771
Views
32
CrossRef citations to date
0
Altmetric
Reviews

NMDA receptor modulators: an updated patent review (2013 – 2014)

, , , &

Bibliography

  • Traynelis SF, Wollmuth LP, McBain CJ, et al. Glutamate Receptor Ion Channels: structure, Regulation, and Function. Pharmacol Rev 2010;62(3):405-96
  • Hallett PJ, Standaert DG. Rationale for and use of NMDA receptor antagonists in Parkinson’s disease. Pharmacol Ther 2004;102(2):155-74
  • Reisberg B, Doody R, Stöffler A, et al. Memantine in moderate-to-severe Alzheimer’s Disease. N Engl J Med 2003;348(14):1333-41
  • Coyle JT. NMDA Receptor and Schizophrenia: a Brief History. Schizophr Bull 2012;38(5):920-6
  • Balu DT, Li Y, Puhl MD, et al. Multiple risk pathways for schizophrenia converge in serine racemase knockout mice, a mouse model of NMDA receptor hypofunction. Proc Natl Acad Sci USA 2013;110(26):E2400-9
  • Olney JW, Newcomer JW, Farber NB. NMDA receptor hypofunction model of schizophrenia. J Psychiatr Res 1999;33(6):523-33
  • Murrough JW. Ketamine as a Novel antidepressant: from synapse to behavior. Clin Pharmacol Ther 2012;91(2):303-9
  • Skolnick P, Popik P, Trullas R. Glutamate-based antidepressants: 20 years on. Trends Pharmacol Sci 2009;30(11):563-9
  • Sobolevsky AI, Rosconi MP, Gouaux E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 2009;462(7274):745-56
  • Karakas E, Furukawa H. Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 2014;344(6187):992-7
  • Lee C-H, Lü W, Michel JC, et al. NMDA receptor structures reveal subunit arrangement and pore architecture. Nature 2014;511(7508):191-7
  • MacDermott AB, Mayer ML, Westbrook GL, et al. NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 1986;321(6069):519-22
  • Mayer ML, Westbrook GL, Guthrie PB. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 1984;309(5965):261-3
  • Furukawa H, Singh SK, Mancusso R, Gouaux E. Subunit arrangement and function in NMDA receptors. Nature 2005;438(7065):185-92
  • Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 2013;14(6):383-400
  • Forsythe ID, Westbrook GL. Slow excitatory postsynaptic currents mediated by N-methyl-D-aspartate receptors on cultured mouse central neurones. J Physiol 1988;396:515-33
  • Rauner C, Köhr G. Triheteromeric NR1/NR2A/NR2B receptors constitute the major N-methyl-D-aspartate receptor population in adult hippocampal synapses. J Biol Chem 2011;286(9):7558-66
  • Hansen KB, Ogden KK, Yuan H, Traynelis SF. Distinct functional and pharmacological properties of triheteromeric GluN1/GluN2A/GluN2B NMDA receptors. Neuron 2014;81(5):1084-96
  • Karakas E, Simorowski N, Furukawa H. Structure of the zinc-bound amino-terminal domain of the NMDA receptor NR2B subunit. EMBO J 2009;28(24):3910-20
  • Karakas E, Simorowski N, Furukawa H. Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors. Nature 2011;475(7355):249-53
  • Furukawa H, Gouaux E. Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core. EMBO J 2003;22(12):2873-85
  • Paoletti P, Neyton J. NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol 2007;7(1):39-47
  • Paoletti P, Ascher P, Neyton J. High-affinity zinc inhibition of NMDA NR1–NR2A receptors. J Neurosci 1997;17(15):5711-25
  • Rachline J, Perin-Dureau F, Goff AL, et al. The micromolar zinc-binding domain on the NMDA receptor subunit NR2B. J Neurosci 2005;25(2):308-17
  • Hansen KB, Furukawa H, Traynelis SF. Control of assembly and function of glutamate receptors by the amino-terminal domain. Mol Pharmacol 2010;78(4):535-49
  • Yao Y, Harrison CB, Freddolino PL, et al. Molecular mechanism of ligand recognition by NR3 subtype glutamate receptors. EMBO J 2008;27(15):2158-70
