102
Views
47
CrossRef citations to date
0
Altmetric
Miscellaneous

Antimicrobial peptides: therapeutic potential for the treatment of Candida infections

, , , , &
Pages 309-318 | Published online: 24 Feb 2005

Bibliography

  • BERROUANE YF, HERWALDT LA, PFALLER MA: Trends in antifungal use and epidemiology of nosocomial yeast infections in a university hospital. ..J. Clin. Microbial. (1999) 37(3):531–537.
  • PFALLER MA, JONES RN, DOERN GV, SADER HS, HOLLIS RJ, MESSER SA: International surveillance of bloodstream infections due to Candida species: frequency of occurrence and antifungal susceptibilities of isolates collected in 1997 in the United States, Canada, and South America for the SENTRY Program. The SENTRY Participant Group. I Clin. Microbial (1998) 36(7):1886–1889.
  • ST-GERMAIN G, LAVERDIERE M, PELLETIER R etal.: Prevalence and antifungal susceptibility of 442 Candida isolates from blood and other normally sterile sites: results of a 2-year (1996 to 1998) multicenter surveillance study in Quebec, Canada. j. Clin. Microbial (2001) 39(3)949–953.
  • HUNTER KD, GIBSON J, LOCKHART P, PITHIE A, BAGG J: Fluconazole-resistant Candida species in the oral flora of fluconazole-exposed HIV-positive patients. Oral Surg. Oral Med. Oral Raffia. Oral Radial Ended. (1998) 85(5):558–564.
  • CARTLEDGE JD, MID GLEY J, GAZZARD BG: Non-albicaris oral candidosis in HIV-positive patients. Aritimicrob. Chemother (1999) 43(3):419–422.
  • ••
  • MARR KA, SEIDEL K, WHITE TC, BOWDEN RA: Candidemia in allogeneic blood and marrow transplant recipients: evolution of risk factors after the adoption of prophylactic fluconazole. J. Infect. Dis. (2000) 181(1):309–316.
  • SALONEN JH, RICHARDSON MD, GALLACHER K et al.: Fungal colonization of haematological patients receiving cytotoxic chemotherapy: emergence of azole-resistant Saccharomyces cerevisiae. I Hosp. Infect. (2000) 45(4):293–301.
  • LOFFLER J, EINSELE H, HEBART H, SCHUMACHER U, HRASTNIK C, DAUM G: Phospholipid and sterol analyses of plasma membranes of azole-resistant Candida albicans strains. FEMS Nlicrobial. Lett. (2000) 185(1):59–63.
  • MARR KA, LYONS CN, RUSTAD TR, BOWDEN RA, WHITE TC, RUSTAD T: Rapid, transient fluconazole resistance in Candida albicans is associated with increased mRNA levels of CDR. Antimicrob. Agents Chemother. (1998) 42(10):2584–2589.
  • LOPEZ-RIBOT JL, MCATEE RK, LEE LN et al: Distinct patterns of gene expression associated with development of fluconazole resistance in serial Candida albicans isolates from human immunodeficiency virus-infected patients with oropharyngeal candidiasis. Antimicrob. Agents Chemother. (1998) 42(11):2932–2937.
  • LYONS CN, WHITE TC: Transcriptional analyses of antifungal drug resistance in Candida albicans. Antimicrob. Agents Chemother. (2000) 44(9):2296–2303.
  • MARR KA, LYONS CN, HA K, RUSTAD TR, WHITE TC: Inducible azole resistance associated with a heterogeneous phenotype in Candida albicans. Antimicrob. Agents Chemother. (2001) 45(1):52–59.
  • •Development of azole resistance involves selection of a resistant clone from a heterogenous population of Candida.
  • HENRY KW, NICKELS JT, EDLIND TD: Upregulation of ERG genes in Candida species by azoles and other sterol biosynthesis inhibitors. Antimicrob. Agents Chemother. (2000) 44(10):2693–2700.
  • LAMB DC, KELLY DE, SCHUNCK WH et al: The mutation T315A in Candida albicans sterol 14a-demethylase causes reduced enzyme activity and fluconazole resistance through reduced affinity. I Biol. Chem. (1997) 272(9):5682–5688.
  • SANGLARD D, ISCHERF, KOYMANS L, BILLE J: Amino acid substitutions in the cytochrome P450 lanosterol 14a-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents. Antimicrob. Agents Chemother. (1998) 42(2):241–253.
