632
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Targeting monocyte and macrophage subpopulations for immunotherapy: a patent review (2009 – 2013)

&

Bibliography

  • Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature 2013;496:445-55
  • Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity 2010;32:593-604
  • Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 2012;122:787-95
  • Szanto A, Balint BL, Nagy ZS, et al. STAT6 transcription factor is a facilitator of the nuclear receptor PPARγ-regulated gene expression in macrophages and dendritic cells. Immunity 2010;33:699-712
  • Egawa M, Mukai K, Yoshikawa S, et al. Inflammatory monocytes recruited to allergic skin acquire an anti-inflammatory M2 phenotype via basophil-derived interleukin-4. Immunity 2013;38:570-80
  • Bajaña S, Herrera-González N, Narváez J, et al. Differential CD4(+) T-cell memory responses induced by two subsets of human monocyte-derived dendritic cells. Immunology 2007;122:381-93
  • Randolph GJ, Sanchez-Schmitz G, Liebman RM, et al. The CD16(+) (FcgammaRIII(+)) subset of human monocytes preferentially becomes migratory dendritic cells in a model tissue setting. J Exp Med 2002;196:517-27
  • Sánchez-Torres C, García-Romo GS. CD16+ and CD16− human blood monocyte subsets differentiate in vitro to dendritic cells with different abilities to stimulate CD4+ T cells. Int Immunol 2001;13:1571-81
  • Schulz C, Gomez Perdiguero E, Chorro L, et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 2012;336:86-90
  • Jakubzick C, Gautier EL, Gibbings SL, et al. Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity 2013;39:599-610
  • Yona S, Kim KW, Wolf Y, et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 2013;38:79-91
  • Davis MJ, Tsang TM, Qiu Y, et al. Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection. mBio 2013;4:264-13
  • Khallou-Laschet J, Varthaman A, Fornasa G. Macrophage plasticity in experimental atherosclerosis. PLoS One 2010;5:e8852
  • Cros J, Cagnard N, Woollard K, et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 2010;33(3):1-12
  • Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003;19:71-82
  • Ingersoll MA, Spanbroek R, Lottaz C, et al. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood 2010;115:e10-19
  • Wong KL, Tai JJY, Wong WC, et al. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood 2011;118:e16-31
  • Zawada AM, Rogacev KS, Rotter B, et al. SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset. Blood 2011;118:e50-61
  • Rogacev KS, Seiler S, Zawada AM, et al. CD14++CD16+ monocytes and cardiovascular outcome in patients with chronic kidney disease. Eur Heart J 2011;32:84-92
  • Cooper DL, Martin SG, Robinson JI, et al. FcγRIIIa expression on monocytes in rheumatoid arthritis: role in immune-complex stimulated TNF production and non-response to methotrexate therapy. PLoS One 2012;7:e28918
  • Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994;76:301-14
  • Auffray C, Fogg D, Garfa M, et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 2007;317:666-70
  • Wong KL, Chen W, Balakrishnan T, et al. Susceptibility and response of human blood monocyte subsets to primary dengue virus infection. PLoS ONE 2012;7:e36435
  • Zhang J-Y, Zou Z-S, Huang A, et al. Hyper-activated pro-inflammatory CD16 monocytes correlate with the severity of liver injury and fibrosis in patients with chronic hepatitis B. PLoS ONE 2011;6:e17484
  • Serbina NV, Pamer EG. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol 2006;7:311-17
  • Peters W, Scott HM, Chambers HF, et al. Chemokine receptor 2 serves an early and essential role in resistance to Mycobacterium tuberculosis. Proc Natl Acad Sci USA 2001;98:7958-63
  • Zhong H, Yazdanbakhsh K. Differential control of Helios+/- Treg development by monocyte subsets through disparate inflammatory cytokines. Blood 2013;121:2494-502
  • Philadelphia TCHO. Ex vivo-modified monocytes as local delivery vehicles to treat diseased arteries. WO2013071015; 2013
  • Ouchi N, Kihara S, Arita Y, et al. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation 2001;103:1057-63
