414
Views
25
CrossRef citations to date
0
Altmetric
Review

Therapeutic conotoxins: a US patent literature survey

&

Bibliography

  • Terlau H, Olivera BM. Conus venoms: a rich source of novel ion channel-targeted peptides. Physiol Rev 2004;84:41-68
  • Lewis RJ, Dutertre S, Vetter I, Christie MJ. Conus venom peptide pharmacology. Pharmacol Rev 2012;64:259-98
  • Craig AG, Bandyopadhyay P, Olivera BM. Post-translationally modified neuropeptides from Conus venoms. Eur J Biochem 1999;264:271-5
  • Craik DJ, Adams DJ. Chemical modification of conotoxins to improve stability and activity. ACS Chem Biol 2007;2:457-68
  • Green BR, Bulaj G, Norton RS. Structure and function of mu-conotoxins, peptide-based sodium channel blockers with analgesic activity. Fut Med Chem 2014;6:1677-98
  • Miljanich GP. Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr Med Chem 2004;11:3029-40
  • Kaas Q, Yu RL, Jin AH, et al. ConoServer: updated content, knowledge, and discovery tools in the conopeptide database. Nucleic Acids Res 2012;40:D325-D30
  • Harvey AL. Toxins and drug discovery. Toxicon 2014;92:193-200
  • Hayden EC. Biotech reels over patent ruling. Nature 2014;511:138-8
  • Kaas Q, Westermann JC, Craik DJ. Conopeptide characterization and classifications: An analysis using ConoServer. Toxicon 2010;55:1491-509
  • Scanlon MJ, Naranjo D, Thomas L, et al. Solution structure and proposed binding mechanism of a novel potassium channel toxin kappa-conotoxin PVIIA. Structure 1997;5:1585-97
  • Olivera BM, Gray WR, Zeikus R, et al. Peptide Neurotoxins from Fish-Hunting Cone Snails. Science 1985;230:1338-43
  • Olivera BM, Mcintosh JM, Cruz LJ, et al. Purification and sequence of a presynaptic peptide toxin from conus-geographus venom. Biochemistry 1984;23:5087-90
  • Nielsen KJ, Thomas L, Lewis RJ, et al. A consensus structure for omega-conotoxins with different selectivities for voltage-sensitive calcium channel subtypes: Comparison of MVIIA, SVIB and SNX-202. J Mol Biol 1996;263:297-310
  • Craik DJ, Daly NL, Bond T, Waine C. Plant cyclotides: A unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J Mol Biol 1999;294:1327-36
  • Elan Pharmaceuticals, Inc. Method for reducing pain. US7268109; 2007
  • Sanford M. Intrathecal ziconotide: a review of its use in patients with chronic pain refractory to other systemic or intrathecal analgesics. CNS Drugs 2013;27:989-1002
  • Vink S, Alewood PF. Targeting voltage-gated calcium channels: developments in peptide and small-molecule inhibitors for the treatment of neuropathic pain. Br J Pharmacol 2012;167:970-89
  • Scott DA, Wright CE, Angus JA. Actions of intrathecal omega-conotoxins CVID, GVIA, MVIIA, and morphine in acute and neuropathic pain in the rat. Eur J Pharmacol 2002;451:279-86
  • Kolosov A, Aurini L, Williams ED, et al. Intravenous injection of leconotide, an omega conotoxin: synergistic antihyperalgesic effects with morphine in a rat model of bone cancer pain. Pain Med 2011;12:923-41
  • Anygen Co., Ltd. Omega conotoxins. US8673856; 2014
  • The University of Queensland, The University of Sydney Omega conotoxin peptides. US8765677; 2014
  • Lee S, Kim Y, Back SK, et al. Analgesic effect of highly reversible omega-conotoxin FVIA on N type Ca2+ channels. Mol Pain 2010;6
  • Mould J, Yasuda T, Schroeder CI, et al. The alpha(2)delta auxiliary subunit reduces affinity of omega-conotoxins for recombinant N-type (Ca(v)2.2) calcium channels. J Biol Chem 2004;279:34705-14
  • Berecki G, Daly NL, Huang YH, et al. Effects of arginine 10 to lysine substitution on -conotoxin CVIE and CVIF block of Cav2.2 channels. Br J Pharmacol 2014;171:3313-27