  • KELLY SL, LAMB DC, KELLY DE: Y132H substitution in Candida albicans sterol 14a-demethylase confers fluconazole resistance by preventing binding to haem. FEMS Microbial Lett. (1999) 180(2):171–175.
  • KELLY SL, LAMB DC, LOEFFLER J, EINSELE H, KELLY DE: The G4645 amino acid substitution in Candida albicans sterol 14a-demethylase causes fluconazole resistance in the clinic through reduced affinity. Biochem. Biophys. Res. Commun. (1999) 262(1):174–179.
  • LAMB DC, KELLY DE, WHITE TC, KELLY SL: The R467K amino acid substitution in Candida albicans sterol 14a-demethylase causes drug resistance through reduced affinity. Antimicrob. Agents Chemother. (2000) 44(1):63–67.
  • KELLY SL, LAMB DC, KELLY DE etal.: Resistance to fluconazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol 45,6-desaturation. FEBS Lett. (1997) 400(1):80–82.
  • COWEN LE, SANGLARD D, CALABRESE D, SIRJUSINGH C, ANDERSON JB, KOHN LM: Evolution of drug resistance in experimental populations of Candida albicans. j Bacterial (2000) 182(6):1515–1522.
  • FASOLI MO, KERRIDGE D, MORRIS PG, TOROSANTUCCI A: I-9F nuclear magnetic resonance study of fluoropyrimidine metabolism in strains of Candida glabrata with specific defects in pyrimidine metabolism. Antimicrob. Agents Chemother. (1990) 34(10):1996–2006.
  • YANG D, CHERTOV 0, BYKOVSKAIA SN et al.: 13-Defensins: linking innate and adaptive immunity through dendritic and T-cell CCR6. Science (1999) 286(5439):525–528.
  • ••It highlights an important role of cationicpeptides in innate defence system as well as in linking it with the acquired defensive system.
  • O'NEIL DA, PORTER EM, ELEWAUT D et al: Expression and regulation of the human 13-defensins hBD-1 and hBD-2 in intestinal epithelium. j Immune]. (1999) 163(12):6718–6724.
  • ZHANG G, GHOSH S: Toll-like receptor-mediated NF-kB activation: a phylogenetically conserved paradigm in innate immunity. I Clin. Invest. (2001) 107(1):13–19.
  • ••An interesting review on TLRs and NF-kBactivation as key regulators of innate and acquired immune responses.
  • NIBBERING PH, RAVENSBERGEN E, WELLING MM et al.: Human lactoferrin and peptides derived from its N terminus are highly effective against infections with antibiotic-resistant bacteria. Infect. Immun. (2001) 69(3):1469–1476.
  • KOSHLUKOVA SE, LLOYD TL, ARAUJO MWB, EDGERTON M: Salivary histatin 5 induces non-lytic release of ATP from Candida albicans leading to cell death. I Biol. Chem. (1999) 274(27):18872–18879.
  • HELMERHORST EJ, BREEUWER P, VAN 'T HOF W et al: The cellular target of histatin 5 on Candida albicans is the energized mitochondrion. I Biol. Chem. (1999) 274(11):7286–7291.
  • LUPETTI A, PAULUSMA-ANNEMA A, WELLING MM, SENESI S, VAN DISSEL JT, NIBBERING PH: Candidacidal activities of human lactoferrin peptides derived from the N terminus. Antimicrob. Agents Chemother. (2000) 44(12):3257–3263.
  • WU M, MATER E, BENZ R, HANCOCK REW: Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry (1999) 38(22):7235–7242.
  • EDGERTON M, KOSHLUKOVA SE, LO TE, CHRZAN BG, STRAUBINGER RM, RAJ PA: Candidacidal activity of salivary histatins. Identification of a histatin 5-binding protein on Candida albicans. I Biol. Chem. (1998) 273(32):20438–20447.
  • GYURKO C, LENDENMANN U, TROXLER RF, OPPENHEIM FG: Candida albicans mutants deficient in respiration are resistant to the small cationic salivary antimicrobial peptide histatin 5. Antimicrob. Agents Chemother. (2000) 44(2):348–354.
  • KOSHLUKOVA SE, ARAUJO MWB, BAEV D, EDGERTON M: Released ATP is an extracellular cytotoxic mediator in salivary histatin 5-induced killing of Candida albicans. Infect. Immun (2000) 68(12):6848–6856.
