307
Views
90
CrossRef citations to date
0
Altmetric
Reviews

Acridine and its derivatives: a patent review (2009 – 2013)

, , , &

Bibliography

  • Wainwright M. Acridine—a neglected antibacterial chromophore. J Antimicrob Chemother 2001;47:1-13
  • Hassan S, Laryea D, Mahteme H, et al. Novel activity of acriflavine against colorectal cancer tumor cells. Cancer Sci 2011;102:2206-13
  • Galdino-Pitta M, Pitta M, Lima M, et al. Niche for acridine derivatives in anticancer therapy. Mini Rev Med Chem 2013;13:1256-71
  • Cholewinski G, Dzierzbicka K, Kolodziejczyk AM. Natural and synthetic acridines/acridones as antitumor agents: their biological activities and methods of synthesis. Pharmacol Rep 2011;63:305-36
  • Belmont P, Dorange I. Acridine/acridone: a simple scaffold with a wide range of application in oncology. Expert Opin Ther Pat 2008;18:1211-24
  • Belmont P, Bosson J, Godet T, Tiano M. Acridine and acridone derivatives, anticancer properties and synthetic methods: where are we now? Anticancer Agents Med Chem 2007;7:139-69
  • Demeunynck M, Charmantray F, Martelli A. Interest of acridine derivatives in the anticancer chemotherapy. Curr Pharm Des 2001;7:1703-24
  • De Aquino RA, Modolo LV, Alves RB, de Fatima A. Synthesis, kinetic studies and molecular modeling of novel tacrine dimers as cholinesterase inhibitors. Org Biomol Chem 2013;11:8395-409
  • Pi R, Mao X, Chao X, et al. Tacrine-6-ferulic acid, a novel multifunctional dimer, inhibits amyloid-β-mediated alzheimer's disease-associated pathogenesis in vitro and in vivo. PLoS One 2012;7:e31921
  • Luo W, Li YP, He Y, et al. Design, synthesis and evaluation of novel tacrine-multialkoxybenzene hybrids as dual inhibitors for cholinesterases and amyloid beta aggregation. Bioorg Med Chem 2011;19:763-70
  • Galdeano C, Viayna E, Sola I, et al. Huprine-tacrine heterodimers as anti-amyloidogenic compounds of potential interest against alzheimer's and prion diseases. J Med Chem 2012;55:661-9
  • Fernandez-Bachiller MI, Perez C, Monjas L, et al. New tacrine-4-oxo-4H-chromene hybrids as multifunctional agents for the treatment of alzheimer's disease, with cholinergic, antioxidant, and beta-amyloid-reducing properties. J Med Chem 2012;55:1303-17
  • Chen Y, Sun J, Fang L, et al. Tacrine-ferulic acid-nitric oxide (NO) donor trihybrids as potent, multifunctional acetyl- and butyrylcholinesterase inhibitors. J Med Chem 2012;55:4309-21
  • Antequera D, Bolos M, Spuch C, et al. Effects of a tacrine-8-hydroxyquinoline hybrid (IQM-622) on Aβ accumulation and cell death: involvement in hippocampal neuronal loss in alzheimer's disease. Neurobiol Dis 2012;46:682-91
  • Denny WA, Baguley BC. Dual topoisomerase I/II inhibitors in cancer therapy. Curr Top Med Chem 2003;3:339-53
  • Campbell NH, Parkinson GN, Reszka AP, Neidle S. Structural basis of DNA quadruplex recognition by an acridine drug. J Am Chem Soc 2008;130:6722-4
  • Burger AM, Dai F, Schultes CM, et al. The G-quadruplex-interactive molecule BRACO-19 inhibits tumor growth, consistent with telomere targeting and interference with telomerase function. Cancer Res 2005;65:1489-96
  • Kawamura K, Yamasaki T, Konno F, et al. Evaluation of limiting brain penetration related to P-glycoprotein and breast cancer resistance protein using [11C] GF120918 by PET in mice. Mol Imaging Biol 2011;13:152-60
  • Bottaro D, Peach M, Nicklaus M, Tan N. Compositions and methods for inhibition of hepatocyte growth factor receptor c-met signaling. WO2009124024; 2009
  • Bierbach U, Ding S. Targeted delivery and prodrug designs for platinum-acridine anti-cancer compounds and methods thereof. WO2013033430; 2013
