833
Views
53
CrossRef citations to date
0
Altmetric
Reviews

15-Lipoxygenase inhibitors: a patent review

&

Bibliography

  • Papers of special note have been highlighted as either of interest (•) or of considerable interest (••) to readers.
  • Yamamoto S. Mammalian lipoxygenases: molecular structures and functions. Biochim Biophys Acta. 1992;1128:117–131.
  • Fürstenberger G, Krieg P, Müller-Decker K, et al. What are cyclooxygenases and lipoxygenases doing in the driver’s seat of carcinogenesis? Int J Cancer. 2006;119:2247–2254.
  • Kuhn H, Walther M, Kuban RJ. Mammalian arachidonate 15-lipoxygenases structure, function, and biological implications. Prostaglandins Other Lipid Mediat. 2002;68–69:263–290.
  • Kuhn H, Thiele BJ. The diversity of the lipoxygenase family. Many sequence data but little information on biological significance. FEBS Lett. 1999;449:7–11.
  • Kühn H, Barnett J, Grunberger D, et al. Overexpression, purification and characterization of human recombinant 15-lipoxygenase. Biochim Biophys Acta. 1993;1169:80–89.
  • Kühn H, Thiele BJ, Ostareck-Lederer A, et al. Bacterial expression, purification and partial characterization of recombinant rabbit reticulocyte 15-lipoxygenase. Biochim Biophys Acta. 1993;1168:73–78.
  • Brash AR, Boeglin WE, Chang MS. Discovery of a second 15-lipoxygenase in humans. Proc Natl Acad Sci USA. 1997;94:6148–6152.
  • Grüllich C, Duvoisin RM, Wiedmann M, et al. Inhibition of 15-lipoxygenase leads to delayed organelle degradation in the reticulocyte. FEBS Lett. 2001;489:51–54.
  • Kroschwald P, Kroschwald A, Kühn H, et al. Occurrence of the erythroid cell-specific arachidonate 15-lipoxygenase in human reticulocytes. Biochem Biophys Res Commun. 1989;160:954–960.
  • Vijayvergiya C, De Angelis D, Walther M, et al. High-level expression of rabbit 15-lipoxygenase induces collapse of the mitochondrial pH gradient in cell culture. Biochemistry. 2004;43:15296–15302.
  • Maccarrone M, Melino G, Finazzi-Agrò A. Lipoxygenases and their involvement in programmed cell death. Cell Death Differ. 2001;8:776–784.
  • Nadel JA, Conrad DJ, Ueki IF, et al. Immunocytochemical localization of arachidonate 15-lipoxygenase in erythrocytes, leukocytes, and airway cells. J Clin Invest. 1991;87:1139–1145.
  • Van Leyen K, Duvoisin RM, Engelhardt H, et al. A function for lipoxygenase in programmed organelle degradation. Nature. 1998;395:392–395.
  • Yokota S, Oda T, Fahimi HD. The role of 15-lipoxygenase in disruption of the peroxisomal membrane and in programmed degradation of peroxisomes in normal rat liver. J Histochem Cytochem. 2001;49:613–622.
  • Kilty I, Logan A, Vickers PJ. Differential characteristics of human 15-lipoxygenase isozymes and a novel splice variant of 15-lipoxygenase. Eur J Biochem. 1999;266:83–93.
  • Feltenmark S, Gautam N, Brunnström A, et al. Eoxins are proinflammatory arachidonic acid metabolites produced via the 15-lipoxygenase-1 pathway in human eosinophils and mast cells. Proc Natl Acad Sci USA. 2008;105:680–685.

• 15-LOX-1 is a target for reducing the biosynthesis of eoxines, one of the known proinflammatory mediators.