  • EDGERTON M, KOSHLUKOVA SE, ARAUJO MWB, PATEL RC, DONG J, BRUENN JA: Salivary histatin 5 and human neutrophil defensin 1 kill Candida albicans via shared pathways. Antimicrob. Agents Chemother. (2000) 44(12):3310–3316.
  • LUPETTI A, PAULUSMA-ANNEMA A, SENESI S, CAMPA M, VAN DISSEL JT, NIBBERING PH: Internal thiols and reactive oxygen species in the candidacidal activity exerted by a N-terminal peptide of human lactoferrin. Antimicrob. Agents Chemother. (2002) in press.
  • PESCHEL A, JACK RW, OTTO M et al.: Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with L-lysine. J. Exp. Med. (2001) 193(9):1067–1076.
  • •Resistance of Staphylococcus aureus to antimicrobial peptides via the intermediacy of a new virulence factor MprF involving L-lysinylation of membrane lipids.
  • GUO L, LIM KB, PODUJE CM et al.: Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell (1998) 95(2):189–198.
  • GUINA T, YI EC, WANG H, HACKETT M, MILLER SI: A PhoP-regulated outer membrane protease of Salmonella enterica serovar Typhimurium promotes resistance to alpha-helical antimicrobial peptides. j. Bacterial. (2000) 182(14):4077–4086.
  • ERNST RK, YI EC, GUO L et al.: Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aerugitiosa. Science (1999) 286(5444):1561–1565.
  • SHAFER WM, QU X-D, WARING AJ, LEHRER RI: Modulation of Neisseria gotiorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. Proc. Nati Acad. Li. USA (1998) 95(4):1829–1833.
  • LEHRER RI, GANZ T: Antimicrobial peptides in mammalian and insect host defence. Cun: Opin Immunol.(1999) 11(1):23–27.
  • AGERBERTH B, CHARO J, WERR J et al.: The human antimicrobial and chemotactic peptides LL-37 and a-defensins are expressed by specific lymphocyte and monocyte populations. Blood (2000) 96(9):3086–3093.
  • •Antibacterial peptides from IL-2-activated human T-lymphocytes and NK cells display antibacterial activities as well as chemotactic activities towards neutrophils and CD4 T-lymphocytes.
  • HARDER J, BARTELS J, CHRISTOPHERS E, SCHRODER J-M: A peptide antibiotic from human skin. Nature (1997) 387(6636):861.
  • HARDER J, BARTELS J, CHRISTOPHERS E, SCHRODER JM: Isolation and characterization of human 0- defensin-3, a novel human inducible peptide antibiotic. j. Biol. Chem. (2001) 276(8):5707–5713.
  • JIA HE SCHUTTE BC, SCHUDY A et al.:Discovery of new human p-defensins using a genomics-based approach. Gene (2001) 263(1-2):211–218.
  • RAJ PA, ANTONYRAJ KJ, KARUNAKARAN T: Large-scale synthesis and functional elements for the antimicrobial activity of defensins. Biochem. 1 (2000) 347\(Pt3):633–641.
  • NEWMAN SL, GOOTEE L, GABAY JE, SELSTED ME: Identification of constituents of human neutrophil azurophil granules that mediate fungistasis against Histoplasma capsulatum. Infect. Immun. (2000) 68(10):5668–5672.
  • WELLING MM, HIEMSTRA PS, VAN DEN BARSELAAR MT et al.: Antibacterial activity of human neutrophil defensins in experimental infections in mice is accompanied by increased leukocyte accumulation.j Clin. Invest. (1998) 102(8):1583–1590.
  • ZHANG H, PORRO G, ORZECH N, MULLEN B, LIU M, SLUTSKY AS: Neutrophil defensins mediate acute inflammatory response and lung dysfunction in dose-related fashion. Am. I Physiol. Lung Cell Mai Physiol. (2001) 280(5)1947–L954.
  • NIYONSABA E SOMEYA A, HIRATA M, OGAWA H, NAGAOKA I: Evaluation of the effects of peptide antibiotics human beta-defensins-1/-2 and LL-37 on histamine release and prostaglandin D (2) production from mast cells. Eur.j. Immunol. (2001) 31(4):1066–1075.
  • YANG D, CHEN Q, CHERTOV 0, OPPENHEIM JJ: Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. j Leukoc. Biol. (2000) 68(1):9–14.
  • •A Glialphal protein-coupled receptor is involved in the chemotactic activity of neutrophil defensins for CD4+/CD45RA+ naive and CD8+ T-cells and immature dendritic cells.