  • Bierbach U. Platinum acridine anti-cancer compounds and methods thereof. WO2010048499; 2010
  • Rao L, West TK, Saluta G, et al. Probing platinum− adenine-N3 adduct formation with DNA minor-groove binding agents. Chem Res Toxicol 2010;23:1148-50
  • Paiva GS, De Souza IA, Pavao AC, Taft CA. Antitumoral compounds of testosterone and chemotherapeutic drugs. WO2011123911; 2011
  • Marcos DCC, Gerson SP, De Souza Ivone A. Composto molecular que compreende uma molécula de acridina ligada quimicamente a um grupamento carboxílico útil para a destruição seletiva de células de tumores sólidos. WO2013091052; 2013
  • Gribble G, Lopchuk J. Compositions and methods for treating cancer. WO2013043558; 2013
  • Gribble G, Androsov D. Compositions and methods for treating cancer. WO2011016952; 2011
  • Baguley BC, Deady LW, Denny WA, et al. Anti-tumour polycyclic carboxamides. EP1507778; 2012
  • Higgins J, Cuny GD, Glicksman M, et al. Acridines as inhibitors of haspin and dyrk kinases. WO2011127406; 2011
  • Teow VI. Composition comprising hepatic therapeutic active for treating liver diseases, certain cancers and liver health maintenance. US20120184578; 2012
  • Ananthan S, Grimaldi M. Acridine analogs in the treatment of gliomas. US2011060000; 2011
  • Suely LG, Da Rocha Pitta I, Do Carmo Alves D, et al. Thiazacridines used in anti-cancer therapys. WO2013053034; 2013
  • Belmont PO, Meijer L, Cohen P, et al. Tetrahydrocyclopenta [c] acridine derivatives as kinase inhibitors and biological applications thereof. WO2009090623; 2009
  • Hummersone MG, Cousin D, Frigerio M. Novel acridine derivatives. WO2012042265; 2012
  • Chen W, Fan S, Li S, et al. Aminopyridine derivatives containing acridine ring and their methods of production and application thereof. CN102718750; 2012
  • Zhang Y, Wang J, Bai S, et al. Acridine derivatives and their methods of production and application thereof. CN102746226; 2013
  • Liu J, Jiang Y, Chang M, et al. 3-oxa-1-ketone acridine derivatives and their methods of production and application thereof. CN102702211; 2012
  • Jiang Y, Lang X, Gao C, Sun Q. Acridine derivatives and their methods of production and application thereof. CN103254130; 2012
  • Liu H, Luan X, Jiang Y, et al. 9-anilinoacridone derivatives and their methods of production and application thereof. CN102134220; 2011
  • Fadhel O, Pretsch R. Organic electronic device comprising an organic semiconducting material. EP2312663; 2011
  • Stoessel P, Montenegro E, Breuning E. Spiro dihydroacridine derivatives and the use thereof as materials for organic electroluminescence devices. WO2013083216; 2013
  • Lin CJ, Huang HL, Lin JS, et al. Organic compound and organic electroluminescence device employing the same. US2012001537; 2012
  • Kahle K, Molt O, Langer N, et al. Use of acridine derivatives as matrix materials and/or electron blockers in oleds. US2010219406; 2010
  • Maltman B, Tirnaveanu AE, Cotton G. Fluorescent dyes based on acridine and acridinium derivatives. WO201309348; 2013
  • Graves P, Smith J. Fluorogenic peptides and their methods of production. WO2009112791; 2009
  • Natrajan A, Wen D. Facile N-alkylation of acridine compounds in ionic liquids. WO2009067417; 2009
  • Rajagopalan R. Compounds containing acyclic N-N bonds for phototherapy. WO2010132515; 2010
  • Cain BF, Atwell GJ, Denny WA. Potential antitumor agents. 16. 4'-(Acridin-9-ylamino) methanesulfonanilides. J Med Chem 1975;18:1110-17
