426
Views
19
CrossRef citations to date
0
Altmetric
Reviews

Inhibitors of cathepsin G: a patent review (2005 to present)

&
Pages 1611-1624 | Published online: 30 Sep 2013

Bibliography

  • Takahashi H, Nukiwa T, Yoshimura K, et al. Structure of the human neutrophil elastase gene. J Biol Chem 1988;263:14739-47
  • Bories D, Raynal MC, Solomon DH, et al. Down-regulation of a serine protease, myeloblastin, causes growth arrest and differentiation of promyelocytic leukemia cells. Cell 1989;59:959-68
  • Campanelli D, Melchior M, Fu Y, et al. Cloning of cDNA for proteinase 3: a serine protease, antibiotic, and autoantigen from human neutrophils. J Exp Med 1990;172:1709-15
  • Morgan JG, Sukiennicki T, Pereira HA, et al. Cloning of the cDNA for the serine protease homolog CAP37/azurocidin, a microbicidal and chemotactic protein from human granulocytes. J Immunol 1991;147:3210-14
  • Almeida RP, Melchior M, Campanelli D, et al. Complementary DNA sequence of human neutrophil azurocidin, an antibiotic with extensive homology to serine proteases. Biochem Biophys Res Commun 1991;177:688-95
  • Perera NC, Schilling O, Kittel H, et al. NSP4, an elastase-related protease in human neutrophils with arginine specificity. Proc Natl Acad Sci USA 2012;109:6229-34
  • Hudig D, Ewoldt GR, Woodard SL. Proteases and lymphocyte cytotoxic killing mechanisms. Curr Opin Immunol 1993;5:90-6
  • Haddad P, Jenne D, Tschopp J, et al. Structure and evolutionary origin of the human granzyme H gene. Int Immunol 1991;3:57-66
  • Hanson RD, Hohn PA, Popescu NC, Ley TJ. A cluster of hematopoietic serine protease genes is found on the same chromosomal band as the human alpha/delta T-cell receptor locus. Proc Natl Acad Sci USA 1990;87:960-3
  • Pagano MB, Bartoli MA, Ennis TL, et al. Critical role of dipeptidyl peptidase I in neutrophil recruitment during the development of experimental abdominal aortic aneurysms. Proc Natl Acad Sci USA 2007;104:2855-60
  • Hermant B, Bibert S, Concord E, et al. Identification of proteases involved in the proteolysis of vascular endothelium cadherin during neutrophil transmigration. J Biol Chem 2003;278:14002-12
  • Bangalore N, Travis J, Onunka VC, et al. Identification of the primary antimicrobial domains in human neutrophil cathepsin G. J Biol Chem 1990;265:13584-8
  • Shafer WM, Pohl J, Onunka VC, et al. Human lysosomal cathepsin G and granzyme B share a functionally conserved broad spectrum antibacterial peptide. J Biol Chem 1991;266:112-6
  • Renesto P, Chignard M. Enhancement of cathepsin G-induced platelet activation by leukocyte elastase: consequence for the neutrophil-mediated platelet activation. Blood 1993;82:139-44
  • Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol 2007;35:495-516
  • Owen CA, Campbell EJ. Angiotensin II generation at the cell surface of activated neutrophils: novel cathepsin G-mediated catalytic activity that is resistant to inhibition. J Immunol 1998;160:1436-43
  • Okada Y, Nakanishi I. Activation of matrix metalloproteinase 3 (stromelysin) and matrix metalloproteinase 2 ('gelatinase') by human neutrophil elastase and cathepsin G. FEBS Lett 1989;249:353-6
  • Saunders WB, Bayless KJ, Davis GE. MMP-1 activation by serine proteases and MMP-10 induces human capillary tubular network collapse and regression in 3D collagen matrices. J Cell Sci 2005;118:2325-40
  • Dzau VJ. Evolving concepts of the renin-angiotensin system. Focus on renal and vascular mechanisms. Am J Hypertens 1988;1:334S-7S
