175
Views
19
CrossRef citations to date
0
Altmetric
Review

Therapeutic potential of peroxynitrite decomposition catalysts: a patent review

, BS (Graduate Research Assistant) & , PhD (Professor and Head)

Bibliography

  • Huie RE, Padmaja S. The reaction of no with superoxide. Free Radic Res Commun 1993;18(4):195-9
  • Blough NV, Zafiriou OC. Reaction of superoxide with nitric oxide to form peroxynitrite in alkaline aqueous solution. Inorg Chem 1985;24:3502-4
  • Beckman JS, Beckman TW, Chen J, et al. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 1990;87(4):1620-4
  • Szabo C, Ischiropoulos H, Radi R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 2007;6(8):662-80
  • Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev 2007;87(1):315-424
  • Gryglewski RJ, Palmer RM, Moncada S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 1986;320(6061):454-6
  • Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001;414(6865):813-20
  • Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem 1995;64:97-112
  • Politzer IR, Griffin GW, Laseter JL. Singlet oxygen and biological systems. Chem Biol Interact 1971;3(2):73-93
  • Paschen W, Weser U. Letter: singlet oxygen decontaminating activity of erythrocuprein (superoxide dismutase). Biochim Biophys Acta 1973;327(1):217-22
  • Guzik TJ, West NEJ, Pillal R, et al. Nitric oxide modulates superoxide release and peroxynitrite, formation in human blood vessels. Hypertension 2002;39(6):1088-94
  • Muscoli C, Mollace V, Wheatley J, et al. Superoxide-mediated nitration of spinal manganese superoxide dismutase: a novel pathway in N-methyl-D-aspartate-mediated hyperalgesia. Pain 2004;111(1-2):96-103
  • MacMillan-Crow LA, Thompson JA. Tyrosine modifications and inactivation of active site manganese superoxide dismutase mutant (Y34F) by peroxynitrite. Arch Biochem Biophys 1999;366(1):82-8
  • Doyle T, Bryant L, Batinic-Haberle I, et al. Supraspinal Inactivation of Mitochondrial Superoxide Dismutase Is a Source of Peroxynitrite in the Development of Morphine Antinociceptive Tolerance. Neuroscience 2009;164(2):702-10
  • Bayir H, Kagan VE, Clark RS, et al. Neuronal NOS-mediated nitration and inactivation of manganese superoxide dismutase in brain after experimental and human brain injury. J Neurochem 2007;101(1):168-81
  • Little JW, Doyle T, Salvemini D. Reactive nitroxidative species and nociceptive processing: determining the roles for nitric oxide, superoxide, and peroxynitrite in pain. Amino Acids 2012;42(1):75-94
  • Radi R, Cassina A, Hodara R. Nitric oxide and peroxynitrite interactions with mitochondria. Biol Chem 2002;383(3-4):401-9
  • Radi R, Cassina A, Hodara R, et al. Peroxynitrite reactions and formation in mitochondria. Free Radic Biol Med 2002;33(11):1451-64
  • Batinic-Haberle I, Spasojevic I, Fridovich I. Tetrahydrobiopterin rapidly reduces the SOD mimic Mn(III) ortho-tetrakis(N-ethylpyridinium-2-yl)porphyrin. Free Radic Biol Med 2004;37(3):367-74
  • Ferrer-Sueta G, Hannibal L, Batinic-Haberle I, Radi R. Reduction of manganese porphyrins by flavoenzymes and submitochondrial particles: a catalytic cycle for the reduction of peroxynitrite. Free Radic Biol Med 2006;41(3):503-12
  • Ferrer-Sueta G, Vitturi D, Batinic-Haberle I, et al. Reactions of manganese Porphyrins with peroxynitrite and carbonate radical anion. J Biol Chem 2003;278(30):27432-8
  • Trostchansky A, Ferrer-Sueta G, Batthyany C, et al. Peroxynitrite flux-mediated LDL oxidation is inhibited by manganese porphyrins in the presence of uric acid. Free Radic Biol Med 2003;35(10):1293-300
  • Trujillo M, Ferrer-Sueta G, Thomson L, et al. Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite. Subcell Biochem 2007;44:83-113
  • Nickel C, Trujillo M, Rahlfs S, et al. Plasmodium falciparum 2-Cys peroxiredoxin reacts with plasmoredoxin and peroxynitrite. Biol Chem 2005;386(11):1129-36
  • Alvarez MN, Piacenza L, Irigoin F, et al. Macrophage-derived peroxynitrite diffusion and toxicity to Trypanosoma cruzi. Arch Biochem Biophys 2004;432(2):222-32
  • Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 1996;271(5 Pt 1):C1424-37
  • Alvarez B, Radi R. Peroxynitrite reactivity with amino acids and proteins. Amino Acids 2003;25(3-4):295-311
  • Augusto O, Bonini MG, Amanso AM, et al. Nitrogen dioxide and carbonate radical anion: two emerging radicals in biology. Free Radic Biol Med 2002;32(9):841-59
