783
Views
36
CrossRef citations to date
0
Altmetric
Review

Acyltransferase inhibitors: a patent review (2010–present)

, PhD (Postdoctoral Fellow) & , PhD (Professor)

Bibliography

  • Yang J, Brown MS, Liang G, et al. Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell 2008;132:387-96
  • Gutierrez JA, Solenberg PJ, Perkins DR, et al. Ghrelin octanoylation mediated by an orphan lipid transferase. Proc Natl Acad Sci USA 2008;105:6320-5
  • Kojima M, Hosoda H, Date Y, et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999;402:656-60
  • Ohgusu H, Takahashi T, Kojima M. Enzymatic characterization of GOAT, ghrelin O-acyltransferase. Methods Enzymol 2012;514:147-63
  • Barnett BP, Hwang Y, Taylor MS, et al. Glucose and weight control in mice with a designed ghrelin O-acyltransferase inhibitor. Science 2010;330:1689-92
  • Endo A. A historical perspective on the discovery of statins. Proc Jpn Acad Ser B Phys Biol Sci 2010;86:484-93
  • Libby P. The forgotten majority: unfinished business in cardiovascular risk reduction. J Am Coll Cardiol 2005;46:1225-8
  • Armitage J, Bowman L, Wallendszus K, et al. Intensive lowering of LDL cholesterol with 80 mg versus 20 mg simvastatin daily in 12,064 survivors of myocardial infarction: a double-blind randomised trial. Lancet 2010;376:1658-69
  • Egan A, Colman E. Weighing the benefits of high-dose simvastatin against the risk of myopathy. N Engl J Med 2011;365:285-7
  • Altmann SW, Davis HRJr, Zhu LJ, et al. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 2004;303:1201-4
  • Kastelein JJ, Akdim F, Stroes ES, et al. Simvastatin with or without ezetimibe in familial hypercholesterolemia. N Engl J Med 2008;358:1431-43
  • Ohshiro T, Tomoda H. Isoform-specific inhibitors of ACATs: recent advances and promising developments. Future Med Chem 2011;3:2039-61
  • Chang CC, Huh HY, Cadigan KM, et al. Molecular cloning and functional expression of human acyl-coenzyme A:cholesterol acyltransferase cDNA in mutant Chinese hamster ovary cells. J Biol Chem 1993;268:20747-55
  • Anderson RA, Joyce C, Davis M, et al. Identification of a form of acyl-CoA:cholesterol acyltransferase specific to liver and intestine in nonhuman primates. J Biol Chem 1998;273:26747-54
  • Cases S, Novak S, Zheng YW, et al. ACAT-2, a second mammalian acyl-CoA:cholesterol acyltransferase. Its cloning, expression, and characterization. J Biol Chem 1998;273:26755-64
  • Oelkers P, Behari A, Cromley D, et al. Characterization of two human genes encoding acyl coenzyme A:cholesterol acyltransferase-related enzymes. J Biol Chem 1998;273:26765-71
  • Lin S, Cheng D, Liu MS, et al. Human acyl-CoA:cholesterol acyltransferase-1 in the endoplasmic reticulum contains seven transmembrane domains. J Biol Chem 1999;274:23276-85
  • Joyce CW, Shelness GS, Davis MA, et al. ACAT1 and ACAT2 membrane topology segregates a serine residue essential for activity to opposite sides of the endoplasmic reticulum membrane. Mol Biol Cell 2000;11:3675-87
  • Lee RG, Willingham MC, Davis MA, et al. Differential expression of ACAT1 and ACAT2 among cells within liver, intestine, kidney, and adrenal of nonhuman primates. J Lipid Res 2000;41:1991-2001
  • Parini P, Davis M, Lada AT, et al. ACAT2 is localized to hepatocytes and is the major cholesterol-esterifying enzyme in human liver. Circulation 2004;110:2017-23
  • Yagyu H, Kitamine T, Osuga J, et al. Absence of ACAT-1 attenuates atherosclerosis but causes dry eye and cutaneous xanthomatosis in mice with congenital hyperlipidemia. J Biol Chem 2000;275:21324-30
  • Accad M, Smith SJ, Newland DL, et al. Massive xanthomatosis and altered composition of atherosclerotic lesions in hyperlipidemic mice lacking acyl CoA:cholesterol acyltransferase 1. J Clin Invest 2000;105:711-19