  • Jangir DK, Dey SK, Kundu S, Mehrotra R. Assessment of amsacrine binding with DNA using UV-visible, circular dichroism and Raman spectroscopic techniques. J Photochem Photobiol B 2012;114:38-43
  • Staderini M, Cabezas N, Bolognesi ML, Menéndez JC. Solvent- and chromatography-free amination of π-deficient nitrogen heterocycles under microwave irradiation. A fast, efficient and green route to 9-aminoacridines, 4-aminoquinolines and 4-aminoquinazolines and its application to the synthesis of the drugs amsacrine and bistacrine. Tetrahedron 2013;69:1024-30
  • Ketron AC, Denny WA, Graves DE, Osheroff N. Amsacrine as a topoisomerase II poison: importance of drug-DNA interactions. Biochemistry 2012;51:1730-9
  • Robinson MJ, Osheroff N. Stabilization of the topoisomerase II-DNA cleavage complex by antineoplastic drugs: inhibition of enzyme-mediated DNA religation by 4'-(9-acridinylamino) methanesulfon-m-anisidide. Biochemistry 1990;29:2511-15
  • Denny WA. Acridine derivatives as chemotherapeutic agents. Curr Med Chem 2002;9:1655-65
  • Payton M, Kendall R. Use of N-(4-((3-(2-amino-4-pyrimidinyl)-2-pyridinyl)oxy)phenyl)-4-(4-methyl-2-thienyl)-1-phthalazinamine in the treatment of antimitotic agent resistant cancer. US20120028917; 2012
  • Krejci M, Doubek M, Dusek J, et al. Combination of fludarabine, amsacrine, and cytarabine followed by reduced-intensity conditioning and allogeneic hematopoietic stem cell transplantation in patients with high-risk acute myeloid leukemia. Ann Hematol 2013;92:1397-403
  • Schaich M, Parmentier S, Kramer M, et al. High-dose cytarabine consolidation with or without additional amsacrine and mitoxantrone in acute myeloid leukemia: results of the prospective randomized AML2003 trial. J Clin Oncol 2013;31:2094-102
  • Sklarin NT, Wiernik PH, Grove WR, et al. A phase II trial of CI-921 in advanced malignancies. Invest New Drugs 1992;10:309-12
  • Ganta S, Paxton JW, Baguley BC, Garg S. Formulation and pharmacokinetic evaluation of an asulacrine nanocrystalline suspension for intravenous delivery. Int J Pharm 2009;367:179-86
  • Atwell GJ, Rewcastle GW, Baguley BC, Denny WA. Potential antitumor agents. 50. In vivo solid-tumor activity of derivatives of N-[2-(dimethylamino) ethyl] acridine-4-carboxamide. J Med Chem 1987;30:664-9
  • Wolf S, Huynh T, Bryce N, et al. Intracellular trafficking as a determinant of AS-DACA cytotoxicity in rhabdomyosarcoma cells. BMC Cell Biol 2011;12:36
  • Wolf SJ, Wakelin LP, He Z, et al. In vitro assessment of novel transcription inhibitors and topoisomerase poisons in rhabdomyosarcoma cell lines. Cancer Chemother Pharmacol 2009;64:1059-69
  • Williams M, Catchpoole D. Sequestration of AS-DACA into acidic compartments of the membrane trafficking system as a mechanism of drug resistance in rhabdomyosarcoma. Int J Mol Sci 2013;14:13042-62
  • Twelves C, Campone M, Coudert B, et al. Phase II study of XR5000 (DACA) administered as a 120-h infusion in patients with recurrent glioblastoma multiforme. Ann Oncol 2002;13:777-80
  • Verborg W, Thomas H, Bissett D, et al. First-into-man phase I and pharmacokinetic study of XR5944. 14, a novel agent with a unique mechanism of action. Br J Cancer 2007;97:844-50
  • Adjei AA. Current status of pyrazoloacridine as an anticancer agent. Invest New Drugs 1999;17:43-8
  • Ramaswamy B, Mrozek E, Kuebler JP, et al. Phase II trial of pyrazoloacridine (NSC# 366140) in patients with metastatic breast cancer. Invest New Drugs 2011;29:347-51
  • Sebolt JS, Scavone SV, Pinter CD, et al. Pyrazoloacridines, a new class of anticancer agents with selectivity against solid tumors in vitro. Cancer Res 1987;47:4299-304