  • Radi R, Beckman JS, Bush KM, Freeman BA. Peroxynitrite-induced membrane lipid-peroxidation - the cytotoxic potential of superoxide and nitric-oxide. Arch Biochem Biophys 1991;288(2):481-7
  • Denicola A, Radi R. Peroxynitrite and drug-dependent toxicity. Toxicology 2005;208(2):273-88
  • Burney S, Caulfield JL, Niles JC, et al. The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutat Res 1999;424(1-2):37-49
  • Niles JC, Wishnok JS, Tannenbaum SR. Peroxynitrite-induced oxidation and nitration products of guanine and 8-oxoguanine: structures and mechanisms of product formation. Nitric Oxide 2006;14(2):109-21
  • Virag L, Szabo E, Gergely P, Szabo C. Peroxynitrite-induced cytotoxicity: mechanism and opportunities for intervention. Toxicol Lett 2003;140:113-24
  • Denicola A, Souza JM, Radi R. Diffusion of peroxynitrite across erythrocyte membranes. Proc Natl Acad Sci USA 1998;95(7):3566-71
  • Beckmann JS, Ye YZ, Anderson PG, et al. Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. Biol Chem Hoppe Seyle 1994;375(2):81-8
  • Ischiropoulos H. Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species. Arch Biochem Biophys 1998;356(1):1-11
  • Arteel GE, Briviba K, Sies H. Protection against peroxynitrite. FEBS Lett 1999;445(2-3):226-30
  • Batinic-Haberle I, Tovmasyan A, Roberts ER, et al. SOD therapeutics: latest insights into their structure-activity relationships and impact on the cellular redox-based signaling pathways. Antioxid Redox Signal 2014;20(15):2372-415
  • Zhao Y, Chaiswing L, Oberley TD, et al. A mechanism-based antioxidant approach for the reduction of skin carcinogenesis. Cancer Res 2005;65(4):1401-5
  • Tse HM, Milton MJ, Piganelli JD. Mechanistic analysis of the immunomodulatory effects of a catalytic antioxidant on antigen-presenting cells: implication for their use in targeting oxidation-reduction reactions in innate immunity. Free Radic Biol Med 2004;36(2):233-47
  • Batinic-Haberle I, Tovmasyan A, Spasojevic I. The complex mechanistic aspects of redox-active compounds, commonly regarded as SOD mimics. BioInorganic Reaction Mechanisms 2014;9(1-4):35-58
  • Delmastro-Greenwood MM, Tse HM, Piganelli JD. Effects of metalloporphyrins on reducing inflammation and autoimmunity. Antioxid Redox Signal 2014;20(15):2465-77
  • Sheng H, Chaparro RE, Sasaki T, et al. Metalloporphyrins as therapeutic catalytic oxidoreductants in central nervous system disorders. Antioxid Redox Signal 2014;20(15):2437-64
  • Salvemini D, Stern MK. Methods of use for peroxynitrite decomposition catalysts, pharmaceutical compositions therefor. WO031197A1; 1995
  • Batinic-Haberle I, Rajic Z, Tovmasyan A, et al. Diverse functions of cationic Mn(III) N-substituted pyridylporphyrins, recognized as SOD mimics. Free Radic Biol Med 2011;51(5):1035-53
  • Stern MK, Jensen MP, Kramer K. Peroxynitrite decomposition catalysts. J Am Chem Soc 1996;118(36):8735-6
  • Shimanovich R, Groves JT. Mechanisms of peroxynitrite decomposition catalyzed by FeTMPS, a bioactive sulfonated iron porphyrin. Arch Biochem Biophys 2001;387(2):307-17
  • Pasternack RF. The superoxide-dismutase activities of water-soluble metalloporphyrins. Abstr Pap Am Chem S 1981;181:145-INOR
  • Batinic-Haberle I, Stevens RD, Fridovich I. Porphyrin-based SOD mimics. Electrospray mass spectroscopy of Mn(III) and Fe(III) isomeric tetrakis-(N-alkylpyridyl) porphyrins. Free Radic Biol Med 1999;27:S18-18
  • Batinic-Haberle I, Reboucas JS, Spasojevic I. Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential. Antioxid Redox Signal 2010;13(6):877-918
  • Jensen MP, Riley DP. Peroxynitrite decomposition activity of iron porphyrin complexes. Inorg Chem 2002;41(18):4788-97
  • Salvemini D, Wang ZQ, Stern MK, et al. Peroxynitrite decomposition catalysts: therapeutics for peroxynitrite-mediated pathology. Proc Natl Acad Sci USA 1998;95(5):2659-63
  • Thiyagarajan M, Kaul CL, Sharma SS. Neuroprotective efficacy and therapeutic time window of peroxynitrite decomposition catalysts in focal cerebral ischemia in rats. Br J Pharmacol 2004;142(5):899-911
  • Cuzzocrea S, Misko TP, Costantino G, et al. Beneficial effects of peroxynitrite decomposition catalyst in a rat model of splanchnic artery occlusion and reperfusion. Faseb J 2000;14(9):1061-72
  • Cuzzocrea S, Misko TP, Costantino G, et al. Beneficial effects of peroxynitrite decomposition catalyst in a rat model of splanchnic artery occlusion and reperfusion. FASEB J 2000;14(9):1061-72