  • CHO Y, TURNER JS, DINH NN, LEHRER RI: Activity of protegrins against yeast-phase Candida albicans. Infect. Immun. (1998) 66(6):2486–2493.
  • HARWIG SS, WARING A, YANG HJ, CHO Y, TAN L, LEHRER RI: Intramolecular disulfide bonds enhance the antimicrobial and lytic activities of protegrins at physiological sodium chloride concentrations. Eur.j. Biochem. (1996) 240(2)352–357.
  • PERINPANAYAGAM HER, VAN WUYCKHUYSE BC, JI ZS, TABAK LA: Characterization of low-molecular-weight peptides in human parotid saliva. j. Dent. Res. (1995) 74(1):345–350.
  • UETA E, TANIDA T, DOI S, OSAKI T: Regulation of Candida albicans growth and adhesion by saliva. I Lab. CM]. Med. (2000) 136(1):66–73.
  • ABRAHAM CM, AL-HASHIMI I, HAGHIGHAT N: Evaluation of the levels of oral Candida in patients with Sjogren's syndrome. Ora] Surg. Ora] Med. OjlPathol. Oral Radiol. Endod. (1998) 86(1):65–68.
  • MANDEL ID, BARR CE, TURGEON L: Longitudinal study of parotid saliva in HIV-1 infection. ..J. Ora] Pathol. Med. (1992) 21(5):209–213.
  • HELMERHORST EJ, REIJNDERS IM, VAN 'T HOF W, SIMOONS-SMIT I, VEERMAN ECI, NIEUW AMERONGEN AV: Amphotericin B- and fluconazole-resistant Candidaspp., Aspergillus fumigatus and other newly emerging pathogenic fungi are susceptible to basic antifungal peptides. Antimicrob. Agents Chemother. (1999) 43(3)702–704.
  • XU Y, AMBUDKAR I, YAMAGISHI H, SWAIM W, WALSH TJ, O'CONNELL BC: Histatin 3-mediated killing of Candida albicans: effect of extracellular salt concentration on binding and internalization. Antimicrob. Agents Chemother. (1999) 43(9):2256–2262.
  • NIKAWA H, JIN C, FUKUSHIMA H, MAKIHIRA S, HAMADA T: Antifungal activity of histatin-5 against non- albicans Candida species. Oral Microbial. Immunol. (2001) 16(4):250–252.
  • RAJ PA, EDGERTON M, LEVINE MJ: Salivary histatin 5: dependence of sequence, chain length and helical conformation for candidacidal activity. j. Biol. Chem. (1990) 265(7):3898–3905.
  • RAE TD, SCHMIDT PJ, PUFAHL RA, CULOTTA VC, O'HALLORAN TV: Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science (1999) 284(5415)805–808.
  • GUSMAN H, TRAVIS J, HELMERHORST EJ, POTEMPA J, TROXLER RF, OPPENHEIM FG: Salivary histatin 5 is an inhibitor of both host and bacterial enzymes implicated in periodontal disease. Infect. Immun (2001) 69(3):1402–1408.
  • VAN DER STRATE BW, HARMSEN MC, THE TH et al.: Plasma lactoferrin levels are decreased in end-stage AIDS patients. Viral Immurrol. (1999) 12(3):197–203.
  • DERIY LV, CHOR J, THOMAS LL: Surface expression of lactoferrin by resting neutrophils. Biochem. Biophys. Res. Commun. (2000) 275(1):241–246.
  • VAN BERKEL PH, GEERTS ME, VAN VEEN HA, MERICSKAY M, DE BOER HA, NUIJENS JH: N-terminal stretch Arg2, Arg3, Arg4 and Arg5 of human lactoferrin is essential for binding to heparin, bacterial lipopolysaccharide, human lysozyme and DNA. Biochem. J (1997) 328(Pt 1):145–151.
  • MINCHEVA-NILSSON L, HAMMARSTROM S, HAMMARSTROM ML: Activated human 78 T-lymphocytes express functional lactoferrin receptors. Scam/. J. Immurrol (1997) 46(6):609–618.
  • FILLEBEEN C, DESCAMPS L, DEHOUCK MP et at: Receptor-mediated transcytosis of lactoferrin through the blood-brain barrier. j Biol. Chem. (1999) 274(11):7011–7017.
  • Y00 Y-C, WATANABE R, KOIKE Y et al:Apoptosis in human leukemic cells induced by lactoferricin, a bovine milk protein-derived peptide: involvement of reactive oxygen species. Biochem. Biophys. Res. Commun. (1997) 237(3):624–628.