  • Kollias A, Tsiotra PC, Ikonomidis I, et al. Adiponectin levels and expression of adiponectin receptors in isolated monocytes from overweight patients with coronary artery disease. Cardiovasc Diabetol 2011;10:14
  • Ohashi K, Parker JL, Ouchi N, et al. Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. J Biol Chem 2010;285:6153-60
  • Cheng X, Folco EJ, Shimizu K, et al. Adiponectin induces pro-inflammatory programs in human macrophages and CD4+ T cells. J Biol Chem 2012;287:36896-904
  • Neumeier M, Weigert J, Schäffler A, et al. Different effects of adiponectin isoforms in human monocytic cells. J Leukoc Biol 2006;79:803-8
  • Kadowaki T, Yamauchi T, Kubota N, et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 2006;116:1784-92
  • Wang Y, Lam KSL, Yau M-H, et al. Post-translational modifications of adiponectin: mechanisms and functional implications. Biochem J 2008;409:623-33
  • Lyakh LA, Koski GK, Young HA. Adenovirus type 5 vectors induce dendritic cell differentiation in human CD14+ monocytes cultured under serum-free conditions. Blood 2002;99:600-8
  • Yeda Research And Development Co. Ltd. Human monocyte sub-population for treatment of central nervous system injury. WO2013088441; 2013
  • Wisconsin Alumni Research Foundation. Generation of a novel type of anti-inflammatory macrophages for clinical use. WO2011025787; 2011
  • Bomstein Y, Marder JB, Vitner K, et al. Features of skin-coincubated macrophages that promote recovery from spinal cord injury. J Neuroimmunol 2003;142:10-16
  • Rapalino O, Lazarov-Spiegler O, Agranov E, et al. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med 1998;4:814-21
  • Yeda Research And Development Co., Ltd. Mononuclear phagocytes and their use to promote axonal regeneration. WO1998041220; 1998
  • Knoller N, Auerbach G, Fulga V, et al. Clinical experience using incubated autologous macrophages as a treatment for complete spinal cord injury: phase I study results. J Neurosurg Spine 2005;3:173-81
  • Lammertse DP, Jones LAT, Charlifue SB, et al. Autologous incubated macrophage therapy in acute, complete spinal cord injury: results of the phase 2 randomized controlled multicenter trial. Spinal Cord 2012;50:661-71
  • Shechter R, London A, Varol C, et al. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 2009;6:e1000113
  • Donnelly DJ, Longbrake EE, Shawler TM. Deficient CX3CR1 signaling promotes recovery after mouse spinal cord injury by limiting the recruitment and activation of Ly6Clo/iNOS+ macrophages. J Neurosci 2011;31:9910-22
  • Nahrendorf M, Swirski FK, Aikawa E, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 2007;204:3037-47
  • Kim J, Hematti P. Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 2009;37:1445-53
  • La Jolla Institute For Allergy And Immunology. Methods and uses of nur77 and nur77 agonists to modulate macrophages and monocytes, and treat inflammation, inflammatory disease, and cardiovascular disease. WO2011127288; 2011
  • Pei L, Castrillo A, Chen M, et al. Induction of NR4A orphan nuclear receptor expression in macrophages in response to inflammatory stimuli. J Biol Chem 2005;280:29256-62
  • Pei L, Castrillo A, Tontonoz P. Regulation of macrophage inflammatory gene expression by the orphan nuclear receptor Nur77. Mol Endocrinol 2006;20:786-94
  • Bonta PI, van Tiel CM, Vos M, et al. Nuclear receptors Nur77, Nurr1, and NOR-1 expressed in atherosclerotic lesion macrophages reduce lipid loading and inflammatory responses. Arterioscler Thromb Vasc Biol 2006;26:2288-94
  • Hanna RN, Carlin LM, Hubbeling HG, et al. The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C− monocytes. Nat Immunol 2011;12:778-85
  • Hanna RN, Shaked I, Hubbeling HG, et al. NR4A1 (Nur77) deletion polarizes macrophages toward an inflammatory phenotype and increases atherosclerosis. Circ Res 2012;110:416-27
  • Hamers AAJ, Vos M, Rassam F, et al. Bone marrow-specific deficiency of nuclear receptor Nur77 enhances atherosclerosis. Circ Res 2012;110:428-38
  • Chao LC, Soto E, Hong C, et al. Bone marrow NR4A expression is not a dominant factor in the development of atherosclerosis or macrophage polarization in mice. J Lipid Res 2013;54:806-15