  • Cross AH, San M, Stern MK, et al. A catalyst of peroxynitrite decomposition inhibits murine experimental autoimmune encephalomyelitis. J Neuroimmunol 2000;107(1):21-8
  • Stavniichuk R, Shevalye H, Lupachyk S, et al. Peroxynitrite and protein nitration in the pathogenesis of diabetic peripheral neuropathy. Diabetes Metab Res Rev 2014;30(8):669-78
  • Muscoli C, Salvemini D, Paolino D, et al. Peroxynitrite decomposition catalyst prevents apoptotic cell death in a human astrocytoma cell line incubated with supernatants of HIV-infected macrophages. Bmc Neurosci 2002;3
  • Ferdinandy P, Danial H, Ambrus I, et al. Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ Res 2000;87(3):241-7
  • Lancel S, Tissier S, Mordon S, et al. Peroxynitrite decomposition catalysts prevent myocardial dysfunction and inflammation in endotoxemic rats. J Am Coll Cardiol 2004;43(12):2348-58
  • Tan KH, Harrington S, Purcell WM, Hurst RD. Peroxynitrite mediates nitric oxide-induced blood-brain barrier damage. Neurochem Res 2004;29(3):579-87
  • Sharma SS, Munusamy S, Thiyagarajan M, Kaul CL. Neuroprotective effect of peroxynitrite decomposition catalyst and poly(adenosine diphosphate-ribose) polymerase inhibitor alone and in combination in rats with focal cerebral ischemia. J Neurosurg 2004;101(4):669-75
  • Xie Z, Wei M, Morgan TE, et al. Peroxynitrite mediates neurotoxicity of amyloid beta-peptide1-42- and lipopolysaccharide-activated microglia. J Neurosci 2002;22(9):3484-92
  • Nangle MR, Cotter MA, Cameron NE. Effects of the peroxynitrite decomposition catalyst, FeTMPyP, on function of corpus cavernosum from diabetic mice. Eur J Pharmacol 2004;502(1-2):143-8
  • Muscoli C, Cuzzocrea S, Ndengele MM, et al. Therapeutic manipulation of peroxynitrite attenuates the development of opiate-induced antinociceptive tolerance in mice. J Clin Invest 2007;117(11):3530-9
  • Muscoli C, Dagostino C, Ilari S, et al. Posttranslational Nitration of Tyrosine Residues Modulates Glutamate Transmission and Contributes to N-Methyl-D-aspartate-Mediated Thermal Hyperalgesia. Mediators Inflamm 2013;2013:950947
  • Salvemini D, Little JW, Doyle T, Neumann WL. Roles of reactive oxygen and nitrogen species in pain. Free Radic Biol Med 2011;51(5):951-66
  • Batinic-Haberle I, Fridovich I, Spasojevic I; inventors. Substituted porphyrins. WO2003103680, assignee 2003
  • Williams W, Southan G. Pyridyl-substituted porphyrin compounds and methods of use thereof. US7432369B2; 2008
  • Szabo C, Mabley JG, Moeller SM, et al. FP 15, a novel, potent peroxynitrite decomposition catalyst: in vitro cytoprotective actions and protection against diabetes mellitus and diabetic cardiovascular complications. Faseb J 2002;16(5):A1166-A66
  • Batinic-Haberle I, Spasojevic I, Stevens RD, et al. New PEG-ylated Mn(III) porphyrins approaching catalytic activity of SOD enzyme. Dalton Trans 2006;4):617-24
  • Drel VR, Pacher P, Vareniuk I, et al. A peroxynitrite decomposition catalyst counteracts sensory neuropathy in streptozotocin-diabetic mice. Eur J Pharmacol 2007;569(1-2):48-58
  • Mabley JG, Liaudet L, Pacher P, et al. Part II: beneficial effects of the peroxynitrite decomposition catalyst FP15 in murine models of arthritis and colitis. Mol Med 2002;8(10):581-90
  • Naidu BV, Fraga C, Salzman AL, et al. Critical role of reactive nitrogen species in lung ischemia-reperfusion injury. J Heart Lung Transplant 2003;22(7):784-93
  • Naidu BV, Farivar AS, Woolley SM, et al. Enhanced peroxynitrite decomposition protects against experimental obliterative bronchiolitis. Exp Mol Pathol 2003;75(1):12-17
  • Tauskela JS, Brunette E, Hewitt M, et al. Competing approaches to excitotoxic neuroprotection by inert and catalytic antioxidant porphyrins. Neurosci Lett 2006;401(3):236-41
  • Lacza Z, Horvath EM, Komjati K, et al. PARP inhibition improves the effectiveness of neural stem cell transplantation in experimental brain trauma. Int J Mol Med 2003;12(2):153-9
  • Bianchi C, Wakiyama H, Faro R, et al. A novel peroxynitrite decomposer catalyst (FP-15) reduces myocardial infarct size in an in vivo peroxynitrite decomposer and acute ischemia-reperfusion in pigs. Ann Thorac Surg 2002;74(4):1201-7
  • Pacher P, Liaudet L, Bai P, et al. Potent metalloporphyrin peroxynitrite decomposition catalyst protects against the development of doxorubicin-induced cardiac dysfunction. Circulation 2003;107(6):896-904