  • Fazio S, Major AS, Swift LL, et al. Increased atherosclerosis in LDL receptor-null mice lacking ACAT1 in macrophages. J Clin Invest 2001;107:163-71
  • Buhman KK, Accad M, Novak S, et al. Resistance to diet-induced hypercholesterolemia and gallstone formation in ACAT2-deficient mice. Nat Med 2000;6:1341-7
  • Willner EL, Tow B, Buhman KK, et al. Deficiency of acyl CoA:cholesterol acyltransferase 2 prevents atherosclerosis in apolipoprotein E-deficient mice. Proc Natl Acad Sci USA 2003;100:1262-7
  • Bell TAIII, Brown JM, Graham MJ, et al. Liver-specific inhibition of acyl-coenzyme a:cholesterol acyltransferase 2 with antisense oligonucleotides limits atherosclerosis development in apolipoprotein B100-only low-density lipoprotein receptor-/- mice. Arterioscler Thromb Vasc Biol 2006;26:1814-20
  • Alger HM, Brown JM, Sawyer JK, et al. Inhibition of acyl-coenzyme A:cholesterol acyltransferase 2 (ACAT2) prevents dietary cholesterol-associated steatosis by enhancing hepatic triglyceride mobilization. J Biol Chem 2010;285:14267-74
  • Ikenoya M, Yoshinaka Y, Kobayashi H, et al. A selective ACAT-1 inhibitor, K-604, suppresses fatty streak lesions in fat-fed hamsters without affecting plasma cholesterol levels. Atherosclerosis 2007;191:290-7
  • Terasaka N, Miyazaki A, Kasanuki N, et al. ACAT inhibitor pactimibe sulfate (CS-505) reduces and stabilizes atherosclerotic lesions by cholesterol-lowering and direct effects in apolipoprotein E-deficient mice. Atherosclerosis 2007;190:239-47
  • Tardif JC, Gregoire J, L’Allier PL, et al. Effects of the acyl coenzyme A:cholesterol acyltransferase inhibitor avasimibe on human atherosclerotic lesions. Circulation 2004;110:3372-7
  • Nissen SE, Tuzcu EM, Brewer HB, et al. Effect of ACAT inhibition on the progression of coronary atherosclerosis. N Engl J Med 2006;354:1253-63
  • Meuwese MC, de Groot E, Duivenvoorden R, et al. ACAT inhibition and progression of carotid atherosclerosis in patients with familial hypercholesterolemia: the CAPTIVATE randomized trial. JAMA 2009;301:1131-9
  • Fazio S, Linton M. Failure of ACAT inhibition to retard atherosclerosis. N Engl J Med 2006;354:1307-9
  • Ge J, Zhai W, Cheng B, et al. Insulin induces human acyl-coenzyme A: cholesterol acyltransferase1 gene expression via MAP kinases and CCAAT/enhancer-binding protein alpha. J Cell Biochem 2013;114:2188-98
  • Omura S, Tomoda H, Kim YK, et al. Pyripyropenes, highly potent inhibitors of acyl-CoA:cholesterol acyltransferase produced by Aspergillus fumigatus. J Antibiot(Tokyo) 1993;46:1168-9
  • Tomoda H, Kim YK, Nishida H, et al. Pyripyropenes, novel inhibitors of acyl-CoA:cholesterol acyltransferase produced by Aspergillus fumigatus. I. Production, isolation, and biological properties. J Antibiot(Tokyo) 1994;47:148-53
  • Kim YK, Tomoda H, Nishida H, et al. Pyripyropenes, novel inhibitors of acyl-CoA:cholesterol acyltransferase produced by Aspergillus fumigatus. II. Structure elucidation of pyripyropenes A, B, C and D. J Antibiot(Tokyo) 1994;47:154-62
  • Lada AT, Davis M, Kent C, et al. Identification of ACAT1- and ACAT2-specific inhibitors using a novel, cell-based fluorescence assay: individual ACAT uniqueness. J Lipid Res 2004;45:378-86
  • Ohshiro T, Rudel LL, Omura S, et al. Selectivity of microbial acyl-CoA: cholesterol acyltransferase inhibitors toward isozymes. J Antibiot(Tokyo) 2007;60:43-51
  • Cho KH, An S, Lee WS, et al. Mass-production of human ACAT-1 and ACAT-2 to screen isoform-specific inhibitor: a different substrate specificity and inhibitory regulation. Biochem Biophys Res Commun 2003;309:864-72
  • Das A, Davis MA, Tomoda H, et al. Identification of the interaction site within acyl-CoA:cholesterol acyltransferase 2 for the isoform-specific inhibitor pyripyropene A. J Biol Chem 2008;283:10453-60