  • Vance KM, Simorowski N, Traynelis SF, Furukawa H. Ligand-specific deactivation time course of GluN1/GluN2D NMDA receptors. Nat Commun 2011;2:294
  • Hansen KB, Ogden KK, Traynelis SF. Subunit-selective allosteric inhibition of glycine binding to NMDA receptors. J Neurosci 2012;32(18):6197-208
  • Talukder I, Borker P, Wollmuth LP. Specific sites within the ligand-binding domain and ion channel linkers modulate NMDA receptor gating. J Neurosci 2010;30(35):11792-804
  • Huettner JE, Bean BP. Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels. Proc Natl Acad Sci USA 1988;85(4):1307-11
  • Cull-Candy SG, Leszkiewicz DN. Role of distinct NMDA receptor subtypes at central synapses. Sci Signal 2004;2004: 255, re16
  • Paoletti P. Molecular basis of NMDA receptor functional diversity. Eur J Neurosci 2011;33(8):1351-65
  • Vicini S, Wang JF, Li JH, et al. Functional and pharmacological differences between recombinant N-Methyl-d-aspartate receptors. J Neurophysiol 1998;79(2):555-66
  • Erreger K, Dravid SM, Banke TG, et al. Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. J Physiol 2005;563(2):345-58
  • Siegler Retchless B, Gao W, Johnson JW. A single GluN2 subunit residue controls NMDA receptor channel properties via intersubunit interaction. Nat Neurosci 2012;15(3):406-13
  • Monyer H, Burnashev N, Laurie DJ, et al. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 1994;12(3):529-40
  • Akazawa C, Shigemoto R, Bessho Y, et al. Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J Comp Neurol 1994;347(1):150-60
  • Watanabe M, Inoue Y, Sakimura K, Mishina M. Developmental changes in distribution of NMDA receptor channel subunit mRNAs. Neuroreport 1992;3(12):1138-40
  • Chen H-SV, Lipton SA. The chemical biology of clinically tolerated NMDA receptor antagonists. J Neurochem 2006;97(6):1611-26
  • Mellon RD, Simone AF, Rappaport BA. Use of anesthetic agents in neonates and young children. Anesth Analg 2007;104(3):509-20
  • Hasselmann H. Ketamine as Antidepressant? current state and future perspectives. Curr Neuropharmacol 2014;12(1):57-70
  • Rodriguez CI, Kegeles LS, Levinson A, et al. Randomized controlled crossover trial of ketamine in obsessive-compulsive disorder: proof-of-concept. Neuropsychopharmacology 2013;38(12):2475-83
  • Feder A, Parides MK, Murrough JW, et al. Efficacy of intravenous ketamine for treatment of chronic posttraumatic stress disorder: a randomized clinical trial. JAMA Psychiatry 2014;71(6):681-8
  • Church J, Lodge D, Berry SC. Differential effects of dextrorphan and levorphanol on the excitation of rat spinal neurons by amino acids. Eur J Pharmacol 1985;111(2):185-90
  • Church J, Jones MG, Davies SN, Lodge D. Antitussive agents as N-methylaspartate antagonists: further studies. Can J Physiol Pharmacol 1989;67(6):561-7
  • Franklin PH, Murray TF. High affinity [3H]dextrorphan binding in rat brain is localized to a noncompetitive antagonist site of the activated N-methyl-D-aspartate receptor-cation channel. Mol Pharmacol 1992;41(1):134-46
  • Pechnick RN, Poland RE. Comparison of the effects of dextromethorphan, dextrorphan, and levorphanol on the hypothalamo-pituitary-adrenal axis. J Pharmacol Exp Ther 2004;309(2):515-22
  • Shin E-J, Nah S-Y, Chae JS, et al. Dextromethorphan attenuates trimethyltin-induced neurotoxicity via σ1 receptor activation in rats. Neurochem Int 2007;50(6):791-9
  • Musacchio J, Klein M, Canoll PD. Dextromethorphan and sigma ligands: common sites but diverse effects. Life Sci 1989;45(19):1721-32