  • Jeon SG, Moon HG, Kim YS, et al. 15-Lipoxygenase metabolites play an important role in the development of a T-helper type 1 allergic inflammation induced by double-stranded RNA. Clin Exp Allergy. 2009;39:908–917.
  • Zhao J, O’Donnell VB, Balzar S, et al. 15-Lipoxygenase 1 interacts with phosphatidylethanolamine-binding protein to regulate MAPK signaling in human airway epithelial cells. Proc Natl Acad Sci USA. 2011;108:14246–14251.
  • Spindler SA, Sarkar FH, Sakr WA, et al. Production of 13-hydroxyoctadecadienoic acid (13-HODE) by prostate tumors and cell lines. Biochem Biophys Res Commun. 1997;239:775–781.
  • Kelavkar UP, Cohen C, Kamitani H, et al. Concordant induction of 15-lipoxygenase-1 and mutant p53 expression in human prostate adenocarcinoma: correlation with Gleason staging. Carcinogenesis. 2000;21:1777–1787.
  • Kelavkar U, Lin Y, Landsittel D, et al. The yin and yang of 15-lipoxygenase-1 and delta-desaturases: dietary omega-6 linoleic acid metabolic pathway in prostate. J Carcinog. 2006;5:9.
  • Kelavkar UP, Glasgow W, Olson SJ, et al. Overexpression of 12/15-lipoxygenase, an ortholog of human 15-lipoxygenase-1, in the prostate tumors of TRAMP mice. Neoplasia. 2004;6:821–830.
  • Kelavkar UP, Parwani AV, Shappell SB, et al. Conditional expression of human 15- lipoxygenase-1 in mouse prostate induces prostatic intraepithelial neoplasia: the FLiMP mouse model. Neoplasia. 2006;8:510–522.

• Demonstrates the critical role of the 15-LOX-1 metabolite 13-(S)-hydroxyoctadecadienoic acid (13-HODE) in the progression of prostate cancers and the inhibition of 15-LOX-1 activity for apoptosis induction in PC3 cells.

  • Sen M, McHugh K, Hutzley J, et al. Orthotopic expression of human 15-lipoxygenase (LO)-1 in the dorsolateral prostate of normal wild-type C57BL/6 mouse causes PIN-like lesions. Prostaglandins Other Lipid Mediat. 2006;81:1–13.
  • Kelavkar UP, Nixon JB, Cohen C, et al. Overexpression of 15-lipoxygenase-1 in PC-3 human prostate cancer cells increases tumorigenesis. Carcinogenesis. 2001;22:1765–1773.
  • Kelavkar UP, Harya NS, Hutzley J, et al. DNA methylation paradigm shift: 15- lipoxygenase-1 upregulation in prostatic intraepithelial neoplasia and prostate cancer by atypical promoter hypermethylation. Prostaglandins Other Lipid Mediat. 2007;82:185–197.
  • Das S, Roth CP, Wasson LM, et al. Signal transducer and activator of transcription-6 (STAT6) is a constitutively expressed survival factor in human prostate cancer. Prostate. 2007;67:1550–1564.
  • Belkner J, Stender H, Kühn H. The rabbit 15-lipoxygenase preferentially oxygenates LDL cholesterol esters, and this reaction does not require vitamin E. J Biol Chem. 1998;273:23225–23232.
  • Belkner J, Wiesner R, Rathman J, et al. Oxygenation of lipoproteins by mammalian lipoxygenases. Eur J Biochem. 1993;213:251–261.
  • Heydeck D, Upston JM, Viita H, et al. Oxidation of LDL by rabbit and human 15-lipoxygenase: prevalence of nonenzymatic reactions. J Lipid Res. 2001;42:1082–1088.
  • Benz DJ, Mol M, Ezaki M, et al. Enhanced levels of lipoperoxides in low density lipoprotein incubated with murine fibroblast expressing high levels of human 15-lipoxygenase. J Biol Chem. 1995;270:5191–5197.
  • Huo Y, Zhao L, Hyman MC, et al. Critical role of macrophage 12/15-lipoxygenase for atherosclerosis in apolipoprotein E-deficient mice. Circulation. 2004;110:2024–2031.
  • Hugou I, Blin P, Henri J, et al. 15-Lipoxygenase expression in smooth muscle cells from atherosclerotic rabbit aortas. Atherosclerosis. 1995;113:189–195.
  • Hiltunen T, Luoma J, Nikkari T, et al. Induction of 15-lipoxygenase mRNA and protein in early atherosclerotic lesions. Circulation. 1995;92:3297–3303.
  • Kühn H, Heydeck D, Hugou I, et al. In vivo action of 15-lipoxygenase in early stages of human atherogenesis. J Clin Invest. 1997;99:888–893.
  • Ravalli S, Marboe CC, D’Agati VD, et al. Immunohistochemical demonstration of 15-lipoxygenase in transplant coronary artery disease. Arterioscler Thromb Vasc Biol. 1995;15:340348.
  • Ylä-Herttuala S, Luoma J, Viita H, et al. Transfer of 15-lipoxygenase gene into rabbit iliac arteries results in the appearance of oxidation-specific lipid-protein adducts characteristic of oxidized low density lipoprotein. J Clin Invest. 1995;95:2692–2698.
  • Bocan TM, Rosebury WS, Mueller SB, et al. A specific 15-lipoxygenase inhibitor limits the progression and monocyte-macrophage enrichment of hypercholesterolemia-induced atherosclerosis in the rabbit. Atherosclerosis. 1998;136:203–216.
  • Van Leyen K, Holman TR, Lo EH, et al. Novel lipoxygenase inhibitors as neuroprotective agents. US 2012/0053220 A1.