  • Tovmasyan A, Sheng H, Weitner T, et al. Design, mechanism of action, bioavailability and therapeutic effects of mn porphyrin-based redox modulators. Med Princ Pract 2013;22(2):103-30
  • Jiao XY, Gao E, Yuan Y, et al. INO-4885 [5,10,15,20-Tetra[N-(benzyl-4 ’-carboxylate)-2-pyridinium]-21H,23H-porphine iron(III) chloride], a peroxynitrite decomposition catalyst, protects the heart against reperfusion injury in mice. J Pharmacol Exp Ther 2009;328(3):777-84
  • Pieper GM, Nilakantan V, Chen M, et al. Protective mechanisms of a metalloporphyrinic peroxynitrite decomposition catalyst, WW85, in rat cardiac transplants. J Pharmacol Exp Ther 2005;314(1):53-60
  • Genovese T, Mazzon E, Esposito E, et al. Effects of a metalloporphyrinic peroxynitrite decomposition catalyst, ww-85, in a mouse model of spinal cord injury. Free Radic Res 2009;43(7):631-45
  • Jonkam CC, Enkhbaatar P, Traber LD, et al. Peroxynitrite decomposition catalyst ameliorates vascular collapse in MRSA sepsis. American Society of Anesthesiologists. Anesthesiology, Orlando, FL; 2008
  • Nash K, Hafeez A, Hou S. Hospital-acquired renal insufficiency. Am J Kidney Dis 2002;39(5):930-6
  • Pisani A, Riccio E, Andreucci M, et al. Role of reactive oxygen species in pathogenesis of radiocontrast-induced nephropathy. Biomed Res Int 2013;2013:868321
  • Tovmasyan A, Weitner T, Sheng H, et al. Differential coordination demands in Fe versus Mn water-soluble cationic metalloporphyrins translate into remarkably different aqueous redox chemistry and biology. Inorg Chem 2013;52(10):5677-91
  • Gardner PR, Fridovich I. Superoxide sensitivity of the Escherichia coli aconitase. J Biol Chem 1991;266(29):19328-33
  • Flint DH, Tuminello JF, Emptage MH. The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J Biol Chem 1993;268(30):22369-76
  • Gardner PR, Fridovich I. Superoxide sensitivity of the Escherichia coli 6-phosphogluconate dehydratase. J Biol Chem 1991;266(3):1478-83
  • Benov L, Fridovich I. Growth in iron-enriched medium partially compensates Escherichia coli for the lack of manganese and iron superoxide dismutase. J Biol Chem 1998;273(17):10313-16
  • Ohse T, Nagaoka S, Arakawa Y, et al. Cell death by reactive oxygen species generated from water-soluble cationic metalloporphyrins as superoxide dismutase mimics. J Inorg Biochem 2001;85(2-3):201-8
  • Britton RS, Leicester KL, Bacon BR. Iron toxicity and chelation therapy. Int J Hematol 2002;76(3):219-28
  • Nepomuceno MF, Tabak M, Vercesi AE. Opposite effects of Mn(III) and Fe(III) forms of meso-tetrakis(4-N-methyl pyridiniumyl) porphyrins on isolated rat liver mitochondria. J Bioenerg Biomembr 2002;34(1):41-7
  • Batinic-Haberle I, Spasojevic I, Hambright P, et al. Relationship among redox potentials, proton dissociation constants of pyrrolic nitrogens, and in vivo and in vitro superoxide dismutating activities of manganese(III) and iron(III) water-soluble porphyrins. Inorg Chem 1999;38(18):4011-22
  • Lee JB, Hunt JA, Groves JT. Rapid decomposition of peroxynitrite by manganese porphyrin-antioxidant redox couples. Bioorg Med Chem Lett 1997;7(22):2913-18
  • Lee JB, Hunt JA, Groves JT. Manganese porphyrins as redox-coupled peroxynitrite reductases. J Am Chem Soc 1998;120(24):6053-61
  • Rausaria S, Ghaffari MME, Kamadulski A, et al. Retooling Manganese(III) Porphyrin-Based Peroxynitrite Decomposition Catalysts for Selectivity and Oral Activity: a Potential New Strategy for Treating Chronic Pain. J Med Chem 2011;54(24):8658-69
  • Gauter-Fleckenstein B, Fleckenstein K, Owzar K, et al. Early and late administration of MnTE-2-PyP5+ in mitigation and treatment of radiation-induced lung damage. Free Radic Biol Med 2010;48(8):1034-43
  • Batinic-Haberle I, Fridovich I. Substituted porphyrins. WO023097A1; 1999
  • Fridovich I, Batinic-Haberle I, Crapo JD, Day BJ. Antiinflammatory agents; respiratory system disorders. US6916799B2; 2005
  • Fridovich I, Liochev SI. Oxidoreductase activity of manganic porphyrins. US6103714A; 2000
  • Lee JH, Lee YM, Park JW. Regulation of ionizing radiation-induced apoptosis by a manganese porphyrin complex. Biochem Bioph Res Co 2005;334(2):298-305
  • Lee JH, Park JW. A manganese porphyrin complex is a novel radiation protector. Free Radic Biol Med 2004;37(2):272-83
  • Benov L, Batinic-Haberle I. A. Manganese porphyrin suppresses oxidative stress and extends the life span of streptozotocin-diabetic rats. Free Radic Res 2005;39(1):81-8