  • Pseudobulbar Affect | NUEDEXTA. Available from: https://www.nuedexta.com/ [Last accessed 12 Aug 2014]
  • Dravid SM, Erreger K, Yuan H, et al. Subunit-specific mechanisms and proton sensitivity of NMDA receptor channel block. J Physiol 2007;581(1):107-28
  • Lipton SA. Failures and successes of NMDA receptor antagonists: molecular basis for the use of open-channel blockers like memantine in the treatment of acute and chronic neurologic insults. NeuroRx 2004;1(1):101-10
  • Williams K. Ifenprodil discriminates subtypes of the N-methyl-D-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors. Mol Pharmacol 1993;44(4):851-9
  • Chenard BL, Bordner J, Butler TW, Chambers LK, et al. (1S,2S)-1-(4-Hydroxyphenyl)-2-(4-hydroxy-4-phenylpiperidino)-1-propanol: a Potent New Neuroprotectant Which Blocks N-Methyl-D-Aspartate Responses. J Med Chem 1995;38(16):3138-45
  • Gotti B, Duverger D, Bertin J, et al. Ifenprodil and SL 82.0715 as cerebral anti-ischemic agents. I. Evidence for efficacy in models of focal cerebral ischemia. J Pharmacol Exp Ther 1988;247(3):1211-21
  • Taniguchi K, Shinjo K, Mizutani M, et al. Antinociceptive activity of CP-101,606, an NMDA receptor NR2B subunit antagonist. Br J Pharmacol 1997;122(5):809-12
  • Chizh BA, Headley PM, Tzschentke TM. NMDA receptor antagonists as analgesics: focus on the NR2B subtype. Trends Pharmacol Sci 2001;22(12):636-42
  • Yurkewicz L, Weaver J, Bullock MR, Marshall LF. The effect of the selective NMDA receptor antagonist traxoprodil in the treatment of traumatic brain injury. J Neurotrauma 2005;22(12):1428-43
  • Preskorn SH, Baker B, Kolluri S, et al. An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-D-aspartate antagonist, CP-101,606, in patients with treatment-refractory major depressive disorder. J Clin Psychopharmacol 2008;28(6):631-7
  • Boyce S, Wyatt A, Webb JK, et al. Selective NMDA NR2B antagonists induce antinociception without motor dysfunction: correlation with restricted localisation of NR2B subunit in dorsal horn. Neuropharmacology 1999;38(5):611-23
  • Nicholson KL, Mansbach RS, Menniti FS, Balster RL. The phencyclidine-like discriminative stimulus effects and reinforcing properties of the NR2B-selective N-methyl-D-aspartate antagonist CP-101 606 in rats and rhesus monkeys. Behav Pharmacol 2007;18(8):731-43
  • Bettini E, Sava A, Griffante C, et al. Identification and characterization of novel NMDA receptor antagonists selective for NR2A- over NR2B-containing receptors. J Pharmacol Exp Ther 2010;335(3):636-44
  • Edman S, McKay S, Macdonald LJ, et al. TCN 201 selectively blocks GluN2A-containing NMDARs in a GluN1 co-agonist dependent but non-competitive manner. Neuropharmacology 2012;63(3):441-9
  • McKay S, Griffiths N, Butters P, et al. Direct pharmacological monitoring of the developmental switch in NMDA receptor subunit composition using TCN 213, a GluN2A-selective, glycine-dependent antagonist. Br J Pharmacol 2012;166(3):924-37
  • Hansen KB, Traynelis SF. Structural and mechanistic determinants of a novel site for noncompetitive inhibition of GluN2D-containing NMDA receptors. J Neurosci 2011;31(10):3650-61
  • Costa BM, Irvine MW, Fang G, et al. A novel family of negative and positive allosteric modulators of NMDA receptors. J Pharmacol Exp Ther 2010;335(3):614-21
  • Irvine MW, Costa BM, Volianskis A, et al. Coumarin-3-carboxylic acid derivatives as potentiators and inhibitors of recombinant and native N-methyl-d-aspartate receptors. Neurochem Int 2012;61(4):593-600