  • Berecki G, Motin L, Haythornthwaite A, et al. Analgesic omega-Conotoxins CVIE and CVIF Selectively and Voltage-Dependently Block Recombinant and Native N-Type Calcium Channels. Mol Pharmacol 2010;77:139-48
  • Catterall WA. Voltage-gated sodium channels at 60: structure, function and pathophysiology. J Physiol 2012;590:2577-89
  • Dib-Hajj SD, Cummins TR, Black JA, Waxman SG. Sodium channels in normal and pathological pain. Annu Rev Neurosci 2010;33:325-47
  • Theile JW, Cummins TR. Recent developments regarding voltage-gated sodium channel blockers for the treatment of inherited and acquired neuropathic pain syndromes. Front Pharmacol 2011;2:54
  • Sun S, Cohen CJ, Dehnhardt CM. Inhibitors of voltage-gated sodium channel Nav1.7: patent applications since 2010. Pharm Pat Anal 2014;3:509-21
  • Bennett DLH, Woods CG. Painful and painless channelopathies. Lancet Neurol 2014;13:587-99
  • University of Utah Research Foundation, Cognetix, Inc. mu-conopeptides. US6727226; 2004
  • Wilson MJ, Yoshikami D, Azam L, et al. mu-Conotoxins that differentially block sodium channels Na(V)1.1 through 1.8 identify those responsible for action potentials in sciatic nerve. Proc Natl Acad Sci U S A 2011;108:10302-7
  • McArthur JR, Singh G, McMaster D, et al. Interactions of key charged residues contributing to selective block of neuronal sodium channels by mu-conotoxin KIIIA. Mol Pharmacol 2011;80:573-84
  • Daly NL, Ekberg JA, Thomas L, et al. Structures of mu O-conotoxins from Conus marmoreus - Inhibitors of tetrodotoxin (TTX)-sensitive and TTX-resistant sodium channels in mammalian sensory neurons. J Biol Chem 2004;279:25774-82
  • Zorn S, Leipold E, Hansel A, et al. The mu O-conotoxin MrVIA inhibits voltage-gated sodium channels by associating with domain-3. FEBS Lett 2006;580:1360-4
  • Leipold E, De Bie H, Zorn S, et al. mu O-conotoxins inhibit Na-V channels by interfering with their voltage sensors in domain-2. Channels 2007;1:253-62
  • Terlau H, Stocker M, Shon KJ, et al. mu O-conotoxin MrVIA inhibits mammalian sodium channels, but not through site I. J Neurophysiol 1996;76:1423-9
  • Mcintosh JM, Hasson A, Spira ME, et al. A New Family of Conotoxins That Blocks Voltage-Gated Sodium-Channels. J Biol Chem 1995;270:16796-802
  • Univ. of Utah Research Foundation, Yissum Research Development Co. of the Hebrew University of Jerusalem Conotoxin peptides. US5719264; 1998
  • Ekberg J, Jayamanne A, Vaughan CW, et al. muO-conotoxin MrVIB selectively blocks Nav1.8 sensory neuron specific sodium channels and chronic pain behavior without motor deficits. Proc Natl Acad Sci U S A 2006;103:17030-5
  • Bulaj G, Zhang MM, Green BR, et al. Synthetic muO-conotoxin MrVIB blocks TTX-resistant sodium channel NaV1.8 and has a long-lasting analgesic activity. Biochemistry 2006;45:7404-14
  • Vetter I, Dekan Z, Knapp O, et al. Isolation, characterization and total regioselective synthesis of the novel muO-conotoxin MfVIA from Conus magnificus that targets voltage-gated sodium channels Biochem Pharmacol 2012;84:540-8
  • de Araujo AD, Callaghan B, Nevin ST, et al. Total Synthesis of the Analgesic Conotoxin MrVIB through Selenocysteine-Assisted Folding. Angew Chem Int Ed 2011;50:6527-9
  • Gajewiak J, Azam L, Imperial J, et al. A disulfide tether stabilizes the block of sodium channels by the conotoxin mu O-GVIIJ. Proc Natl Acad Sci U S A 2014;111:2758-63
  • Wilson MJ, Zhang MM, Gajewiak J, et al. alpha- And beta-subunit composition of voltage-gated sodium channels investigated with mu-conotoxins and the recently discovered muO section sign-conotoxin GVIIJ. J Neurophysiol 2015;113:2289-301