  • Newby AC. Metalloproteinase expression in monocytes and macrophages and its relationship to atherosclerotic plaque instability. Arterioscler Thromb Vasc Biol 2008;28:2108-14
  • Keeling WB, Armstrong PA, Stone PA, et al. An overview of matrix metalloproteinases in the pathogenesis and treatment of abdominal aortic aneurysms. Vasc Endovascular Surg 2005;39:457-64
  • Daugherty A, Manning MW, Cassis LA. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J Clin Invest 2000;105:1605-12
  • Lu H, Rateri DL, Cassis LA, Daugberty A. The role of the renin-angiotensin system in aortic aneurysmal diseases. Curr Hypertens Rep 2008;10:99-106
  • Fontaine V, Touat Z, Mtairagel M, et al. Role of leukocyte elastase in preventing cellular re-colonization of the mural thrombus. Am J Pathol 2004;164:2077-87
  • Chatham WW, Blackburn WD Jr, Heck LW. Additive enhancement of neutrophil collagenase activity by HOCl and cathepsin G. Biochem Biophys Res Commun 1992;184:560-7
  • Hans SS, Jareunpoon O, Balasubramaniam M, Zelenock GB. Size and location of thrombus in intact and ruptured abdominal aortic aneurysms. J Vasc Surg 2005;41:584-8
  • Gacko M, Chyczewski L. Activity and localization of cathepsin B, D and G in aortic aneurysm. Int Surg 1997;82:398-402
  • Kaschina E, Scholz H, Steckelings UM, et al. Transition from atherosclerosis to aortic aneurysm in humans coincides with an increased expression of RAS components. Atherosclerosis 2009;205:396-403
  • Korkmaz B, Horwitz MS, Jenne DE, Gauthier F. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol Rev 2010;62(4):726-59
  • Baumann M, Pham CT, Benarafa C. SerpinB1 is critical for neutrophil survival through cell-autonomous inhibition of cathepsin G. Blood 2013;121:3900-7
  • Scott FL, Hirst CE, Sun J, et al. The intracellular serpin proteinase inhibitor 6 is expressed in monocytes and granulocytes and is a potent inhibitor of the azurophilic granule protease, cathepsin G. Blood 1999;93:2089-97
  • Fath MA, Wu X, Hileman RE, et al. Interaction of secretory leukocyte protease inhibitor with heparin inhibits proteases involved in asthma. J Biol Chem 1998;273:13563-9
  • Campbell EJ, Campbell MA, Boukedes SS, Owen CA. Quantum proteolysis by neutrophils: implications for pulmonary emphysema in alpha 1-antitrypsin deficiency. J Clin Invest 1999;104:337-44
  • Rao NV, Marshall BC, Gray BH, Hoidal JR. Interaction of secretory leukocyte protease inhibitor with proteinase-3. Am J Respir Cell Mol Biol 1993;8:612-16
  • Owen CA, Campbell MA, Boukedes SS, Campbell EJ. Inducible binding of bioactive cathepsin G to the cell surface of neutrophils. A novel mechanism for mediating extracellular catalytic activity of cathepsin G. J Immunol 1995;155:5803-10
  • Korkmaz B, Attucci S, Jourdan ML, et al. Inhibition of neutrophil elastase by alpha1-protease inhibitor at the surface of human polymorphonuclear neutrophils. J Immunol 2005;175:3329-38
  • Dubois AV, Gauthier A, Brea D, et al. Influence of DNA on the activities and inhibition of neutrophil serine proteases in cystic fibrosis sputum. Am J Respir Cell Mol Biol 2012;47:80-6
  • Lefrançais E, Roga S, Gautier V, et al. IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. Proc Natl Acad Sci USA 2012;109:1673-8
  • Wilson TJ, Nannuru KC, Singh RK. Cathepsin G recruits osteoclast precursors via proteolytic activation of protease-activated receptor-1. Cancer Res 2009;69:3188-95