  • Monaghan DT, Irvine MW, Costa BM, et al. Pharmacological modulation of NMDA receptor activity and the advent of negative and positive allosteric modulators. Neurochem Int 2012;61(4):581-92
  • Costa BM, Irvine MW, Fang G, et al. Structure-activity relationships for allosteric NMDA receptor inhibitors based on 2-naphthoic acid. Neuropharmacology 2012;62(4):1730-6
  • Mullasseril P, Hansen KB, Vance KM, et al. A subunit-selective potentiator of NR2C- and NR2D-containing NMDA receptors. Nat Commun 2010;1:90
  • Santangelo Freel RM, Ogden KK, Strong KL, et al. Synthesis and structure activity relationship of tetrahydroisoquinoline-based potentiators of GluN2C and GluN2D containing N-methyl-D-aspartate receptors. J Med Chem 2013;56(13):5351-81
  • Santangelo Freel RM, Ogden KK, Strong KL, et al. Correction to synthesis and structure activity relationship of tetrahydroisoquinoline-based potentiators of GluN2C and GluN2D containing N-methyl-D-aspartate receptors. J Med Chem 2014;57(11):4975-5
  • Ogden KK, Traynelis SF. Contribution of the M1 transmembrane helix and pre-M1 region to positive allosteric modulation and gating of N-methyl-D-aspartate receptors. Mol Pharmacol 2013;83(5):1045-56
  • Zimmerman SS, Khatri A, Garnier-Amblard EC, et al. Design, synthesis, and structure–activity relationship of a novel series of GluN2C-selective potentiators. J Med Chem 2014;57(6):2334-56
  • Traynelis SF, Mullasseril P, Garnier EC, et al. Nmda receptor modulators and uses related thereto. WO025942A1; 2014
  • Khatri A, Burger PB, Swanger SA, et al. Structural determinants and mechanism of action of a GluN2C-selective NMDA receptor positive allosteric modulator. Mol Pharmacol 2014; doi: 10.1124/mol.114.094516
  • Paul SM, Doherty JJ, Robichaud AJ, et al. The major brain cholesterol metabolite 24(S)-hydroxycholesterol is a potent allosteric modulator of N-methyl-D-aspartate receptors. J Neurosci 2013;33(44):17290-300
  • Linsenbardt AJ, Taylor A, Emnett CM, et al. Different oxysterols have opposing actions at N-methyl-d-aspartate receptors. Neuropharmacology 2014;85:232-42
  • Tsai G, Coyle JT. Glutamatergic mechanisms in schizophrenia. Annu Rev Pharmacol Toxicol 2002;42:165-79
  • Coyle JT, Tsai G. The NMDA receptor glycine modulatory site: a therapeutic target for improving cognition and reducing negative symptoms in schizophrenia. Psychopharmacology (Berl) 2004;174(1):32-8
  • Traynelis SF, Hartley M, Heinemann SF. Control of proton sensitivity of the NMDA receptor by RNA splicing and polyamines. Science 1995;268(5212):873-6
  • Mony L, Zhu S, Carvalho S, Paoletti P. Molecular basis of positive allosteric modulation of GluN2B NMDA receptors by polyamines. EMBO J 2011;30(15):3134-46
  • Malayev A, Gibbs TT, Farb DH. Inhibition of the NMDA response by pregnenolone sulphate reveals subtype selective modulation of NMDA receptors by sulphated steroids. Br J Pharmacol 2002;135(4):901-9
  • Jang M-K, Mierke DF, Russek SJ, Farb DH. A steroid modulatory domain on NR2B controls N-methyl-D-aspartate receptor proton sensitivity. Proc Natl Acad Sci USA 2004;101(21):8198-203
  • Horak M, Vlcek K, Petrovic M, et al. Molecular mechanism of pregnenolone sulfate action at NR1/NR2B receptors. J Neurosci 2004;24(46):10318-25
  • Wenk GL, Barnes CA. Regional changes in the hippocampal density of AMPA and NMDA receptors across the lifespan of the rat. Brain Res 2000;885(1):1-5
  • Clayton DA, Mesches MH, Alvarez E, et al. A hippocampal NR2B deficit can mimic age-related changes in long-term potentiation and spatial learning in the fischer 344 rat. J Neurosci 2002;22(9):3628-37