  • Zeldis JB. Methods using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of mantle cell lymphomas. US20100068206; 2010
  • Ko JL. Uses of an immunomodulatory protein (GMI) from ganoderma microsporum. US20110318429; 2011
  • Chandraratna RA. Treatment of cancer with specific RXR agonists. US20120094956; 2012
  • Lehrer S. Compositions and methods of treating and preventing lung cancer and lymphangioleiomyomatosis. US20130004436; 2013
  • Foley MA, Gould R, Elliott P, et al. Compounds and compositions for treating cancer. US20130203757; 2013
  • Chen T, Levin D, Pupalli S. Pharmaceutical compositions comprising poh derivatives. US20130203828; 2013
  • Black KL, Wheeler C. Use of minoxidil sulfate as an anti-tumor drug. US7705010; 2010
  • Adjei AA, Budihardjo II, Rowinsky EK, et al. Cytotoxic synergy between pyrazoloacridine (NSC 366140) and cisplatin in vitro: inhibition of platinum-DNA adduct removal. Clin Cancer Res 1997;3:761-70
  • Galanis E, Buckner JC, Maurer MJ, et al. Phase I/II trial of pyrazoloacridine and carboplatin in patients with recurrent glioma: a North Central Cancer Treatment Group trial. Invest New Drugs 2005;23:495-503
  • Cholody WM, Martelli S, Paradziej-Lukowicz J, Konopa J. 5-[(Aminoalkyl) amino] imidazo [4, 5, 1-de] acridin-6-ones as a novel class of antineoplastic agents. Synthesis and biological activity. J Med Chem 1990;33:49-52
  • Wisniewska A, Chrapkowska A, Kot-Wasik A, et al. Metabolic transformations of antitumor imidazoacridinone, C-1311, with microsomal fractions of rat and human liver. Acta Biochim Pol 2007;54:831
  • Smith SC, Havaleshko DM, Moon K, et al. Use of yeast chemigenomics and COXEN informatics in preclinical evaluation of anticancer agents. Neoplasia 2011;13:72
  • Potega A, Dabrowska E, Niemira M, et al. The imidazoacridinone antitumor drug, C-1311, is metabolized by flavin monooxygenases but not by cytochrome P450s. Drug Metab Dispos 2011;39:1423-32
  • Cholody WM, Kosakowska-Cholody T, Hollingshead MG, et al. A new synthetic agent with potent but selective cytotoxic activity against cancer. J Med Chem 2005;48:4474-81
  • Hariprakasha HK, Kosakowska-Cholody T, Meyer C, et al. Optimization of naphthalimide-imidazoacridone with potent antitumor activity leading to clinical candidate (HKH40A, RTA 502). J Med Chem 2007;50:5557-60
  • Kosakowska-Cholody T, Cholody WM, Hariprakasha HK, et al. Growth inhibition of hepatocellular carcinoma cells in vitro and in vivo by the 8-methoxy analog of WMC79. Cancer Chemother Pharmacol 2009;63:769-78
  • Wang Z, Wang M, Kar S, Carr BI. Involvement of ATM-mediated Chk1/2 and JNK kinase signaling activation in HKH40A-induced cell growth inhibition. J Cell Physiol 2009;221:213-20
  • Hughes G, Lahey F, Price J, Webb L. Alkaloids of the Australian rutaceae. Nature 1948;162:223-4
  • Scarffe J, Beaumont A, Crowther D. Phase I-II evaluation of acronine in patients with multiple myeloma. Cancer Treat Rep 1983;67:93-4
  • Hari GS, Lee Y-R, Wang X, et al. New synthetic routes to acronycine, noracronycine, and their analogues. Bull Korean Chem Soc 2010;31:2406-9
  • Do Q, Tian W, Yougnia R, et al. Synthesis, cytotoxic activity, and DNA binding properties of antitumor cis-1,2-dihydroxy-1,2-dihydrobenzo[b]acronycine cinnamoyl esters. Bioorg Med Chem 2009;17:1918-27
  • Boutefnouchet S, Minh NT, Putrus R, et al. Synthesis and cytotoxic activity of psorospermin and acronycine analogues in the 3-propyloxy-acridin-9(10H)-one and -benzo[b]acridin-125H-one series. Eur J Med Chem 2010;45:581-7