  • Obata R, Sunazuka T, Li Z, et al. Structure-activity relationships of pyripyropenes fungal acyl-CoA: cholesterol acyltransferase inhibitors. J Antibiot(Tokyo) 1995;48:749-50
  • Obata R, Sunazuka T, Li Z, et al. Chemical modification and structure-activity relationships of pyripyropenes. 1. Modification at the four hydroxyl groups. J Antibiot(Tokyo) 1996;49:1133-48
  • Obata R, Sunazuka T, Kato Y, et al. Chemical modification and structure-activity relationships of pyripyropenes. 2. 1,11-Cyclic analogs. J Antibiot(Tokyo) 1996;49:1149-56
  • Obata R, Sunazuka T, Tian Z, et al. Chemical modification and structure-activity relationships of pyripyropenes. 3. Synthetic conversion of pyridine-pyrone moiety. J Antibiot(Tokyo) 1997;50:229-36
  • Obata R, Sunazuka T, Tian ZM, et al. New analogs of the pyripyropene family of ACAT inhibitors via alpha-pyrone fragmentation and gamma-acylation/cyclization. Chem Lett 1997(9):935-6
  • Ohshiro T, Ohte S, Matsuda D, et al. Selectivity of pyripyropene derivatives in inhibition toward acyl-CoA:cholesterol acyltransferase 2 isozyme. J Antibiot(Tokyo) 2008;61:503-8
  • Ohshiro T, Matsuda D, Sakai K, et al. Pyripyropene A, an acyl-coenzyme A:cholesterol acyltransferase 2-selective inhibitor, attenuates hypercholesterolemia and atherosclerosis in murine models of hyperlipidemia. Arterioscler Thromb Vasc Biol 2011;31:1108-15
  • Matsuda D, Ohshiro T, Ohtawa M, et al. In vitro metabolism of pyripyropene A and ACAT inhibitory activity of its metabolites. J Antibiot(Tokyo) 2014. In press
  • Ohtawa M, Yamazaki H, Ohte S, et al. Synthesis and structure-activity relationship of pyripyropene A derivatives as potent and selective acyl-CoA:cholesterol acyltransferase 2 (ACAT2) inhibitors: part 1. Bioorg Med Chem Lett 2013;23:1285-7
  • Ohtawa M, Yamazaki H, Matsuda D, et al. Synthesis and structure-activity relationship of pyripyropene A derivatives as potent and selective acyl-CoA:cholesterol acyltransferase 2 (ACAT2) inhibitors: part 2. Bioorg Med Chem Lett 2013;23:2659-62
  • Ohtawa M, Yamazaki H, Ohte S, et al. Synthesis and structure-activity relationship of pyripyropene A derivatives as potent and selective acyl-CoA:cholesterol acyltransferase 2 (ACAT2) inhibitors: part 3. Bioorg Med Chem Lett 2013;23:3798-801
  • Lehner R, Kuksis A. Biosynthesis of triacylglycerols. Prog Lipid Res 1996;35:169-201
  • Choi SH, Ginsberg HN. Increased very low density lipoprotein (VLDL) secretion, hepatic steatosis, and insulin resistance. Trends Endocrinol Metab 2011;22:353-63
  • Bell RM, Coleman RA. Enzymes of triacylglycerol formation in mammals. The Enzymes 1983;16:87-111
  • Shi Y, Cheng D. Beyond triglyceride synthesis: the dynamic functional roles of MGAT and DGAT enzymes in energy metabolism. Am J Physiol Endocrinol Metab 2009;297:E10-18
  • Cases S, Smith SJ, Zheng YW, et al. Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci USA 1998;95:13018-23
  • Cases S, Stone SJ, Zhou P, et al. Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members. J Biol Chem 2001;276:38870-6
  • Stone SJ, Myers HM, Watkins SM, et al. Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J Biol Chem 2004;279:11767-76
  • Smith SJ, Cases S, Jensen DR, et al. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nat Genet 2000;25:87-90
  • Chen HC, Smith SJ, Tow B, et al. Leptin modulates the effects of acyl CoA:diacylglycerol acyltransferase deficiency on murine fur and sebaceous glands. J Clin Invest 2002;109:175-81
  • Matsuda D, Tomoda H. DGAT inhibitors for obesity. Curr Opin Investig Drugs 2007;8:836-41