  • Bai L, Hof PR, Standaert DG, et al. Changes in the expression of the NR2B subunit during aging in macaque monkeys. Neurobiol Aging 2004;25(2):201-8
  • Magnusson KR, Brim BL, Das SR, et al. Selective vulnerabilities of N-methyl-D-aspartate (NMDA) receptors during brain aging. Front Aging Neurosci 2010;2:11
  • Tang Y-P, Shimizu E, Dube GR, et al. Genetic enhancement of learning and memory in mice. Nature 1999;401(6748):63-9
  • Cao X, Cui Z, Feng R, et al. Maintenance of superior learning and memory function in NR2B transgenic mice during ageing. Eur J Neurosci 2007;25(6):1815-22
  • Jacobs SA, Tsien JZ. Genetic overexpression of NR2B subunit enhances social recognition memory for different strains and species. PLoS One 2012;7(4):e36387
  • Cui Y, Jin J, Zhang X, et al. Forebrain NR2B overexpression facilitating the prefrontal cortex long-term potentiation and enhancing working memory function in mice. PLoS One 2011;6(5):1-10
  • White TL, Youngentob SL. The effect of NMDA-NR2B receptor subunit over-expression on olfactory memory task performance in the mouse. Brain Res 2004;1021(1):1-7
  • Brim BL, Haskell R, Awedikian R, et al. Memory in aged mice is rescued by enhanced expression of the GluN2B subunit of the NMDA receptor. Behav Brain Res 2013;238:211-26
  • Hayashibe S, Yamasaki S, Watanabe K, et al. Aminoindan derivative or salt thereof. EP2042480B1; 2013
  • Hayashibe S, Yamasaki S, Shiraishi N, et al. Fused indane compound. CA2706171C; 2013
  • Danysz W, Parsons CG. Glycine and N-methyl-d-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol Rev 1998;50(4):597-664
  • Ginski MJ, Witkin JM. Sensitive and rapid behavioral differentiation of N-methyl-d-aspartate receptor antagonists. Psychopharmacology (Berl) 1994;114(4):573-82
  • Tricklebank MD, Bristow LJ, Hutson PH, et al. The anticonvulsant and behavioural profile of L-687,414, a partial agonist acting at the glycine modulatory site on the N-methyl-D-aspartate (NMDA) receptor complex. Br J Pharmacol 1994;113(3):729-36
  • Hargreaves RJ, Rigby M, Smith D, Hill RG. Lack of effect of L-687,414 ((+)-cis-4-methyl-HA-966), an NMDA receptor antagonist acting at the glycine site, on cerebral glucose metabolism and cortical neuronal morphology. Br J Pharmacol 1993;110(1):36-42
  • Abel U, Hansen A, Wolter FE, et al. Glycine b antagonists. WO030358A1; 2013
  • Moskal J, Khan MA. NMDA receptors modulators and uses thereof. US8673843B2; 2014
  • Zhang X, Sullivan JA, Moskal JR, Stanton PK. A NMDA receptor glycine site partial agonist, GLYX-13, simultaneously enhances LTP and reduces LTD at Schaffer collateral–CA1 synapses in hippocampus. Neuropharmacology 2008;55(7):1238-50
  • Burgdorf J, Zhang X, Nicholson KL, et al. GLYX-13, a NMDA receptor glycine-site functional partial agonist, induces antidepressant-like effects without ketamine-like side effects. Neuropsychopharmacology 2013;38(5):729-42
  • Moskal JR, Kuo AG, Weiss C, et al. GLYX-13: a monoclonal antibody-derived peptide that acts as an N-methyl-d-aspartate receptor modulator. Neuropharmacology 2005;49(7):1077-87
  • Burgdorf J, Zhang X, Weiss C, et al. The N-methyl-D-aspartate receptor modulator GLYX-13 enhances learning and memory, in young adult and learning impaired aging rats. Neurobiol Aging 2011;32(4):698-706
  • Burgdorf J, Kroes RA, Weiss C, et al. Positive emotional learning is regulated in the medial prefrontal cortex by GluN2B-containing NMDA receptors. Neuroscience 2011;192:515-23
  • Wood PL, Mahmood SA, Moskal JR. Antinociceptive action of GLYX-13: an N-methyl-D-aspartate receptor glycine site partial agonist. Neuroreport 2008;19(10):1059-61