  • ZHANG GH, MANN DM, TSAI CM: Neutralization of endotoxin in vitro and in vivo by a human lactoferrin-derived peptide. Infect. Immurr. (1999) 67(3):1353–1358.
  • BAVEYE S, ELASS E, FERNIG DG, BLANQUART C, MAZURIER J, LEGRAND D: Human lactoferrin interacts with soluble CD14 and inhibits expression of endothelial adhesion molecules, E-selectin and ICAM-1, induced by the CD14-lipopolysaccharide complex. Infect. Immun. (2000) 68(12):6519–6525.
  • •Anti-inflammatory effects of human lactoferrin by modifying the activation of endothelial cells.
  • CUMBERBATCH M, DEARMAN RJ, URIBE-LUNA S et al: Regulation of epidermal Langerhans cell migration by lactoferrin. Immunology (2000) 100(1):21–28.
  • •Lactoferrin, may be through impairment of local cytokine production, inhibits Lagerhans cell migration.
  • BRITIGAN BE, LEWIS TS, WALDSCHMIDT M, MCCORMICK ML, KRIEG AM: Lactoferrin binds CpG-containing oligonucleotides and inhibits their immunostimulatory effects on human B cells. j Immurrol (2001) 167(5):2921–2928.
  • UETA E, TANIDA T, OSAKI T: A novel bovine lactoferrin peptide, FKCRRWQWRM, suppresses Candida cell growth and activates neutrophils. j Pepi Res. (2001) 57(3):240–249.
  • TANIDA T, RAO F, HAMADA T, UETA E, OSAKI T: Lactoferrin peptide increases the survival of Candida alb/carts-inoculated mice by upregulating neutrophil and macrophage functions, especially in combination with amphotericin B and granulocyte-macrophage colony-stimulating factor. Infect. Immurr. (2001) 69(6):3883–3890.
  • •This paper demonstrates direct and indirect killing activities of a synthetic lactoferrin peptide in Candida a/bicans-infected mice. The indirect killing function involves the production of reactive oxygen and nitrogen intermediates by phagocytes upon stimulation by the lactoferrin peptide.
  • SINGH PK, TACK BF, MCCRAY PB JR, WELSH MJ: Synergistic and additive killing by antimicrobial factors found in human airway surface liquid. Am. I Physiol Lung Cell. Mal Physiol (2000) 279(5)1799–L805.
  • •The antibacterial activity of airway surface liquid may be increased by synergistic and additive interactions between antimicrobial peptides. These synergistic effects are lost in increased salt concentrations.
  • MASCI JR: Complete response to severe, refractory oral candidiasis to mouthwash containing lactoferrin and lysozyme. AIDS (2000) 14(15):2403–2404.
  • WAKABAYASHI H, ABE S, TERAGUCHI S, HAYASAWA H, YAMAGUCHI H: Inhibition of hyphal growth of azole-resistant strains of Candida albicaris by triazole antifungal agents in the presence of lactoferrin-related compounds. Az/Um/crab. Agents Chemother. (1998) 42(7):1587–1591.
  • ZIMECKI M, WLASZCZYK A, CHENEAU P et al.: Immunoregulatory effects of a nutritional preparation containing bovine lactoferrin taken orally by healthy individuals. Arch. Immurrol Ther. Exp. (1998) 46(4):231–240.
  • VAN 'T HOF W, REIJNDERS IM, HELMERHORST EJ et al.: Synergistic effects of low doses of histatin 5 and its analogues on amphotericin B antimycotic activity. Antorrie Van Leeuwerrhoek (2000) 78(2):163–169.
  • WELLING MM, LUPETTI A, BALTER HS etal.: 99'Tc-labeled antimicrobial peptides for detection of bacterial and Candida albicans infections. j Nucl. Med. (2001) 42(5):788–794.
  • GOLDMAN MJ, ANDERSON GM, STOLZENBERG ED, KARI UP, ZASLOFF M, WILSON JM: Human 13-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell (1997) 88(4):553–560.
  • BALS R, WANG X, WU Z et al: Human J3-defensin-2 is a salt-sensitive peptide antibiotic expressed in human lung. j Clirr. Invest. (1998) 102(5):874–880.
  • YU Q, LEHRER RI, TAM JP: Engineered salt-insensitive alpha-defensins with end-to-end circularized structures. _J. Biol. Chem. (2000) 275(6):3943–3949.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.