  • Hamers AAJ, Uleman S, van Tiel CM, et al. Limited Role of Nuclear Receptor Nur77 in Escherichia coli-Induced Peritonitis. Infect Immun 2014;82:253-64
  • Arkenbout EK, van Bragt M, Eldering E, et al. TR3 orphan receptor is expressed in vascular endothelial cells and mediates cell cycle arrest. Arterioscler Thromb Vasc Biol 2003;23:1535-40
  • de Waard V, Arkenbout EK, Vos M, et al. TR3 nuclear orphan receptor prevents cyclic stretch-induced proliferation of venous smooth muscle cells. Am J Pathol 2006;168:2027-35
  • Cheng Z, Völkers M, Din S, et al. Mitochondrial translocation of Nur77 mediates cardiomyocyte apoptosis. Eur Heart J 2011;32:2179-88
  • Zeng H, Qin L, Zhao D, et al. Orphan nuclear receptor TR3/Nur77 regulates VEGF-A–induced angiogenesis through its transcriptional activity. J Exp Med 2006;203:719-29
  • Lee S-O, Li X, Khan S, et al. Targeting NR4A1 (TR3) in cancer cells and tumors. Expert Opin Ther Targets 2011;15:195-206
  • Shah P, Sharifi B. Atherosclerosis inhibition via modulation of monocyte-macrophage phenotype using Apo-Ai Milano gene transfer. WO2012024309; 2012
  • Franceschini G, Sirtori CR, Capurso A, et al. A-IMilano apoprotein. Decreased high density lipoprotein cholesterol levels with significant lipoprotein modifications and without clinical atherosclerosis in an Italian family. J Clin Invest 1980;66:892-900
  • Sirtori CR, Calabresi L, Franceschini G, et al. Cardiovascular status of carriers of the apolipoprotein A-IMilano mutant: the Limone sul Garda Study. Circulation 2001;103(15):1949-54
  • Weisgraber KH, Rall SC, Bersot TP, et al. Apolipoprotein A-IMilano. Detection of normal AI in affected subjects and evidence for a cysteine for arginine substitution in the variant AI. J Biol Chem 1983;258:2508-13
  • Parolini C, Chiesa G, Gong E, et al. Apolipoprotein AI and the molecular variant apoA-I Milano: evaluation of the antiatherogenic effects in knock-in mouse model. Atherosclerosis 2005;183:222-9
  • Li D, Weng S, Yang B, et al. Inhibition of arterial thrombus formation by ApoA1 Milano. Arterioscler Thromb Vasc Biol 1999;19:378-83
  • Alexander ET, Weibel GL, Joshi MR, et al. macrophage reverse cholesterol transport in mice expressing ApoA-I Milano. Arterioscler Thromb Vasc Biol 2009;29:1496-501
  • Weibel GL, Alexander ET, Joshi MR. Wild-type ApoA-I and the Milano variant have similar abilities to stimulate cellular lipid mobilization and efflux. Arterioscler Thromb Vasc Biol 2007;27:2022-9
  • Shanghai 10th Peoples Hospital. Apolipoprotein A-I (ApoA-I) milano genetic medicine. CN102240405; 2011
  • Cedars-Sinai Medical Center, City of Hope. Prevention And treatment of vascular disease with recombinant adeno-associated virus vectors encoding apolipoprotein A-I and apolipoprotein A-I Milano. WO2005097206; 2005
  • The U.S.A., Department Of Health And Human Services, Baker IDI Heart & Diabetes Institute. Synthetic apoa-1 mimetic amphipathic peptides and methods of use thereof. WO2011066511; 2011
  • Pfizer Inc. Recombinant apoa-1m from engineered bacteria. WO2013016428; 2012
  • Nissen SE, Tsunoda T, Tuzcu EM, et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA 2003;290:2292-300
  • Chinetti-Gbaguidi G, Baron M, Bouhlel MA, et al. Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARγ and LXRα pathways. Circ Res 2011;108:985-95
  • Medbury HJ, James V, Ngo J, et al. Differing association of macrophage subsets with atherosclerotic plaque stability. Int Angiol 2013;32:74-84
  • Board of Regents, The University of Texas System. Liposome-incorporated mepartricin. WO1989003677; 1989
  • University of California. Liposome-encapsulated anti-viral composition and method. WO1989005152; 1989
  • Moma Therapeutics. Implantable liposome embedded matrix composition, uses thereof, and polycaprolactone particles as scaffolds for tissue regeneration. WO2010060104; 2010
  • Bioneer A/S. Cationic liposomal drug delivery system for specific targeting of human CD14+ monocytes in whole blood. WO2013135800; 2012