  • Phase 2, Double-Blind, Placebo Controlled, Randomized Withdrawal, Parallel Efficacy and Safety Study of GLYX-13 in Subjects With Inadequate/Partial Response to Antidepressants During the Current Episode of Major Depressive Disorder. Available from: http://www.clinicaltrials.gov/ct2/show/NCT01684163 [Last accessed 6 August 2014]
  • Liotta DC, Snyder JP, Traynelis SF, et al. NMDA receptor antagonists for neuroprotection. US8420680B2; 2013
  • King D, Macor JE, Olson RE, et al. Selective NR2B antagonists. US0079338A1; 2013
  • Furukawa H, Karakas E. Phenylethanolamine-based NMDA receptor antagonists. US8648198B2; 2014
  • Shim SS, Hammonds MD, Kee BS. Potentiation of the NMDA receptor in the treatment of schizophrenia: focused on the glycine site. Eur Arch Psychiatry Clin Neurosci 2008;258(1):16-27
  • Ressler KJ, Rothbaum BO, Tannenbaum L, et al. Cognitive enhancers as adjuncts to psychotherapy: use of D-cycloserine in phobic individuals to facilitate extinction of fear. Arch Gen Psychiatry 2004;61(11):1136-44
  • Richardson R, Ledgerwood L, Cranney J. Facilitation of fear extinction by D-cycloserine: theoretical and clinical implications. Learn Mem Cold Spring Harb N 2004;11(5):510-16
  • Upasani RB, Harrison BL, Askew BC, et al. Neuroactive steroids, compositions, and uses thereof. WO036835A1; 2013
  • Miyake M, Kusama T, Masuko T. Biguanide derivative compound. US0281464A1; 2013
  • Waldmann R, Champigny G, Bassilana F, et al. A proton-gated cation channel involved in acid-sensing. Nature 1997;386(6621):173-7
  • Gao J, Duan B, Wang D-G, et al. Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death. Neuron 2005;48(4):635-46
  • Xiong Z-G, Zhu X-M, Chu X-P, et al. Neuroprotection in Ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 2004;118(6):687-98
  • Sonesson C, Karlsson J, Svensson P. Novel modulators of cortical dopaminergic- and nmda-receptor-mediated glutamatergic neurotransmission. US0128360A1; 2014
  • Harvey RJ, Yee BK. Glycine transporters as novel therapeutic targets in schizophrenia, alcohol dependence and pain. Nat Rev Drug Discov 2013;12(11):866-85
  • Eulenburg V, Armsen W, Betz H, Gomeza J. Glycine transporters: essential regulators of neurotransmission. Trends Biochem Sci 2005;30(6):325-33
  • Cubelos B, Giménez C, Zafra F. Localization of the GLYT1 glycine transporter at glutamatergic synapses in the rat brain. Cereb Cortex 2005;15(4):448-59
  • Umbricht D, Alberati D, Martin-Facklam M, et al. Effect of bitopertin, a glycine reuptake inhibitor, on negative symptoms of schizophrenia: a randomized, double-blind, proof-of-concept study. JAMA Psychiatry 2014;71(6):637-46
  • Roche provides update on the first two of six phase III studies of bitopertin in schizophrenia. Media Release 2014. Available from: http://www.roche.com/media/media_releases/med-cor-2014-01-21.htm [Last accessed 19 July 2014]
  • Kolczewski S, Pinard E. Tetrahydro-pyran derivatives. US8524909B2; 2013
  • Kolczewski S, Pinard E, Stalder H. Piperidine derivatives. US0158050A1; 2013
  • Foster AB. Deuterium isotope effects in studies of drug metabolism. Trends Pharmacol Sci 1984;5:524-7
  • Harbeson SL, Tung RD. Chapter 24 - deuterium in drug discovery and development. Ann Rep Med Chem 2011;46:403-17
  • Santangelo RM, Acker TM, Zimmerman SS, et al. Novel NMDA receptor modulators: an update. Expert Opin Ther Pat 2012;22(11):1337-52
  • Pharmacokinetics (PK) and Tolerability of AVP-786 in Healthy Volunteers. Available from: https://clinicaltrials.gov/ct2/show/NCT01787747?term=AVP%3D786&rank=2 [Last accessed 9 July 2014]