• Shows the role of oxidative stress in a variety of neurodegenerative diseases, including stroke, Alzheimer’s disease and Parkinson’s disease.

  • Van Leyen K, Kim HY, Lee SR, et al. Biacalein and 12/15- lipoxygenase in the ischemic brain. Stroke. 2006;37:3014–3018.
  • Mytilineous C, Kramer BC, Yabut JA. Glutathion depletion and oxidative stress. Parkinsonism Relat Disord. 2002;8:385–387.
  • Boddupalli S, Leibowitz DN, Miller G. Methods for treating diabetes. US 2006/0106014 A1.
  • Martin G, Barradeau S, Sayah-Jeanne S. Use of 15-lipoxygenase inhibitors for treating obesity. US 8,048,900 B2.

•• Shows positive effect of PD146176 in controlling obesity

  • Nadler JL, Taylor-Fishwick D, Chakrabarti S, et al. Treatment of diabetes and disorders associated with viscerar obesity with inhibitors of human arachidonate 12-lipoxygenase and arachidonate 15-lipoxygenase. WO 2011/088322 A1.
  • Brathe A, Andresen G, Gundersen LL, et al. Antioxidant activity of synthetic cytokinin analogues: 6-alkynyl- and 6-alkenylpurines as novel 15-lipoxygenase inhibitors. Bioorg Med Chem. 2002;10:1581–1586.
  • Da Silva EL, Tsushida T, Terao J. Inhibition of mammalian 15-lipoxygenase-dependent lipid peroxidation in low-density lipoprotein by quercetin and quercetin monoglucosides. Arch Biochem Biophys. 1998;349:313.
  • Lyckander JM, Malterud KE. Lipophilic flavonoids from Ortosiphon spicatus as inhibitors of 15-lipoxygenase. Acta Pharm Nord. 1992;4:159–166.
  • Malterud KE, Rydland KM, Haugli T. Inhibtion of 15-lipoxygenase by phthalate plasticizers. Bull Environ Contam Toxicol. 1999;62:352–355.
  • Brathe A, Gundersen LL, Malterud KE, et al. 6-Substituted purines as inhibitors of 15-lipoxygenase; a structure-activity study. Arch Pharm Chem Life Sci. 2005;338:159−166.
  • Berg TC, Gundersen LL, Eriksen AB, et al. Synthesis of optically active 6-alkynyl- and 6-alkylpurines as cytokinin analogs and inhibitors of 15-lipoxygenase; studies of intramolecular cyclization of 6-(hydroxyalkyn-1-yl)purines. Eur J Org Chem. 2005;2005:4988–4994.
  • Nasir AI, Gundersen LL, Rise F, et al. Inhibition of lipid peroxidation mediated by indolizines. Bioorg Med Chem Lett. 1998;8:1829.
  • Østby OB, Dalhus B, Gundersen LL, et al. Synthesis of 1-substituted 7-cyano-2,3-diphenylindolizines and evaluation of antioxidant properties. Eur J Org Chem. 2000;9:3763.
  • Gundersen LL, Malterud KE, Negussie AH, et al. Indolizines as novel potent inhibitors of 15-lipoxygenase. Bioorg Med Chem. 2003;11:5409–5415.
  • Teklu S, Gundersen LL, Larsen T, et al. Indolizine 1-sulfonates as potent inhibitors of 15-lipoxygenase from soybeans. Bioorg Med Chem. 2005;13:3127–3139.
  • Young TE, Scott PH. Benz[b]indolo[2,3-d] thiopyrylium compounds and processes for their production. US 3,388,133.
  • Petitpierre JC. Production of chromenoindole compounds. US 4,132,714.
  • Bair KW. Benzo[c] carbazole propanediol compound and salts thereof. US 4,797,495.