  • Hachmeister JE, Valluru L, Bao F, Liu DX. Mn (III) tetrakis (4-benzoic acid) porphyrin administered into the intrathecal space reduces oxidative damage and neuron death after spinal cord injury: a comparison with methylprednisolone. J Neurotrauma 2006;23(12):1766-78
  • Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 2006;440(7086):944-8
  • Crapo J, Day B, Batinic-Haberle I, et al. Administering to a mammal, a low molecular weight antioxidants, mimetics of superoxide dismutase. US 0050297A1; 2003
  • Rabbani ZN, Spasojevic I, Zhang XW, et al. Antiangiogenic action of redox-modulating Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl) porphyrin, MnTE-2-PyP5+, via suppression of oxidative stress in a mouse model of breast tumor. Free Radic Biol Med 2009;47(7):992-1004
  • Mehrotra S, Pecaut MJ, Freeman TL, et al. Analysis of a metalloporphyrin antioxidant mimetic (MnTE-2-PyP) as a Radiomitigator: prostate tumor and immune status. Technol Cancer Res Treat 2012;11(5):447-57
  • Zhao YF, Chaiswing L, Oberley TD, et al. A mechanism-based antioxidant approach for the reduction of skin carcinogenesis. Cancer Res 2005;65(4):1401-5
  • Jaramillo MC, Briehl MM, Crapo JD, et al. Manganese Porphyrin, MnTE-2-PyP5+, Acts as a Pro-Oxidant to Potentiate Glucocorticoid-Induced Apoptosis in Lymphoma Cells. Free Radic Biol Med 2012;52(8):1272-84
  • Rawal M, Schroeder SR, Wagner BA, et al. Manganoporphyrins Increase Ascorbate-Induced Cytotoxicity by Enhancing H2O2 Generation. Cancer Res 2013;73(16):5232-41
  • Makinde AY, Rizvi A, Crapo JD, et al. A metalloporphyrin antioxidant alters cytokine responses after irradiation in a prostate tumor model. Radiat Res 2010;173(4):441-52
  • Gauter-Fleckenstein B, Fleckenstein K, Owzar K, et al. Comparison of two Mn porphyrin-based mimics of superoxide dismutase in pulmonary radioprotection. Free Radic Biol Med 2008;44(6):982-9
  • Vujaskovic Z, Batinic-Haberle I, Rabbani ZN, et al. A small molecular weight catalytic metalloporphyrin antioxidant with superoxide dismutase (SOD) mimetic properties protects lungs from radiation-induced injury. Free Radic Biol Med 2002;33(6):857-63
  • Li H, Wang Y, Pazhanisamy SK, et al. Mn(III) meso-tetrakis-(N-ethylpyridinium-2-yl) porphyrin mitigates total body irradiation-induced long-term bone marrow suppression. Free Radic Biol Med 2011;51(1):30-7
  • Archambeau JO, Tovmasyan A, Pearlstein RD, et al. Superoxide dismutase mimic, MnTE-2-PyP(5+) ameliorates acute and chronic proctitis following focal proton irradiation of the rat rectum. Redox Biol 2013;1(1):599-607
  • Batinic-Haberle I, Spasojevic I, Fridovich I. Oxidation resistance; antiinflamamtory agents; respiratory system disorders. US7485721B2; 2009
  • Batinic-Haberle I, Ndengele MM, Cuzzocrea S, et al. Lipophilicity is a critical parameter that dominates the efficacy of metalloporphyrins in blocking the development of morphine antinociceptive tolerance through peroxynitrite-mediated pathways. Free Radic Biol Med 2009;46(2):212-19
  • Pollard JM, Reboucas JS, Durazo A, et al. Radioprotective effects of manganese-containing superoxide dismutase mimics on ataxia-telangiectasia cells. Free Radic Biol Med 2009;47(3):250-60
  • Okado-Matsumoto A, Batinic-Haberle I, Fridovich I. Complementation of SOD-deficient Escherichia coli by manganese porphyrin mimics of superoxide dismutase activity. Free Radic Biol Med 2004;37(3):401-10
  • Cline M, Dugan G, Perry D, et al. MnTnHex-2-PyP5+ provides protection in nonhumanprimate lungs after whole-thorax exposure to ionizing irradiation. 56th Radiation Research Society Meeting; Hawaii, USA; 2010. p. 54
  • Batinic-Haberle I, Keir ST, Rajic Z, et al. Lipophilic Mn Porphyrins in the Treatment of Brain Tumors. Free Radic Biol Med 2011;51:S119-S20
  • Batinic-Haberle I, Keir S, Rajic Z, et al. Glioma growth suppression via modulation of cellular redox status by a lipophilic Mn porphyrin. MidWinter SPORE Meeting; San Francisco, USA; 2011. p. 31-2
  • Ye XD, Fels D, Tovmasyan A, et al. Cytotoxic effects of Mn(III) N-alkylpyridylporphyrins in the presence of cellular reductant, ascorbate. Free Radic Res 2011;45(11-12):1289-306
  • Sheng HX, Spasojevic I, Tse HM, et al. Neuroprotective Efficacy from a Lipophilic Redox-Modulating Mn(III) N-Hexylpyridylporphyrin, MnTnHex-2-PyP: rodent Models of Ischemic Stroke and Subarachnoid Hemorrhage. J Pharmacol Exp Ther 2011;338(3):906-16