  • Leipold E, Hansel A, Olivera BM, et al. Molecular interaction of delta-conotoxins with voltage-gated sodium channels. FEBS Lett 2005;579:3881-4
  • Peigneur S, Paolini-Bertrand M, Gaertner H, et al. delta-Conotoxins Synthesized Using an Acid-cleavable Solubility Tag Approach Reveal Key Structural Determinants for Na-V Subtype Selectivity. J Biol Chem 2014;289:35341-50
  • Leipold E, Liebmann L, Korenke GC, et al. A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nat Genet 2013.45:1399
  • Zhang XY, Wen JM, Yang W, et al. Gain-of-Function Mutations in SCN11A Cause Familial Episodic Pain. Am J Hum Genet 2013;93:957-66
  • Dib-Hajj S, Black JA, Cummins TR, Waxman SG. NaN/Na(v)1.9: a sodium channel with unique properties. Trends Neurosci 2002;25:253-9
  • McIntosh JM, Santos AD, Olivera BM. Conus peptides targeted to specific nicotinic acetylcholine receptor subtypes. Annu Rev Biochem 1999;68:59-88
  • Lebbe EKM, Peigneur S, Wijesekara I, Tytgat J. Conotoxins targeting nicotinic acetylcholine receptors: an overview. Mar Drugs 2014;12:2970-3004
  • Dutton JL, Craik DJ. alpha-conotoxins: Nicotinic acetylcholine receptor antagonists as pharmacological tools and potential drug leads. Curr Med Chem 2001;8:327-44
  • Taly A, Corringer PJ, Guedin D, et al. Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Nature Reviews Drug Discovery 2009;8:733-50
  • Sine SM, Engel AG. Recent advances in Cys-loop receptor structure and function. Nature 2006;440:448-55
  • Gotti C, Moretti M, Gaimarri A, et al. Heterogeneity and complexity of native brain nicotinic receptors. Biochem Pharmacol 2007;74:1102-11
  • Dineley KT, Pandya AA, Yakel JL. Nicotinic ACh receptors as therapeutic targets in CNS disorders. Trends Pharmacol Sci 2015;36:96-108
  • The Salk Institute For Biological Studies University of Utah Research Foundation Conotoxins I. US5432155; 1995
  • University of Utah Research Foundation, Cognetix, Inc. alpha.-conotoxin peptides. US6268473; 2001
  • University of Utah Research Foundation Use of. alpha.-conotoxin MII to treat disorders resulting from nicotine stimulated dopamine release. US5780433; 1998
  • University of Utah Research Foundation Conopeptides AuIA, AuIB and AuIC. US5866682; 1999
  • University of Utah Research Foundation Uses of. alpha.-conotoxin peptides. US6265541;2001
  • University of Utah Research Foundation, Cognetix, Inc. alpha.-conotoxin peptides. US6797808; 2004
  • Livett BG. alpha-conotoxin peptides with analgesic properties. US7348400; 2008
  • Satkunanathan N, Livett B, Gayler K, et al. Alpha-conotoxin Vc1.1 alleviates neuropathic pain and accelerates functional recovery of injured neurones. Brain Res 2005;1059:149-58
  • Vincler M, Wittenauer S, Parker R, et al. Molecular mechanism for analgesia involving specific antagonism of alpha 9 alpha 10 nicotinic acetylcholine receptors. Proc Natl Acad Sci U S A 2006;103:17880-4
  • Halai R, Clark RJ, Nevin ST, et al. Scanning Mutagenesis of alpha-Conotoxin Vc1.1 Reveals Residues Crucial for Activity at the alpha 9 alpha 10 Nicotinic Acetylcholine Receptor. J Biol Chem 2009;284:20275-84
  • Wright AB, Norimatsu Y, McIntosh JM, Elmslie KS. Limited Efficacy of α-Conopeptides, Vc1.1 and RgIA, to Inhibit Sensory Neuron CaV Current. eNeuro 2015; published online 16 January 2015; 10.1523/ENEURO.0057-14.2015
  • Adams DJ, Callaghan B, Berecki G. Analgesic conotoxins: block and G protein-coupled receptor modulation of N-type (CaV2.2) calcium channels. Br J Pharmacol 2012;166:486-500
  • Callaghan B, Haythornthwaite A, Berecki G, et al. Analgesic alpha-Conotoxins Vc1.1 and Rg1A Inhibit N-Type Calcium Channels in Rat Sensory Neurons via GABA(B) Receptor Activation. J Neurosci 2008;28:10943-51