  • Widdig A, Kühle E, Grewe F, et al. 1-Amino-sulfonyl-2-amino benzimidazoles. US 3,853,908.
  • Actor PP, Pagano JF. 5(6)-N-butyl-2-carbomethoxy-benzimidazole. US 3,682,952.
  • Cornicelli JA, Padia JK, Lane Y, et al. Method for treating and preventing inflammation and atherosclerosis. WO 97/12613.
  • Weinstein DS, Liu W, Gu Z, et al. Tryptamine and homotryptamine-based sulfonamides as potent and selective inhibitors of 15-lipoxygenase. Bioorg Med Chem Lett. 2005;15:1435–1440.
  • Connor DT, Roark WH, Sorenson RJ. Indole and benzimidazole 15- lipoxygenase inhibitors. US 6,858,739 B2.
  • Lin BB, Morita T, Lin YS, et al. A facile synthesis of 1-ethoxy-4-cyano-5-ethoxycarbonyl-3Hazuleno[1,2-c]pyran-3-one, a selective 15-lipoxygenase inhibitor. Bioorg Med Chem Lett. 2004;14:63–65.
  • Lin BB, Lin YS. One-pot synthesis and evaluation for 15-lipoxygenase inhibition of 1-ethoxy-4-cyano-5-ethoxycarbonyl-3H-azuleno[1,2-c]pyran3-imine. J Heterocyclic Chem. 2011;48:205–208.
  • Trivedi B, Roth BD, Padia JK. Benzimidazol derivatives as 15-LOX inhibitors. WO 97/12615.
  • Picard JA, Roark WH, Sliskovic DR. 5,6-Fussed bicyclic heterocycles. WO 01/96336.
  • Weinstein DS, Liu W, Ngu K, et al. Discovery of selective imidazole-based inhibitors of mammalian 15-lipoxygenase: highly potent against human enzyme within a cellular environment. Bioorg Med Chem Lett. 2007;17:5115–5120.
  • Assadieskandar A, Amini M, Salehi M, et al. Synthesis and SAR study of 4,5-diaryl-1H-imidazole-2(3H)-thione derivatives, as potent 15-lipoxygenase inhibitors. Bioorg Med Chem. 2012;20:7160–7166.
  • Bakavoli M, Nikpour M, Rahimizadeh M, et al. Design and synthesis of pyrimido[4,5-b][1,4]benzothiazine derivatives, as potent 15-lipoxygenase inhibitors. Bioorg Med Chem. 2007;15:2120–2126.
  • Nikpour M, Mousavian M, Davoodnejad M, et al. Synthesis of new series of pyrimido[4,5-b][1,4] benzothiazines as 15-lipoxygenase inhibitors and study of their inhibitory mechanism. Med Chem Res. 2013;22:5036–5043.
  • Hallberg A, Schaul W, Larhed M, et al. Pyrazol compounds useful in the treatment of inflammation. WO 2004/080999.
  • Ngu K, Weinstein DS, Liu W, et al. Pyrazole-based sulfonamide and sulfamides as potent inhibitors of mammalian 15-lipoxygenase. Bioorg Med Chem Lett. 2011;21:4141–4145.
  • Rai G, Kenyon V, Jadhav A, et al. Discovery of potent and selective inhibitors of human reticulocyte 15-lipoxygenase-1. J Med Chem. 2010;53:7392–7404.
  • Tehrani MB, Emami S, Asadi M, et al. Imidazo[2,1-b]thiazole derivatives as new inhibitors of 15-lipoxygenase. Euro J Med Chem. 2014;87:759–764.
  • Weinstein DS. Inhibitors of 15-lipoxygenase. US 2005/0065198A1.
  • Rai G, Joshi N, Jung JE, et al. Potent and selective inhibitors of human reticulocyte 12/15- lipoxygenase as anti-stroke therapies. J Med Chem. 2014;57:4035–4048.
  • Pelcman B, Sanin A, Nilsson P, et al. Triazole compounds as lipoxygenase inhibitors. US 2009/0186918 A1.