  • Efficacy, safety, and tolerability study of AVP-786 as an adjunctive therapy in patients with major depressive disorder with an inadequate response to antidepressant treatment. Available from: https://clinicaltrials.gov/ct2/show/NCT02153502?term=AVP%3D786&rank=1 [Last accessed 9 July 2014]
  • Tung R. Morphinan compounds. US8541436B2; 2013
  • Bogdanova AY, Gassman M, Goede J. Methods of treating sickle cell anemia-related conditions with MK-801 or memantine. US8680042B2; 2014
  • Embury SH. Sickle cell disease: basic principles and clinical practice. Lippincott-Raven, New York; 1994
  • Lee M, Silverman S, Hansen H, et al. A comprehensive review of opioid-induced hyperalgesia focused review. Pain Physician 2011; 14(2):145-61
  • Larcher A, Laulin JP, Celerier E, et al. Acute tolerance associated with a single opiate administration: involvement of N-methyl-d-aspartate-dependent pain facilitatory systems. Neuroscience 1998;84(2):583-9
  • Chen L, Huang Marine L-YM. Sustained potentiation of NMDA receptor-mediated glutamate responses through activation of protein kinase C by a μ opioid. Neuron 1991;7(2):319-26
  • Chen L, Mae Huang L-Y. Protein kinase C reduces Mg2+ block of NMDA-receptor channels as a mechanism of modulation. Nature 1992;356(6369):521-3
  • Mao J, Price DD, Mayer DJ. Thermal hyperalgesia in association with the development of morphine tolerance in rats: roles of excitatory amino acid receptors and protein kinase C. J Neurosci 1994;14(4):2301-12
  • Mao J. NMDA and opioid receptors: their interactions in antinociception, tolerance and neuroplasticity. Brain Res Rev 1999;30(3):289-304
  • Neri CM, Pestieau SR, Darbari DS. Low – dose ketamine as a potential adjuvant therapy for painful vaso‐occlusive crises in sickle cell disease. Pediatr Anesth 2013;23(8):684-9
  • Wolfgang K, Reinhard S, Scheuber K, et al. Differential Modulation of Remifentanil-induced Analgesia and Postinfusion Hyperalgesia by S-Ketamine and Clonidine in Humans. Anesthesiology 2013;99(1):152-9
  • Neri CM. Low-dose ketamine for children and adolescents with acute sickle cell disease related pain: a single center experience. J Anesth Clin Res 2014;5:394
  • Zempsky WTM, Loiselle KAB, Corsi JMB, Hagstrom JNM. Use of low-dose ketamine infusion for pediatric patients with sickle cell disease-related pain: a case series. J Pain 2010;26(2):163-7
  • Low-dose ketamine infusion for children with sickle cell disease-related pain. Available from: https://clinicaltrials.gov/ct2/show/NCT00595530?term=NMDA++sickle+cell&rank=1 [Last accessed 8 July 2014]
  • Li Y-X, Foster AC, Staubli U, et al. Serine for the treatment of visual system disorders. WO174243A8; 2012
  • Manookin MB, Weick M, Stafford BK, Demb JB. NMDA receptor contributions to visual contrast coding. Neuron 2010;67(2):280-93
  • Cooke SF, Bear MF. Visual experience induces long-term potentiation in the primary visual cortex. J Neurosci 2010;30(48):16304-13
  • Stevens ER, Esguerra M, Kim PM, et al. D-serine and serine racemase are present in the vertebrate retina and contribute to the physiological activation of NMDA receptors. Proc Natl Acad Sci USA 2003;100(11):6789-94
  • Foster AC, Li Y-X, Staubli U, et al. D-serine transporter inhibitors as pharmaceutical compositions for the treatment of central nervous system disorders. US0329851A1; 2012
  • Schwarcz R, Bruno JP, Muchowski PJ, Wu H-Q. Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci 2012;13(7):465-77

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.