  • Perrin J, Lecompte T, Tournier A, et al. In vitro effects of human neutrophil cathepsin G on thrombin generation: both acceleration and decreased potential. Thromb Haemost 2010;104:514-22
  • McGowan SE. Mechanisms of extracellular matrix proteoglycan degradation by human neutrophils. Am J Respir Cell Mol Biol 1990;2:271-9
  • Flodgaard H. The role of neutrophilic secretion products in infectious diseases. Contrib Microbiol 2003;10:75-85
  • Bank U, Ansorge S. More than destructive: neutrophil-derived serine proteases in cytokine bioactivity control. J Leukoc Biol 2001;69:197-206
  • Kuester D, Lippert H, Roessner A, Krueger S. The cathepsin family and their role in colorectal cancer. Pathol Res Pract 2008;204:491-500
  • Snider GL. Experimental studies on emphysema and chronic bronchial injury. Eur J Respir Dis Suppl 1986;146:17-35
  • Ley AC, Ladner RC, Guterman S, et al. Inhibitors of Human Neutrophil Elastase and Human Cathepsin G. WO015605A2; 1992
  • Ladner RC, Guterman SK, Roberts BL, et al. Protein Engineering Corp. Cambridge MA Directed evolution of novel binding proteins. US5571698; 1993
  • Ley AC, Guterman SK, Markland W, et al. Kunitz domain mutants as cathepsin G inhibitors. US0223977A1; 2003
  • Bode W, Huber R. Structural basis of the endoproteinase-protein inhibitor interaction. Biochim Biophys Acta 2000;1477:241-52
  • Krowarsch D, Cierpicki T, Jelen F, Otlewski J. Canonical protein inhibitors of serine proteases. Cell Mol Life Sci 2003;60:2427-44
  • Delacourt C, Herigault S, Delclaux C, et al. Protection against acute lung injury by intravenous or intratracheal pretreatment with EPI-HNE-4, a new potent neutrophil elastase inhibitor. Am J Respir Cell Mol Biol 2002;26:290-7
  • Attucci S, Gauthier A, Korkmaz B, et al. EPI-hNE4, a proteolysis-resistant inhibitor of human neutrophil elastase and potential anti-inflammatory drug for treating cystic fibrosis. J Pharmacol Exp Ther 2006;318:803-9
  • Wark PA. DX-890 (Dyax). IDrugs 2002;5(6):586-9
  • Ladner RC; Dyax Corp. Protease inhibition. WO079096A2; 2007
  • Schmidt R, Winter G. Wound Dresssing Composition, Especially for Delivery of Protease Inhibitors. WO037606A2; 2006
  • Duranton J, Adam C, Bieth JG. Kinetic mechanism of the inhibition of cathepsin G by alpha 1-antichymotrypsin and alpha 1-proteinase inhibitor. Biochemistry 1998;37(32):11239-45
  • Lezdey J, Wachter A. Treatment of inflammation using 1-antichymotrypsin. US5008242A; 1991
  • Lezdey J, Wachter AM; Sonoran Desert Chemicals. Treatment of inflammation. EP0512090B2; 2006
  • Chmelar J, Oliveira CJ, Rezacova P, et al. A tick salivary protein targets cathepsin G and chymase and inhibits host inflammation and platelet aggregation. Blood 2011;117:736-44
  • Demarco SJ, Moehle K, Henze H, et al. Polyphor Ltd., Universitat Zurich. Template-Fixed Beta-Hairpin Peptidomimetics With Protease Inhibitory Activity. US0054345A1; 2009
  • Angelastro MR, Bey P, Doehrty NS, et al. Inhibitors of Cathepsin G and. Elastase for preventing connective tissue degradation. EP0587799B1; 1999
  • Angelastro MR, Bey P, Doherty NS, et al. Inhibitors of Cathepsin G and elastase for preventing connective tissue degradation. US5510333; 1996
  • Fridkin M, Yavin EJ. Anti-inflammatory peptides derived from C-reactive protein. WO028182A1; 1997
  • Shenvi AB, Kettner CA. α-Aminoboronic acid peptides. US4499082; 1985