  • Bolton G, Domagala JM, Elslager EF, et al. Isothiazolones. WO 96/38144.
  • Tiat BD, Dyer RD, Auerbach BJ, et al. Catechol-based inhibitors of 15-lipoxygenase. Bioorg Med Chem Lett. 1996;6:93–96.
  • Simpson J, Forrester R, Tisdale MJ, et al. Effect of catechol derivatives on cell growth and lipoxygenase activity. Bioorg Med Chem Lett. 2003;13:2435–2439.
  • Whitman S, Gezginci M, Timmermann BN, et al. Structure–activity relationship studies of nordihydroguaiaretic acid inhibitors toward soybean, 12-human, and 15-human lipoxygenase. J Med Chem. 2002;45:2659–2661.
  • Malterud KE, Ryland KM. Inhibitors of 15-lipoxygenase from orange peel. J Agric Food Chem. 2000;48:5576–5580.
  • Schewe T, Sadik C, Klotz LO, et al. Polyphenols of cocoa: inhibition of mammalian 15-lipoxygenase. Biol Chem. 2001;382:1687–1696.
  • Wangensteen H, Miron A, Alamgir M, et al. Antioxidant and 15-lipoxygenase inhibitory activity of rotenoids, isoflavones and phenolic glycosides from Sarcolobus globosus. Fitoterapia. 2006;77:290–295.
  • Vasquez-Martinez Y, Ohri RV, Kenyon VA, et al. Structure–activity relationship studies of flavonoids as potent inhibitors of human platelet 12-hLO, reticulocyte 15-hLO-1, and prostate epithelial 15-hLO-2. Bioorg Med Chem. 2007;15:7408–7425.
  • Togola A, Heddind B, Theis A, et al. 15-Lipoxygenase inhibitory effects of prenylated flavonoids from Erythrina senegalensis. Planta Med. 2009;75:1168–1170.
  • Malterud KE, Farbrot TL, Huse AE, et al. Antioxidant and radical scavenging of anthraquinones and anthrones. Pharmacology. 1993;47:77–85.
  • Carroll J, Jonsson EN, Ebel R, et al. Probing sponge-derived terpenoids for human 15-lipoxygenase inhibitors. J Org Chem. 2001;66:6847–6851.
  • Kerr RG, Kerr SS. Marine natural products as therapeutic agents. Exper Opin Ther Pat. 1999;9:1207–1222.
  • Fu X, Schmitz FJ, Govindan M, et al. Enzyme inhibitors: new and known polybrominated phenols and diphenyl ethers from four Indo-Pacific Dysidea sponges. J Nat Prod. 1995;58:1384–1391.
  • Amagata T, Whitman S, Johnson TA, et al. Exploring sponge-derived terpenoids for their potency and selectivity against 12-human, 15-human, and 15-soybean lipoxygenases. J Nat Prod. 2003;66:230–235.
  • Segraves EN, Shah RR, Segraves NL, et al. Probing the activity differences of simple and complex brominated aryl compounds against 15-soybean, 15-human, and 12-human lipoxygenase. J Med Chem. 2004;47:4060–4065.
  • Cichewicz RH, Kenyon VA, Whitman S, et al. Redox inactivation of human 15-lipoxygenase by marine-derived meroditerpenes and synthetic chromanes: archetypes for a unique class of selective and recyclable inhibitors. J Am Chem Soc. 2004;126:14910–14920.
  • Russell W, Scobbie L, Duthie GG, et al. Inhibition of 15-lipoxygenase-catalysed oxygenation of arachidonic acid by substituted benzoic acids. Bioorg Med Chem. 2008;16:4589–4593.