  • Gaslonde T, Covello F, Velazquez-Alonso L, et al. Synthesis and cytotoxic activity of benzo[a]acronycine and benzo[b]acronycine substituted on the A ring. Eur J Med Chem 2011;46:1861-73
  • Gaslonde T, Léonce S, Pierré A, et al. Tröger's bases in the acronycine, benzo[a]acronycine, and benzo[b]acronycine series. Tetrahedron Lett 2011;52:4426-9
  • Costes N, Le Deit H, Michel S, et al. Synthesis and cytotoxic and antitumor activity of benzo [b] pyrano [3, 2-h] acridin-7-one analogues of acronycine. J Med Chem 2000;43:2395-402
  • Depauw S, Gaslonde T, Leonce S, et al. Influence of the stereoisomeric position of the reactive acetate groups of the benzo[b]acronycine derivative S23906-1 on its DNA alkylation, helix-opening, cytotoxic, and antitumor activities. Mol Pharmacol 2009;76:1172-85
  • Perchellet EM, Ward MM, Skaltsounis A-L, et al. Antiproliferative and proapoptotic activities of pyranoxanthenones, pyranothioxanthenones and their pyrazole-fused derivatives in HL-60 cells. Anticancer Res 2006;26:2791-804
  • Guilbaud N, Kraus-Berthier L, Meyer-Losic F, et al. Marked antitumor activity of a new potent acronycine derivative in orthotopic models of human solid tumors. Clin Cancer Res 2001;7:2573-80
  • Lenglet G, Depauw S, Mendy D, David-Cordonnier MH. Protein recognition of the S23906-1-DNA adduct by nuclear proteins: direct involvement of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Biochem J 2013;452:147-59
  • Kawamura K, Yamasaki T, Konno F, et al. Synthesis and in vivo evaluation of 18F-fluoroethyl GF120918 and XR9576 as positron emission tomography probes for assessing the function of drug efflux transporters. Bioorg Med Chem 2011;19:861-70
  • Hyafil F, Vergely C, Du Vignaud P, Grand-Perret T. In vitro and in vivo reversal of multidrug resistance by GF120918, an acridonecarboxamide derivative. Cancer Res 1993;53:4595-602
  • Bottova I, Sauder U, Olivieri V, et al. The P-glycoprotein inhibitor GF120918 modulates Ca2+-dependent processes and lipid metabolism in Toxoplasma gondii. PLoS One 2010;5:e10062
  • Kuppens IE, Witteveen EO, Jewell RC, et al. A phase I, randomized, open-label, parallel-cohort, dose-finding study of elacridar (GF120918) and oral topotecan in cancer patients. Clin Cancer Res 2007;13:3276-85
  • Gniazdowski M, Szmigiero L. Nitracrine and its congeners—an overview. Gen Pharmacol 1995;26:473-81
  • Wilson WR, Anderson RF, Denny WA. Hypoxia-selective antitumor agents. 1. Relationships between structure, redox properties and hypoxia-selective cytotoxicity for 4-substituted derivatives of nitracrine. J Med Chem 1989;32:23-30
  • Demeunynck M. Antitumour acridines. Expert Opin Ther Pat 2004;14:55-70
  • Wang W, Ho WC, Dicker DT, et al. Acridine derivatives activate p53 and induce tumor cell death through Bax. Cancer Biol Ther 2005;4:893-8
  • Berberian D. Treatment of lambliasis with acranil. Am J Trop Med Hyg 1945;1:441-4
  • Glaz E, Szolgay E, Stöger I, Tálas M. Antiviral activity and induction of interferon-like substance by quinacrine and acranil. Antimicrob Agents Chemother 1973;3:537-41
  • Cholody WM, Martelli S, Konopa J. 8-Substituted 5-[(aminoalkyl) amino]-6H-v-triazolo [4, 5, 1-de] acridin-6-ones as potential antineoplastic agents. Synthesis and biological activity. J Med Chem 1990;33:2852-6
  • Koba M, Bączek T. Physicochemical interaction of antitumor acridinone derivatives with DNA in view of QSAR studies. Med Chem Res 2011;20:1385-93
  • Augustin E, Borowa-Mazgaj B, Kikulska A, et al. CYP3A4 overexpression enhances the cytotoxicity of the antitumor triazoloacridinone derivative C-1305 in CHO cells. Acta Pharmacol Sin 2013;34:146-56