  • Wagner T, Yu X. Monocyte-specific particulate delivery vehicle. WO2002078733; 2002
  • Getts Consulting and Project Management. Modified immune-modulating particles. WO2012065153; 2011
  • Danhier F, Ansorena E, Silva JM, et al. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 2012;161:505-22
  • Lu L, Peter SJ, Lyman MD, et al. In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams. Biomaterials 2000;21:1837-45
  • Astete CE, Sabliov CM. Synthesis and characterization of PLGA nanoparticles. J Biomater Sci 2006;17:247-89
  • Getts DR, Terry RL, Getts MT. Therapeutic inflammatory monocyte modulation using immune-modifying microparticles. Sci Transl Med 2014;6:219ra7
  • Potteaux S, Gautier EL, Hutchison SB, et al. Suppressed monocyte recruitment drives macrophage removal from atherosclerotic plaques of Apoe–/– mice during disease regression. J Clin Invest 2011;121:2025-36
  • Tacke F, Alvarez D, Kaplan TJ, et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest 2007;117:185-94
  • Karathanasis E, Geigerman CM, Parkos CA, et al. Selective targeting of nanocarriers to neutrophils and monocytes. Ann Biomed Eng 2009;37:1984-92
  • Lee KD, Nir S, Papahadjopoulos D. Quantitative analysis of liposome-cell interactions in vitro: rate constants of binding and endocytosis with suspension and adherent J774 cells and human monocytes. Biochemistry 1993;32:889-99
  • Filion MC, Phillips NC. Major limitations in the use of cationic liposomes for DNA delivery. Int J Pharm 1998;162:159-70
  • Jensen SS, Johansen PT, Zucker D. Whole blood targeting and activation of monocytes with TLR7 agonist formulated in cationic liposomes. J Immunother Cancer 2013;1:130
  • Pires P, Simões S, Nir S, et al. Interaction of cationic liposomes and their DNA complexes with monocytic leukemia cells. Biochim Biophys Acta 1999;1418:71-84
  • Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol 2011;11:762-74
  • Tsou C-L, Peters W, Si Y, et al. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest 2007;117:902-9
  • Jia T, Serbina NV, Brandl K, et al. Additive roles for MCP-1 and MCP-3 in CCR2-mediated recruitment of inflammatory monocytes during Listeria monocytogenes infection. J Immunol 2008;180(10):6846-53
  • Carlin LM, Stamatiades EG, Auffray C, et al. Nr4a1-dependent Ly6C(low) monocytes monitor endothelial cells and orchestrate their disposal. Cell 2013;153:362-75
  • Boehringer Ingelheim International GMBH. Novel and selective CCR2 antagonists. WO2013010839; 2013
  • Pfizer Inc. Antibodies to ccr2. WO2010021697; 2009
  • Boehringer Ingelheim International GMBH. Ccr2 antagonists and uses thereof. WO2011144501; 2011
  • Paris 6 UPEMC. Ccr2 antagonist peptides. WO2013000922; 2012
  • Boehringer Ingelheim International GMBH. Cx3cr1-binding polypeptides. WO2013130381; 2013
  • Paris 6 UPEMC. Modulators of the cx3cr1 receptor and therapeutic uses thereof. WO2010079063; 2009
  • Majmudar MD, Keliher EJ, Heidt T, et al. Monocyte-directed RNAi targeting CCR2 improves infarct healing in atherosclerosis-prone mice. Circulation 2013;127:2038-46
  • Leuschner F, Dutta P, Gorbatov R, et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol 2011;29:1005-10
  • Vergunst CE, Gerlag DM, Lopatinskaya L, et al. Modulation of CCR2 in rheumatoid arthritis: a double-blind, randomized, placebo-controlled clinical trial. Arthritis Rheum 2008;58:1931-9
  • D'Haese JG, Friess H, Ceyhan GO. Therapeutic potential of the chemokine-receptor duo fractalkine/CX3CR1: an update. Expert Opin Ther Targets 2012;16:613-18
  • Lionakis MS, Swamydas M, Fischer BG. CX3CR1-dependent renal macrophage survival promotes Candida control and host survival. J Clin Invest 2013;123:5035-51
  • Robbins CS, Hilgendorf I, Weber GF, et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat Med 2013;19:1166-72
  • Gautier EL, Ivanov S, Lesnik P, et al. Local apoptosis mediates clearance of macrophages from resolving inflammation in mice. Blood 2013;122:2714-22
  • Seok J, Warren HS, Cuenca AG, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. PNAS 2013;110:3507-12

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.