  • Zembower DE, Neudauer CL, Wick MJ, Ames MM. Peptide boronic acids. Versatile synthetic ligands for affinity chromatography of serine proteinases. Int J Pept Protein Res 1996;47:405-13
  • Kettner CA, Shenvi AB. Inhibition of the serine proteases leukocyte elastase, pancreatic elastase, cathepsin G, and chymotrypsin by peptide boronic acids. J Biol Chem 1984;259:15106-14
  • Mucha A, Kafarski P, Berlicki L. Remarkable potential of the alpha-aminophosphonate/phosphinate structural motif in medicinal chemistry. J Med Chem 2011;54:5955-80
  • Mucha A, Drag M, Dalton JP, Kafarski P. Metallo-aminopeptidase inhibitors. Biochimie 2010;92:1509-29
  • Holden HM, Tronrud DE, Monzingo AF, et al. Slow- and fast-binding inhibitors of thermolysin display different modes of binding: crystallographic analysis of extended phosphonamidate transition-state analogues. Biochemistry 1987;26:8542-53
  • Hayek T, Attias J, Coleman R, et al. The angiotensin-converting enzyme inhibitor, fosinopril, and the angiotensin II receptor antagonist, losartan, inhibit LDL oxidation and attenuate atherosclerosis independent of lowering blood pressure in apolipoprotein E deficient mice. Cardiovasc Res 1999;44:579-87
  • Matziari M, Dive V, Yiotakis A. Matrix metalloproteinase 11 (MMP-11; stromelysin-3) and synthetic inhibitors. Med Res Rev 2007;27:528-52
  • Vassiliou S, Mucha A, Cuniasse P, et al. Phosphinic pseudo-tripeptides as potent inhibitors of matrix metalloproteinases: a structure-activity study. J Med Chem 1999;42:2610-20
  • Grzywa R, Sienczyk M. Phosphonic esters and their application of protease control. Curr Pharm Des 2013;19:1154-78
  • Sienczyk M, Lesner A, Wysocka M, et al. New potent cathepsin G phosphonate inhibitors. Bioorg Med Chem 2008;16:8863-7
  • Greco MN, Hawkins MJ, Powell ET, et al. Nonpeptide inhibitors of cathepsin G: optimization of a novel beta-ketophosphonic acid lead by structure-based drug design. J Am Chem Soc 2002;124:3810-11
  • Maryanoff BE, de Garavilla L, Greco MN, et al. Dual inhibition of cathepsin G and chymase is effective in animal models of pulmonary inflammation. Am J Respir Crit Care Med 2010;181:247-53
  • de Garavilla L, Greco MN, Sukumar N, et al. A novel, potent dual inhibitor of the leukocyte proteases cathepsin G and chymase: molecular mechanisms and anti-inflammatory activity in vivo. J Biol Chem 2005;280:18001-7
  • Greco MN, Almond J, Harold R, et al. Novel phosphonic acid compounds as inhibitors of serine proteases. US0283221A1; 2012
  • Suneela D, Dipmala P. Synthesis and pharmacokinetic profile of rhein- boswellic acid conjugate. Bioorg Med Chem Lett 2012;22:7582-7
  • Golbabaei S, Bazl R, Golestanian S, et al. Urease inhibitory activities of beta-boswellic acid derivatives. Daru 2013;21:2
  • Streffer JR, Bitzer M, Schabet M, et al. Response of radiochemotherapy-associated cerebral edema to a phytotherapeutic agent, H15. Neurology 2001;56:1219-21
  • Gerbeth K, Husch J, Fricker G, et al. In vitro metabolism, permeation, and brain availability of six major boswellic acids from Boswellia serrata gum resins. Fitoterapia 2013;84:99-106
  • Zhang YS, Xie JZ, Zhong JL, et al. Acetyl-11-keto-beta-boswellic acid (AKBA) inhibits human gastric carcinoma growth through modulation of the Wnt/beta-catenin signaling pathway. Biochim Biophys Acta 2013;1830:3604-15
  • Sun Y, Liu D, Xi R, et al. Microbial transformation of acetyl-11-keto-beta-boswellic acid and their inhibitory activity on LPS-induced NO production. Bioorg Med Chem Lett 2013;23:1338-42