  • Niemira M, Dastych J, Mazerska Z. Pregnane X receptor dependent up-regulation of CYP2C9 and CYP3A4 in tumor cells by antitumor acridine agents, C-1748 and C-1305, selectively diminished under hypoxia. Biochem Pharmacol 2013;86:231-41
  • Lemke K, Wojciechowski M, Laine W, et al. Induction of unique structural changes in guanine-rich DNA regions by the triazoloacridone C-1305, a topoisomerase II inhibitor with antitumor activities. Nucleic Acids Res 2005;33:6034-47
  • Wesierska-Gadek J, Zulehner N, Ferk F, et al. PARP inhibition potentiates the cytotoxic activity of C-1305, a selective inhibitor of topoisomerase II, in human BRCA1-positive breast cancer cells. Biochem Pharmacol 2012;84:1318-31
  • Lemke K, Poindessous V, Skladanowski A, Larsen AK. The antitumor triazoloacridone C-1305 is a topoisomerase II poison with unusual properties. Mol Pharmacol 2004;66:1035-42
  • Ashok B, Tadi K, Banerjee D, et al. Pre-clinical toxicology and pathology of 9-(2′-hydroxyethylamino)-4-methyl-1-nitroacridine (C-1748), a novel anti-cancer agent in male Beagle dogs. Life Sci 2006;79:1334-42
  • Neidle S, Harrison RJ, Kelland LR, et al. Therapeutic acridone and acridine compounds. US 7300930; 2007
  • Neidle S. Human telomeric G-quadruplex: The current status of telomeric G-quadruplexes as therapeutic targets in human cancer. FEBS J 2010;277:1118-25
  • Zambre VP, Murumkar PR, Giridhar R, Yadav MR. Structural investigations of acridine derivatives by CoMFA and CoMSIA reveal novel insight into their structures toward DNA G-quadruplex mediated telomerase inhibition and offer a highly predictive 3D-model for substituted acridines. J Chem Inf Model 2009;49:1298-311
  • Gunaratnam M, Green C, Moreira JB, et al. G-quadruplex compounds and cis-platin act synergistically to inhibit cancer cell growth in vitro and in vivo. Biochem Pharmacol 2009;78:115-22
  • Percivalle C, Mahmood T, Ladame S. Two-in-one: a pH-sensitive, acridine-based, fluorescent probe binds G-quadruplexes in oncogene promoters. MedChemComm 2013;4:211-15
  • Sondhi SM, Singh N, Lahoti AM, et al. Synthesis of acridinyl-thiazolino derivatives and their evaluation for anti-inflammatory, analgesic and kinase inhibition activities. Bioorg Med Chem 2005;13:4291-9
  • Pitta I, Galdino S, Lima M. Acridine derivates with antitumoral activity. WO2007109871; 2007
  • Mourão R, Silva T, Soares A, et al. Synthesis and biological activity of novel acridinylidene and benzylidene thiazolidinediones. Eur J Med Chem 2005;40:1129-33
  • Da Rocha Pitta MG, Souza ÉS, Barros FWA, et al. Synthesis and in vitro anticancer activity of novel thiazacridine derivatives. Med Chem Res 2013;22:2421-9
  • Barros FW, Silva TG, da Rocha Pitta MG, et al. Synthesis and cytotoxic activity of new acridine-thiazolidine derivatives. Bioorg Med Chem 2012;20:3533-9
  • Barros FW, Bezerra DP, Ferreira PM, et al. Inhibition of DNA topoisomerase I activity and induction of apoptosis by thiazacridine derivatives. Toxicol Appl Pharmacol 2013;268:37-46
  • Pigatto MC, Alves de Lima Mdo C, Galdino SL, et al. Metabolism evaluation of the anticancer candidate AC04 by biomimetic oxidative model and rat liver microsomes. Eur J Med Chem 2011;46:4245-51
  • Pigatto MC, Uchôa FDT, Torres B, et al. Pre-clinical pharmacokinetics of the acridine antitumour candidate AC04 and its 1-oxo-metabolite plasma profile. Xenobiotica 2012;42:701-7
  • De Toni Uchôa F, Haas SE, Junior LB, et al. Development and validation of an LC-MS/MS method for the pre-clinical pharmacokinetic investigation of the anticancer candidate AC04 in rodents. J Liq Chromatogr R T 2011;34:744-52