  • Orrell RW. AEOL-10150 (Aeolus). Curr Opin Investig Drugs 2006;7(1):70-80
  • Crapo JD, Day BJ, Trova MP, et al. Substituted porphyrins. US7820644B2; 2010
  • Crapo JD, Day BJ, Trova MP, et al. Modulating physiological and pathological processes and, in particular, to a method of modulating cellular levels of oxidants and thereby processes in which such oxidants are a participant. The invention also relates to compounds and. US7189707B2; 2007
  • Rabbani ZN, Batinic-Haberle I, Anscher MS, et al. Long-term administration of a small molecular weight catalytic metalloporphyrin antioxidant, AEOL 10150, protects lungs from radiation-induced injury. Int J Radiat Oncol Biol Phys 2007;67(2):573-80
  • Rabbani ZN, Salahuddin FK, Yarmolenko P, et al. Low molecular weight catalytic metalloporphyrin antioxidant AEOL 10150 protects lungs from fractionated radiation. Free Radic Res 2007;41(11):1273-82
  • Neumann WL, Rausaria S, Salvemini D. Method for treating chronic pain. US0039866A1; 2012
  • Doyle T, Chen Z, Muscoli C, et al. Targeting the overproduction of peroxynitrite for the prevention and reversal of paclitaxel-induced neuropathic pain. J Neurosci 2012;32(18):6149-60
  • Little JW, Cuzzocrea S, Bryant L, et al. Spinal mitochondrial-derived peroxynitrite enhances neuroimmune activation during morphine hyperalgesia and antinociceptive tolerance. Pain 2013;154(7):978-86
  • Buetler TM, Krauskopf A, Ruegg UT. Role of superoxide as a signaling molecule. News Physiol Sci 2004;19:120-3
  • Rausaria S, Kamadulski A, Rath NP, et al. Manganese(III) Complexes of Bis(hydroxyphenyl)dipyrromethenes Are Potent Orally Active Peroxynitrite Scavengers. J Am Chem Soc 2011;133(12):4200-3
  • Spasojevic I, Li A, Tovmasyan A, et al. Accumulation of Porphyrin-based SOD Mimics in Mitochondria is Proportional to Their Lipophilicity: S-cerevisiae Study of ortho Mn(III) N-alkylpyridylporphyrins. Free Radic Biol Med 2010;49:S199-S99
  • Spasojevic I, Chen Y, Noel TJ, et al. Pharmacokinetics of the potent redox-modulating manganese porphyrin, MnTE-2-PyP(5+), in plasma and major organs of B6C3F1 mice. Free Radic Biol Med 2008;45(7):943-9
  • Weitner T, Kos I, Sheng H, et al. Comprehensive pharmacokinetic studies and oral bioavailability of two Mn porphyrin-based SOD mimics, MnTE-2-PyP5+ and MnTnHex-2-PyP5+. Free Radic Biol Med 2013;58:73-80
  • Wise-Faberowski L, Warner DS, Spasojevic I, Batinic-Haberle I. Effect of lipophilicity of Mn (III) ortho N-alkylpyridyl- and diortho N, N’-diethylimidazolylporphyrins in two in-vitro models of oxygen and glucose deprivation-induced neuronal death. Free Radic Res 2009;43(4):329-39
  • Rausaria S, Kamadulski A, Salvemini D, Neumann WL. Metal-charge-shielded manganese porphyrins are potent orally active peroxynitrite decomposition catalysts. Abstr Pap Am Chem S 2011;241
  • Spasojevic I, Miriyala S, Tovmasyan A, et al. Lipophilicity of Mn(III)N-alkylpyridylporphyrins dominates their accumulation within mitochondria and therefore in vivo efficacy: a mouse study. Free Radic Biol Med 2011;51:S98-9
  • Gad SC, Sullivan DWJr, Crapo JD, Spainhour CB. A nonclinical safety assessment of MnTE-2-PyP, a manganese porphyrin. Int J Toxicol 2013;32(4):274-87
  • Ross AD, Sheng H, Warner DS, et al. Hemodynamic effects of metalloporphyrin catalytic antioxidants: structure-activity relationships and species specificity. Free Radic Biol Med 2002;33(12):1657-69
  • Kos I, Benov L, Spasojevic I, et al. High lipophilicity of meta Mn(III) N-alkylpyridylporphyrin-based superoxide dismutase mimics compensates for their lower antioxidant potency and makes them as effective as ortho analogues in protecting superoxide dismutase-deficient Escherichia coli. J Med Chem 2009;52(23):7868-72
  • Batainic-Haberle I, Spasojevic I, Stevens RD, et al. New class of potent catalysts of O-2(.-) dismutation. Mn(III) ortho-methoxyethylpyridyl- and di-ortho-methoxyethyl-imidazolylporphyrins. Dalton Trans 2004;11:1696-702
  • Jumbo-Lucioni PP, Ryan EL, Hopson ML, et al. Manganese-based superoxide dismutase mimics modify both acute and long-term outcome severity in a drosophila melanogaster model of classic galactosemia. Antioxid Redox Signal 2014;20(15):2361-71
  • Tovmasyan A, Reboucas JS, Benov L. Simple biological systems for assessing the activity of superoxide dismutase mimics. Antioxid Redox Signal 2014;20(15):2416-36
