WO2008065754
  • Hu B, Quinet E, Unwalla R, et al. Carboxylic acid based quinolines as liver X receptor modulators that have LXRβ receptor binding selectivity. Bioorg Med Chem Lett 2008;18:54-9
  • Exelixis. LXR modulators. WO2010138598
  • Exelixis. Imidazole based LXR modulators. WO2007002563
  • Exelixis. Prodrugs of LXR modulating imidazole derivatives. WO2012135082
  • NV Organon. 1-(4-Ureidobenzoyl)piperazine derivatives. WO2010025179
  • NV Organon. N-benzyl N'-arylcarbonylpiperazine derivatives as LXR modulators. WO2009024550
  • NV Organon. N-(1,1,1,3,3,3-Hexafluoro-2-hydroxypropan-2-yl) benzyl-N'-arylcarbonylpiperazine derivatives. WO2009138438
  • NV Organon. (1,1,1,3,3,3-Hexafluoro-2-hydroxypropan-2-yl) phenyl derivatives, pharmaceutical compositions thereof and their use for the treatment of atherosclerosis. WO2011051282
  • Hoffmann – La Roche. Imidazolidine derivatives. WO2009150109
  • Hoffmann – La Roche. Imidazolidinone derivatives. WO2008119657
  • Hoffmann – La Roche. Novel piperazine amide derivatives. WO2009021868
  • Galderma. Ligands that modulate LXR-type receptors. WO2004076418
  • Galderma. Novel hexafluoro-2-biphenylisopropanol compounds that modulate LXR-type receptors, process for the preparation thereof and use thereof as medicaments in human and veterinary medicine and also in cosmetics. WO2010023317
  • Intermed. Terpenoid Spirol Ketal Compounds with LXR Agonists Activity, Their Use and Formulations with Them. WO2012079721
  • Su ZY, Tung YC, Hwang LS, et al. Blazeispirol A from agaricus blazei fermentation product induces cell death in human hepatoma Hep 3B cells through caspase-dependent and caspase-independent pathways. J Agric Food Chem 2011;59:5109-16
  • Peng D, Hiipakka RA, Dai Q, et al. Anitatherosclerotic effects of a novel synthetic tissue-selective steroidal liver X receptor agonist in low-density lipoprotein receptor-deficient mice. J Pharmacol Exp Ther 2008;327(2):332-42
  • University of Chicago. Liver X Receptor Agonists. WO2011014661
  • Sclole DR, Xu X, Wang H, et al. Liver X Receptor agonist inhibits proliferation of ovarian carcinoma cells stimulated by oxidized low density lipoprotein. Gynecol Oncol 2010;116:109-16
  • University of California, Los Angeles. Oxysterols that Activate Liver X Receptor Signaling and Inhibit Hedgehog Signaling. WO2011103175
  • Watanabe B, Nakagawa Y, Ogura T, et al. Stereoselective synthesis of (22R)- and (22S)-castasterone/ponasterone A hybrid compounds and evaluation of their molting hormone activity. Steroids 2004;69:483-93
  • University of California, Los Angeles. Inhibition of PPAR Gamma Expression by Specific Osteogenic Oxysterols. WO2008082520
  • University of Tokyo. Tricyclic Compound. WO2009107389
  • Aoyama A, Endo-Umeda K, Kishida K, et al. Design, synthesis, and biological evaluation of novel transrepression-selective liver X receptor (LXR) ligands with 5,11-Dihydro-5-methyl-11-methylene-6H-dibenz[b,e]azepin-6-one skeleton. J Med Chem 2012;55:7360-77
  • Motoshima K, Noguchi-Yachide T, Sugita K, et al. Separation of a-glucosidase-inhibitory and liver X receptor-antagonistic activities of phenethylphenyl phthalimide analogs and generation of LXRa-selective antagonist. Bioorg Med Chem 2009;17:5001-14
  • Zuercher WJ, Buckholz RG, Campobasso N, et al. Discovery of tertiary sulfonamides as potent liver X receptor antagonists. J Med Chem 2010;53:3412-16
  • Griffett K, Solt LA, El-Gendy BEM, et al. A liver-selective LXR inverse agonist that suppresses hepatic steatosis. ACS Chem Biol 2013;8:559-67
  • Chao EY, Caravella JA, Watson MA, et al. Structure-guided design of N-phenyl tertiary amines as transrepression-selective liver X receptor modulators with anti-inflammatory activity. J Med Chem 2008;51:5758-65
  • SNU R&DB Foundation. Ajoene for preventing and treating diseases caused by LXR α overexpression. WO2011122805
  • SNU R&DB Foundation. Liquiritigenin and isoliquiritigenin for treating diseases caused by over-expression of LXRα or SREBP-1. WO2011102695
  • SNU R&DB Foundation. Saururus chinensis extract and for preventing and treating diseases caused by overexpression of LXRα. WO2011034362
  • SNU R&DB Foundation. Sesterterpene Compounds and Use Thereof. WO2012033353
  • SNU R&DB Foundation. Pharmaceutical Composition Containing 1,2-Dithiolthione Derivative for Preventing or Treating Disease Caused by Overexpression of LXRalpha. WO2010016681
  • SNU R&DB Foundation. LXRα Inhibitors for Preventing and Treating Fatty Liver. KR2012058677
  • SNU R&DB Foundation. Prophylactic and therapeutic use of oltipraz as an antifibrotic and anticirrhotic agent in the liver and pharmaceutical composition containing oltipraz. KR20100404303, (WO0176604
  • SNU R&DB Foundation. Pharmaceutical compositions for the treatment or prevention of obesity. KR20100576157
  • SNU R&DB Foundation. The use of direct activation by organic agents of p90 ribosomal s6 kinase 1 (rsk1) for prevention and treatment of diabetes, obesity and metabolic syndrome. KR20100590818

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.