  • Huynh TG, Cuny H, Slesinger PA, Adams DJ. Novel Mechanism of Voltage-Gated N-type (Ca(v)2.2) Calcium Channel Inhibition Revealed through alpha-Conotoxin Vc1.1 Activation of the GABA(B) Receptor. Mol Pharmacol 2015;87:240-50
  • Sharpe IA, Gehrmann J, Loughnan ML, et al. Two new classes of conopeptides inhibit the alpha 1-adrenoceptor and noradrenaline transporter. Nat Neurosci 2001;4:902-7
  • The University of Queensland Peptides. US6794361 2004
  • Xenome Ltd. Type II chi-conotoxin peptides (noradrenaline transporter inhibitors). US7507717 2009
  • Brust A, Palant E, Croker DE, et al. chi-Conopeptide Pharmacophore Development: Toward a Novel Class of Norepinephrine Transporter Inhibitor (Xen2174) for Pain. J Med Chem 2009;52:6991-7002
  • Sharpe IA, Palant E, Schroeder CI, et al. Inhibition of the norepinephrine transporter by the venom peptide x-MrIA - Site of action, Na+ dependence, and structure-activity relationship. J Biol Chem 2003;278:40317-23
  • Xenome Ltd. chi.-conotoxin peptides (-1). US7851444; 2010
  • Craig AG, Norberg T, Griffin D, et al. Contulakin-G, an O-glycosylated invertebrate neurotensin. J Biol Chem 1999;274:13752-9
  • Kindahl L, Sandstrom C, Craig AG, et al. H-1 NMR studies on the solution conformation of contulakin-G and analogues. Can J Chem 2002;80:1022-31
  • University of Utah Research Foundation. The Salk Institute for Biological Studies Contulakin-G, analogs thereof and uses therefor. US6369193; 2002
  • Allen JW, Hofer K, McCumber D, et al. An assessment of the antinociceptive efficacy of intrathecal and epidural Contulakin-G in rats and dogs. Anesth Analg 2007;104:1505-13
  • Olivera BM, Mcintosh JM, Clark C, et al. A Sleep-Inducing Peptide from Conus-Geographus Venom. Toxicon 1985;23:277-82
  • Mena EE, Gullak MF, Pagnozzi MJ, et al. Conantokin-G - a Novel Peptide Antagonist to the N-Methyl-D-Aspartic Acid (Nmda) Receptor. Neurosci Lett 1990;118:241-4
  • Rigby AC, Baleja JD, Li LP, et al. Role of gamma-carboxyglutamic acid in the calcium-induced structural transition of conantokin G, a conotoxin from the marine snail Conus geographus. Biochemistry 1997;36:15677-84
  • Skjaerbaek N, Nielsen KJ, Lewis RJ, et al. Determination of the solution structures of conantokin-G and conantokin-T by CD and NMR spectroscopy. J Biol Chem 1997;272:2291-9
  • University of Utah Research Foundation, Cognetix, Inc., Salk Institute Conantokins. US6515103; 2003
  • Malmberg AB, Gilbert H, McCabe RT, Basbaum AI. Powerful antinociceptive effects of the cone snail venom-derived subtype-selective NMDA receptor antagonists conantokins G and T. Pain 2003;101:109-16
  • Barton ME, White HS, Wilcox KS. The effect of CGX-1007 and CI-1041, novel NMDA receptor antagonists, on NMDA receptor-mediated EPSCs. Epilepsy Res 2004;59:13-24
  • Geiger T, Clarke S. Deamidation, Isomerization, and Racemization at Asparaginyl and Aspartyl Residues in Peptides - Succinimide-Linked Reactions That Contribute to Protein-Degradation. J Biol Chem 1987;262:785-94
  • Neurex Corporation Stable omega conopetide formulations. US5795864; 1998
  • Dupoiron D, Richard H, Chabert-Desnot V, et al. In Vitro Stability of Low-Concentration Ziconotide Alone or in Admixtures in Intrathecal Pumps. Neuromodulation 2014;17:472-82
  • Pallaghy PK, Nielsen KJ, Craik DJ, Norton RS. A Common Structural Motif Incorporating a Cystine Knot and a Triple-Stranded Beta-Sheet in Toxic and Inhibitory Polypeptides. Protein Sci 1994;3:1833-9
  • Clark RJ, Fischer H, Dempster L, et al. Engineering stable peptide toxins by means of backbone cyclization: Stabilization of the alpha-conotoxin MII. Proc Natl Acad Sci U S A 2005;102:13767-72