  • Weitzel DH, Tovmasyan A, Ashcraft KA, et al. Radioprotection of the brain white matter by Mn(III) N-butoxyethylpyridylporphyrin-based superoxide dismutase mimic, MnTnBuOE-2-PyP5+. Mol Cancer Ther 2014; Epub ahead of print
  • Batinic-Haberle I, Fridovich I, Spasojevic I. Substituted porphyrins. EP1718201A1; 2006
  • Sikora A, Zielonka J, Lopez M, et al. Direct oxidation of boronates by peroxynitrite: mechanism and implications in fluorescence imaging of peroxynitrite. Free Radic Biol Med 2009;47(10):1401-7
  • Mahammed A, Gross Z. Iron and manganese corroles are potent catalysts for the decomposition of peroxynitrite. Angew Chem Int Edit 2006;45(39):6544-7
  • Eckshtain M, Zilbermann I, Mahammed A, et al. Superoxide dismutase activity of corrole metal complexes. Dalton Trans 2009(38):7879-82
  • Mahammed A, Gross Z. Albumin-conjugated corrole metal complexes: extremely simple yet very efficient biomimetic oxidation systems. J Am Chem Soc 2005;127(9):2883-7
  • Aviv I, Gross Z. Corrole-based applications. Chem Commun 2007(20):1987-99
  • Mahammed A, Goldberg I, Gross Z. Highly selective chlorosulfonation of tris(pentafluorophenyl)corrole as a synthetic tool for the preparation of amphiphilic corroles and metal complexes of planar chirality. Org Lett 2001;3(22):3443-6
  • Saltsman I, Mahammed A, Goldberg I, et al. Selective substitution of corroles: nitration, hydroformylation, and chlorosulfonation. J Am Chem Soc 2002;124(25):7411-20
  • Kupershmidt L, Okun Z, Amit T, et al. Metallocorroles as cytoprotective agents against oxidative and nitrative stress in cellular models of neurodegeneration. J Neurochem 2010;113(2):363-73
  • Okun Z, Kupershmidt L, Amit T, et al. Manganese corroles prevent intracellular nitration and subsequent death of insulin-producing cells. ACS Chem Biol 2009;4(11):910-14
  • Haber A, Mahammed A, Fuhrman B, et al. Amphiphilic/bipolar metallocorroles that catalyze the decomposition of reactive oxygen and nitrogen species, rescue lipoproteins from oxidative damage, and attenuate atherosclerosis in mice. Angew Chem Int Edit 2008;47(41):7896-900
  • Okun Z, Kuperschmidt L, Youdim MB, Gross Z. Cellular uptake and organ accumulation of amphipolar metallocorroles with cytoprotective and cytotoxic properties. Anticancer Agents Med Chem 2011;11(4):380-4
  • Gross Z, Okun Z, Mahammed A, et al. Corroles for neuroprotection and neurorescue. EP2244701 B1; 2012
  • Gross Z, Aviram M, Haber A, et al. Transition metal complexes of corroles for preventing cardiovascular diseases or disorders. US8791099 B2; 2014
  • Beckman JS, Blume T, Depke G, et al. Aromatic sulfonamides as peroxynitrite-rearrangement catalysts. US0288324 A1; 2004
  • Williams W. Erectile dysfunction, urinary incontinence, lung disease, hyperoxia, neurodegenerative disease, liver disease, myocardial damage during cardioplegia, an inflammatory condition, a reperfusion injury, an ischemic condition, a cardiovascular disease, diabetes, cancer. US0072825A1; 2007
  • Shimanovich R, Hannah S, Lynch V, et al. Mn(II)-texaphyrin as a catalyst for the decomposition of peroxynitrite. J Am Chem Soc 2001;123(15):3613-14
  • Sharpe MA, Ollosson R, Stewart VC, Clark JB. Oxidation of nitric oxide by oxomanganese-salen complexes: a new mechanism for cellular protection by superoxide dismutase/catalase mimetics. Biochem J 2002;366:97-107
  • Tovmasyan AG, Rajic Z, Spasojevic I, et al. Methoxy-derivatization of alkyl chains increases the in vivo efficacy of cationic Mn porphyrins. Synthesis, characterization, SOD-like activity, and SOD-deficient E. coli study of meta Mn(III) N-methoxyalkylpyridylporphyrins. Dalton Trans 2011;40(16):4111-21
  • Patel M, Day B, Mcmanus J. Porphyrin treatment of neurodegenerative diseases. WO048164 A3; 2012
  • Patel M, LIANG L. Methods of treating mitochondrial disorders using metalloporphyrins. WO028935A2; 2011
  • Sessler JL, Harriman AM, Miller RA, et al. Radiation sensitization using texaphyrins. CA2173319A1; 1995
  • Sugiura H, Ichinose M, Oyake T, et al. Role of peroxynitrite in airway microvascular hyperpermeability during late allergic phase in guinea pigs. Am J Resp Crit Care 1999;160(2):663-71
  • Daiber A, Zou MH, Bachschmid M, Ullrich V. Ebselen as a peroxynitrite scavenger in vitro and ex vivo. Biochem Pharmacol 2000;59(2):153-60
  • Goligorsky M, Chen J. Use of peroxynirite scavengers or peroxynitrite formation inhibitors that do not diminish nitric oxide synthesis or activity to reverse or prevent premature vascular senescence. US0113427A1; 2005