  • Tomoda H, Ito M, Tabata N, et al. Amidepsines, inhibitors of diacylglycerol acyltransferase produced by Humicola sp. FO-2942. I. Production, isolation and biological properties. J Antibiot(Tokyo) 1995;48:937-41
  • Tomoda H, Tabata N, Ito M, et al. Amidepsines, inhibitors of diacylglycerol acyltransferase produced by Humicola sp. FO-2942. II. Structure elucidation of amidepsines A, B and C. J Antibiot(Tokyo) 1995;48:942-7
  • Tomoda H, Yamaguchi Y, Tabata N, et al. Amidepsine E, an inhibitor of diacylglycerol acyltransferase produced by Humicola sp. FO-5969. J Antibiot(Tokyo) 1996;49:929-31
  • Tomoda H, Ohyama Y, Abe T, et al. Roselipins, inhibitors of diacylglycerol acyltransferase, produced by Gliocladium roseum KF-1040. J Antibiot(Tokyo) 1999;52:689-94
  • Tabata N, Ohyama Y, Tomoda H, et al. Structure elucidation of roselipins, inhibitors of diacylglycerol acyltransferase produced by Gliocladium roseum KF-1040. J Antibiot(Tokyo) 1999;52:815-26
  • Inokoshi J, Kawamoto K, Takagi Y, et al. Expression of two human acyl-CoA:diacylglycerol acyltransferase isozymes in yeast and selectivity of microbial inhibitors toward the isozymes. J Antibiot(Tokyo) 2009;62:51-4
  • Matsuda D, Tomoda H. Triazolo compounds useful as diacylglycerol acyltransferase1 inhibitor - WO2009126624. Expert Opin Ther Pat 2010;20:1097-102
  • Birch AM, Buckett LK, Turnbull AV. DGAT1 inhibitors as anti-obesity and anti-diabetic agents. Curr Opin Drug Discov Devel 2010;13:489-96
  • DeVita RJ, Pinto S. Current status of the research and development of diacylglycerol O-acyltransferase 1 (DGAT1) inhibitors. J Med Chem 2013;56:9820-5
  • Yen CL, Stone SJ, Cases S, et al. Identification of a gene encoding MGAT1, a monoacylglycerol acyltransferase. Proc Natl Acad Sci USA 2002;99:8512-17
  • Cao J, Lockwood J, Burn P, et al. Cloning and functional characterization of a mouse intestinal acyl-CoA:monoacylglycerol acyltransferase, MGAT2. J Biol Chem 2003;278:13860-6
  • Yen CL, Farese RVJr. MGAT2, a monoacylglycerol acyltransferase expressed in the small intestine. J Biol Chem 2003;278:18532-7
  • Cheng D, Nelson TC, Chen J, et al. Identification of acyl coenzyme A:monoacylglycerol acyltransferase 3, an intestinal specific enzyme implicated in dietary fat absorption. J Biol Chem 2003;278:13611-14
  • Cao J, Burn P, Shi Y. Properties of the mouse intestinal acyl-CoA:monoacylglycerol acyltransferase, MGAT2. J Biol Chem 2003;278:25657-63
  • Lockwood JF, Cao J, Burn P, et al. Human intestinal monoacylglycerol acyltransferase: differential features in tissue expression and activity. Am J Physiol Endocrinol Metab 2003;285:E927-37
  • Kayden HJ, Senior JR, Mattson FH. The monoglyceride pathway of fat absorption in man. J Clin Invest 1967;46:1695-703
  • Mattson FH, Volpenhein RA. The Digestion and Absorption of Triglycerides. J Biol Chem 1964;239:2772-7
  • Yen CL, Cheong ML, Grueter C, et al. Deficiency of the intestinal enzyme acyl CoA:monoacylglycerol acyltransferase-2 protects mice from metabolic disorders induced by high-fat feeding. Nat Med 2009;15:442-6
  • Gao Y, Nelson DW, Banh T, et al. Intestine-specific expression of MOGAT2 partially restores metabolic efficiency in Mogat2-deficient mice. J Lipid Res 2013;54:1644-52
  • Nelson DW, Gao Y, Yen MI, et al. Intestine-specific Deletion of Acyl-CoA:monoacylglycerol Acyltransferase (MGAT) 2 Protects Mice from Diet-induced Obesity and Glucose Intolerance. J Biol Chem 2014;289:17338-49
  • Raal FJ, Pilcher GJ, Illingworth DR, et al. Expanded-dose simvastatin is effective in homozygous familial hypercholesterolaemia. Atherosclerosis 1997;135:249-56
  • Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature 2011;473:317-25
  • http://patentscope.wipo.int/search/en/search.jsf

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.