  • Liu JJ, Toy WC, Liu S, et al. Acetyl-keto-beta-boswellic acid induces lipolysis in mature adipocytes. Biochem Biophys Res Commun 2013;431:192-6
  • Rao AR, Veeresham C, Asres K. In vitro and in vivo inhibitory activities of four indian medicinal plant extracts and their major components on rat aldose reductase and generation of advanced glycation endproducts. Phytother Res 2013;27:753-60
  • Tausch L, Henkel A, Siemoneit U, et al. Identification of human cathepsin G as a functional target of boswellic acids from the anti-inflammatory remedy frankincense. J Immunol 2009;183:3433-42
  • Werz O, Kapp J-F, Martin R. 2 Synthase and Cathepsin G. WO117987A2; 2009
  • Ermolieff J, Duranton J, Petitou M, Bieth JG. Heparin accelerates the inhibition of cathepsin G by mucus proteinase inhibitor: potent effect of O-butyrylated heparin. Biochem J 1998;330:1369-74
  • Baici A, Diczhazi C, Neszmelyi A, et al. Inhibition of the human leukocyte endopeptidases elastase and cathepsin G and of porcine pancreatic elastase by N-oleoyl derivatives of heparin. Biochem Pharmacol 1993;46:1545-9
  • Redini F, Tixier JM, Petitou M, et al. Inhibition of leucocyte elastase by heparin and its derivatives. Biochem J 1988;252:515-9
  • Kennedy TP; Carolinas HealthCare System. Method of synthesis of desulfated heparin and use thereof for inhibition of elastase and cathespin. US5912237; 1999
  • Ledoux D, Merciris D, Barritault D, Caruelle JP. Heparin-like dextran derivatives as well as glycosaminoglycans inhibit the enzymatic activity of human cathepsin G. FEBS Lett 2003;537:23-9
  • Li P, Cebrian J, Carpentier G, et al. Effect of RG1192, a substituted dextran, on inflammatory response. Cell Mol Biol (Noisy-le-grand) 2003;49: Online Pub: OL409-13
  • Alexakis C, Guettoufi A, Mestries P, et al. Heparan mimetic regulates collagen expression and TGF-beta1 distribution in gamma-irradiated human intestinal smooth muscle cells. FASEB J 2001;15:1546-54
  • Prestwich GD, Zhang J, Kennedy TP, et al. University of Utah Research Foundation. Alkylated semi-synthetic glysaminoglycan ethers, and methods of making and using thereof. US0317616A1; 2010
  • He S, Kuang R, Venkataraman R, et al. Potent inhibition of serine proteases by heterocyclic sulfide derivatives of 1,2,5-thiadiazolidin-3-one 1,1 dioxide. Bioorg Med Chem 2000;8:1713-7
  • Groutas WC, Epp JB, Venkataraman R, et al. Design, synthesis, and in vitro inhibitory activity toward human leukocyte elastase, cathepsin G, and proteinase 3 of saccharin-derived sulfones and congeners. Bioorg Med Chem 1996;4:1393-400
  • Dunlap RP, Boaz NW, Mura AJ, et al. Sanofi. Saccharin derivatives useful as proteolytic enzyme inhibitors and compositions and method of use thereof. US5874432; 1999
  • Kuang R, Epp JB, Ruan S, et al. Utilization of the 1,2,5-thiadiazolidin-3-one 1,1 dioxide scaffold in the design of potent inhibitors of serine proteases: SAR studies using carboxylates. Bioorg Med Chem 2000;8:1005-16
  • Kulbachinskiy AV. Methods for selection of aptamers to protein targets. Biochemistry (Mosc) 2007;72:1505-18
  • James W. Nucleic acid and polypeptide aptamers: a powerful approach to ligand discovery. Curr Opin Pharmacol 2001;1:540-6
  • Palumbo M, Gatto B, Pescador R, et al. Gentium SPA. DNA-based Aptamers for Human Cathepin G. US0176814A1; 2008
  • Ferro LI, Gatto B, Palumbo M, et al. DNA-based Aptamers for Human Cathepsin G. EP2236609A2; 2010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.