  • The University of Queensland Cyclized conotoxin peptides. US7001883; 2006
  • The University of Queensland Cyclised alpha-conotoxin peptides. US8354372l; 2013
  • Clark RJ, Jensen J, Nevin ST, et al. The Engineering of an Orally Active Conotoxin for the Treatment of Neuropathic Pain. Angew Chem Int Ed 2010;49:6545-8
  • Halai R, Caaghan B, Daly NL, et al. Effects of Cyclization on Stability, Structure, and Activity of alpha-Conotoxin RgIA at the alpha 9 alpha 10 Nicotinic Acetylcholine Receptor and GABA(B) Receptor. J Med Chem 2011;54:6984-92
  • Lovelace ES, Armishaw CJ, Colgrave ML, et al. Cyclic MrIA: A stable and potent cyclic conotoxin with a novel topological fold that targets the norepinephrine transporter. J Med Chem 2006;49:6561-8
  • Armishaw CJ, Dutton JL, Craik DJ, Alewood PF. Establishing Regiocontrol of Disulfide Bond Isomers of alpha-Conotoxin ImI via the Synthesis of N-to-C Cyclic Analogs. Biopolymers 2010;94:307-13
  • Lovelace ES, Gunasekera S, Alvarmo C, et al. Stabilization of alpha-Conotoxin AuIB: Influences of Disulfide Connectivity and Backbone Cyclization. Antioxid Redox Signal 2011;14:87-95
  • Hemu X, Taichi M, Qiu YB, et al. Biomimetic Synthesis of Cyclic Peptides Using Novel Thioester Surrogates. Biopolymers 2013;100:492-501
  • Clark RJ, Akcan M, Kaas Q, et al. Cyclization of conotoxins to improve their biopharmaceutical properties. Toxicon 2012;59:446-55
  • Dutton JL, Bansal PS, Hogg RC, et al. A new level of conotoxin diversity, a non-native disulfide bond connectivity in alpha-conotoxin AuIB reduces structural definition but increases biological activity. J Biol Chem 2002;277:48849-57
  • de Araujo AD, Mobli M, King GF, Alewood PF. Cyclization of Peptides by using Selenolanthionine Bridges. Angew Chem Int Ed 2012;51:10298-302
  • Li HY, Aneja R, Chaiken I. Click Chemistry in Peptide-Based Drug Design. Molecules 2013;18:9797-817
  • Polychip Pharmaceuticals Pty Ltd. Monash University Conotoxin analogues and methods for synthesis of intramolecular dicarba bridge-containing peptides. US7745573; 2010
  • Kompella SN, van Lierop BJ, Robinson SD, et al. Dicarba modification of alpha-conotoxin RgIA conferring selectivity towards alpha 9 alpha 10 nicotinic acetylcholine receptors. Biochem Pharmacol 2013;86:1230-0
  • van Lierop BJ, Robinson SD, Kompella SN, et al. Dicarba alpha-Conotoxin Vc1.1 Analogues with Differential Selectivity for Nicotinic Acetylcholine and GABA(B) Receptors. ACS Chem Biol 2013;4:1815-21
  • Chhabra S, Belgi A, Bartels P, et al. Dicarba Analogues of alpha-Conotoxin RgIA. Structure, Stability, and Activity at Potential Pain Targets. J Med Chem 2014;57:9933-44
  • Muttenthaler M, Nevin ST, Grishin AA, et al. Solving the alpha-conotoxin folding problem: efficient selenium-directed on-resin generation of more potent and stable nicotinic acetylcholine receptor antagonists. J Am Chem Soc 2010;132:3514-22
  • Craik DJ. Protein folding turbo-charged crosslinking. Nat Chem 2012;4:600-2
  • Petrel C, Hocking HG, Reynaud M, et al. Identification, structural and pharmacological characterization of tau-CnVA, a conopeptide that selectively interacts with somatostatin sst(3) receptor. Biochem Pharmacol 2013;85:1663-71
  • Walker CS, Steel D, Jacobsen RB, et al. The T-superfamily of conotoxins. J Biol Chem 1999;274:30664-71
  • Fainzilber M, Nakamura T, Lodder JC, et al. gamma-conotoxin-PnVIIA, a gamma-carboxyglutamate-containing peptide agonist of neuronal pacemaker cation currents. Biochemistry 1998;37:1470-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.