  • Klotz LO, Sies H. Defenses against peroxynitrite: selenocompounds and flavonoids. Toxicol Lett 2003;140:125-32
  • Andersen PM. Amyotrophic lateral sclerosis associated with mutations in the CuZn superoxide dismutase gene. Curr Neurol Neurosci Rep 2006;6(1):37-46
  • Wang ZQ, Porreca F, Cuzzocrea S, et al. A newly identified role for superoxide in inflammatory pain. J Pharmacol Exp Ther 2004;309(3):869-78
  • Macmillan-Crow LA, Cruthirds DL. Invited review: manganese superoxide dismutase in disease. Free Radic Res 2001;34(4):325-36
  • Klann E, Roberson ED, Knapp LT, Sweatt JD. A role for superoxide in protein kinase C activation and induction of long-term potentiation. J Biol Chem 1998;273(8):4516-22
  • Klann E, Thiels E. Modulation of protein kinases and protein phosphatases by reactive oxygen species: implications for hippocampal synaptic plasticity. Prog Neuropsychopharmacol Biol Psychiatry 1999;23(3):359-76
  • Szabo C, Mabley JG, Moeller SM, et al. Part I: Pathogenetic role of peroxynitrite in the development of diabetes and diabetic vascular complications: studies with FP15, a novel potent peroxynitrite decomposition catalyst. Mol Med 2002;8(10):571-80
  • Batinic-Haberle I, Benov L, Spasojevic I, Fridovich I. The ortho effect makes Manganese(III) Meso-Tetrakis(N-Methylpyridinium-2-yl) porphyrin a powerful and potentially useful superoxide dismutase mimic. J Biol Chem 1998;273(38):24521-8
  • Batinic-Haberle I, Cuzzocrea S, Reboucas JS, et al. Pure MnTBAP selectively scavenges peroxynitrite over superoxide: comparison of pure and commercial MnTBAP samples to MnTE-2-PyP in two models of oxidative stress injury, an SOD-specific Escherichia coli model and carrageenan-induced pleurisy. Free Radic Biol Med 2009;46(2):192-201
  • Batinic-Haberle I, Spasojevic I, Stevens RD, et al. Manganese(III) meso-tetrakis(ortho-N-alkylpyridyl)porphyrins. Synthesis, characterization, and catalysis of O-2(center dot-) dismutation. J Chem Soc Dalton 2002;13:2689-96
  • Spasojevic I, Menzeleev R, White PS, Fridovich I. Rotational isomers of N-alkylpyridylporphyrins and their metal complexes. HPLC separation, H-1 NMR and X-ray structural characterization, electrochemistry, and catalysis of O-2(center dot-) disproportionation. Inorg Chem 2002;41(22):5874-81
  • Batinic-Haberle I, Spasojevic I, Stevens RD, et al. New class of potent catalysts of O2.-dismutation. Mn(III) ortho-methoxyethylpyridyl- and di-ortho-methoxyethylimidazolylporphyrins. Dalton Trans 2004;11):1696-702
  • Weitner T, Batinic-Haberle I. Electrochemistry of redox-active Mn porphyrin-based SOD mimic MnTnBuOE-2-PyP5+ - study of redox species involved in ROS/RNS scavenging. ADMET DMPK 2014;2(3):185-90
  • Gross Z, Okun Z, Mahammed A, et al. Corroles for neuroprotection and neurorescue. US0098262A1; 2010
  • Jaramillo MC, Frye JB, Crapo JD, et al. Increased manganese superoxide dismutase expression or treatment with manganese porphyrin potentiates dexamethasone-induced apoptosis in lymphoma cells. Cancer Res 2009;69(13):5450-7
  • Mao XW, Crapo JD, Mekonnen T, et al. Radioprotective effect of a metalloporphyrin compound in rat eye model. Curr Eye Res 2009;34(1):62-72
  • Pearlstein RD, Higuchi Y, Moldovan M, et al. Metalloporphyrin antioxidants ameliorate normal tissue radiation damage in rat brain. Int J Radiat Biol 2010;86(2):145-63
  • Crow JP, Calingasan NY, Chen J, et al. Manganese porphyrin given at symptom onset markedly extends survival of ALS mice. Ann Neurol 2005;58(2):258-65
  • Drobyshevsky A, Luo KH, Derrick M, et al. Motor deficits are triggered by reperfusion-reoxygenation injury as diagnosed by MRI and by a mechanism involving oxidants. J Neurosci 2012;32(16):5500-9
  • Sheng HX, Spasojevic I, Warner DS, Batinic-Haberle I. Mouse spinal cord compression injury is ameliorated by intrathecal cationic manganese(III) porphyrin catalytic antioxidant therapy. Neurosci Lett 2004;366(2):220-5
  • Sheng HX, Enghild JJ, Bowler R, et al. Effects of metalloporphyrin catalytic antioxidants in experimental brain ischemia. Free Radic Biol Med 2002;33(7):947-61
  • Sugawara R, Hikichi T, Kitaya N, et al. Peroxynitrite decomposition catalyst, FP15, and poly(ADP-ribose) polymerase inhibitor, PJ34, inhibit leukocyte entrapment in the retinal microcirculation of diabetic rats. Curr Eye Res 2004;29(1):11-16

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.