  • Takeda S, Jianj R, Aramaki H, et al. Δ9-tetrahydrocannabinol and its major metabolite Δ9-tetrahydrocannabinol-11-oic acid as 15-lipoxygenase inhibitors. J Pharm Sci. 2011;100:1206–1211.
  • Sadeghian H, Seyedi SM, Saberi MR, et al. Design and synthesis of eugenol derivatives, as potent 15-lipoxygenase inhibitors. Bioorg Med Chem. 2008;16:890–901.
  • Horchani H, Ben Salem N, Sayari ZA, et al. Enzymatic synthesis of eugenol benzoate by immobilized Staphylococcus aureus lipase: optimization using response surface methodology and determination of antioxidant activity. Bioresource Tech. 2010;101:2809–2817.
  • Sadeghian H, Attaran N, Jafari Z, et al. Design and synthesis of 4-methoxyphenylacetic acid esters as 15-lipoxygenase inhibitors and SAR comparative studies of them. Bioorg Med Chem. 2009;17:2327–2335.
  • Sadeghian H, Seyedi SM, Attaran N, et al. Synthesis and SAR comparative studies of 2-allyl-4-methoxy-1-alkoxybenzenes as 15-lipoxygenase inhibitors. J Enzym Inhib Med Chem. 2011;26:238–244.
  • Seyedi SM, Jafari Z, Attaran N, et al. Design, synthesis and SAR studies of 4-allyoxyaniline amides as potent 15-lipoxygensae inhibitors. Bioorg Med Chem. 2009;17:1614–1622.
  • Jabbari A, Davoodnejad M, Alimardani M, et al. Synthesis and SAR studies of novel 3-allyl-4-prenyloxyanilline amides as potent 15-lipoxygenase inhibitors. Bioorg Med Chem. 2012;20:5518–5526.
  • Yang LX, Huang KX, Li HB, et al. Design, synthesis, and examination of neuron protective properties of alkenylated and amidated dehydro-silybin derivatives. J Med Chem. 2009;52:7732–7752.
  • Iranshahi M, Jabbari A, Orafaie A, et al. Synthesis and SAR studies of mono O-prenylated coumarins as potent 15-lipoxygenase inhibitors. Euro J Med Chem. 2012;57:134–142.
  • Hampson AJ, Axelrod J, Grimaldi M. Cannabinoids as antioxidant and neuroprotectants. US 6,630,507 B1.
  • Blecha JE, Anderson MO, Chow JM, et al. Inhibition of IGF-IR and lipoxygenase by nordihydroguaretic acid (NDGA) analogs. Bioorg Med Chem Lett. 2007;17:4026–4029.
  • Takeda S, Usami N, Yamamoto I, et al. Cannabidiol-2ʹ,6ʹ-dimethyl ether, a cannabidiol derivative, is a highly potent and selective 15-lipoxygenase inhibitors. Drug Metab Dispos. 2009;37:1733–1737.

•• Shows the selectivity of CBDD (dimethyl cannabidiol) in comparison with CBD (cannabidiol) for 15-LOX-1 inhibition.

  • Borel C, Wetti DH, Fernandez I, et al. An antimicrobial and 15-lipoxygenase inhibitor from the moss Dicranum scoparium. J Nat Prod. 1993;56:1071–1073.
  • Jacquot C, McGinley CM, Plata E, et al. Synthesis of 11-thialinoleic acid and 14-thialinoleic acid, inhibitors of soybean and human lipoxygenase. Org Biomol Chem. 2008;6:4242–4252.
  • Connor DT, Roark WH, Sorenson RJ. Thiourea and benzamide compounds, compositions and methods of treating or preventing inflammatory diseases and atherosclerosis. WO 99/32433.
  • Barvian NC, Oʼbrian PM, Patt WC, et al. 1,2,4-trisubstituted benzene as inhibitors of 15-lipoxygenase. WO 01/96298A2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.