  • Mendonça EA, Lira MC, Rabello MM, et al. Enhanced antiproliferative activity of the new anticancer candidate LPSF/AC04 in cyclodextrin inclusion complexes encapsulated into liposomes. AAPS PharmSciTech 2012;13:1355-66
  • Suryadi J, Bierbach U. DNA metalating-intercalating hybrid agents for the treatment of chemoresistant cancers. Chemistry 2012;18:12926-34
  • Qiao X, Zeitany AE, Wright MW, et al. Analysis of the DNA damage produced by a platinum-acridine antitumor agent and its effects in NCI-H460 lung cancer cells. Metallomics 2012;4:645-52
  • Graham LA, Suryadi J, West TK, et al. Synthesis, aqueous reactivity, and biological evaluation of carboxylic acid ester-functionalized platinum-acridine hybrid anticancer agents. J Med Chem 2012;55:7817-27
  • Dutta S, Snyder MJ, Rosile D, et al. PT-ACRAMTU, a platinum-acridine anticancer agent, lengthens and aggregates, but does not stiffen or soften DNA. Cell Biochem Biophys 2013;67:1103-13
  • Ding S, Qiao X, Kucera GL, Bierbach U. Design of a platinum-acridine-endoxifen conjugate targeted at hormone-dependent breast cancer. Chem Commun (Camb) 2013;49:2415-17
  • Ding S, Qiao X, Kucera GL, Bierbach U. Using a build-and-click approach for producing structural and functional diversity in DNA-targeted hybrid anticancer agents. J Med Chem 2012;55:10198-203
  • Cheung-Ong K, Song KT, Ma Z, et al. Comparative chemogenomics to examine the mechanism of action of dna-targeted platinum-acridine anticancer agents. ACS Chem Biol 2012;7:1892-901
  • Su T, Chen C, Huang L, et al. Synthesis and structure-activity relationships of potential anticancer agents: alkylcarbamates of 3-(9-acridinylamino)-5-hydroxymethylaniline. J Med Chem 1999;42:4741-8
  • Turnbull RM, Meczes EL, Rogers MP, et al. Carbamate analogues of amsacrine active against non-cycling cells: relative activity against topoisomerases IIalpha and beta. Cancer Chemother Pharmacol 1999;44:275-82
  • Gonzalez-Sanchez I, Solano JD, Loza-Mejia MA, et al. Antineoplastic activity of the thiazolo[5,4-b]quinoline derivative D3CLP in K-562 cells is mediated through effector caspases activation. Eur J Med Chem 2011;46:2102-8
  • Gonzalez-Sanchez I, Lira-Rocha A, Navarrete A, et al. Synergistic anticancer activity of thiazolo [5, 4-b] quinoline derivative D3CLP in combination with cisplatin in human cervical cancer cells. Anticancer Res 2012;32:5159-65
  • Chilin A, Marzaro G, Marzano C, et al. Synthesis and antitumor activity of novel amsacrine analogs: the critical role of the acridine moiety in determining their biological activity. Bioorg Med Chem 2009;17:523-9
  • Luan X, Gao C, Zhang N, et al. Exploration of acridine scaffold as a potentially interesting scaffold for discovering novel multi-target VEGFR-2 and Src kinase inhibitors. Bioorg Med Chem 2011;19:3312-19
  • Luan X, Gao C, Sun Q, et al. Novel synthetic azaacridine analogues as topoisomerase I inhibitors. Chem Lett 2011;40:728-9
  • Lang X, Li L, Chen Y, et al. Novel synthetic acridine derivatives as potent DNA-binding and apoptosis-inducing antitumor agents. Bioorg Med Chem 2013;21:4170-7
  • Gao C, Li S, Lang X, et al. Synthesis and evaluation of l0-(3, 5-dimethoxy) benzyl-9 (10H)-acridone derivatives as selective telomeric G-quadruplex DNA ligands. Tetrahedron 2012;68:7920-5
  • Krall N, Scheuermann J, Neri D. Small targeted cytotoxics: current state and promises from DNA-encoded chemical libraries. Angew Chem Int Ed Engl 2013;52:1384-402

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.