75
Views
13
CrossRef citations to date
0
Altmetric
Miscellaneous

HIV-1 regulatory proteins: targets for novel drug development

Pages 1099-1115 | Published online: 24 Feb 2005

Bibliography

  • ZHU Y, PE'ERY T, PENG J et al.: Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro. Genes Dev. (1997) 11(20):2622–2632.
  • ZHOU Q, CHEN D, PIERSTORFF E, LUO K: Transcription elongation factor P-TEFb mediates Tat activation of HIV-1 transcription at multiple stages. Embof (1998) 17(13):3681–3691.
  • BIENIASZ PD, GRDINA TA, BOGERD HP, CULLEN BR Recruitment of cyclin Tl/P-TEFb to an HIV Type 1 long terminal repeat promoter proximal RNA target is both necessary and sufficient for full activation of transcription. Proc. Natl. Acad. Sd. USA (1999) 96(14):7791–7796.
  • •Thorough description of Tat/P-TEFb mediated LTR transactivation.
  • GARCIA-MARTINEZ LF, MAVANKAL G, NEVEU JM, LANE WS, IVANOV D, GAYNOR RB: Purification of a Tat-associated kinase reveals a TFIIH complex that modulates HIV-1 transcription. Embo (1997) 16(10):2836–2850.
  • WEISSMAN JD, HWANG JR, SINGER DS: Extensive interactions between HIV TAT and TAF(II)250. Biochim. Biophys. Acta (2001) 1546(1):156–163.
  • ZHOU M, KASHANCHI F, JIANG H, GE H, BRADY JN: Phosphorylation of the RAP74 subunit of TFIIF correlates with Tat-activated transcription of the HIV-1 long terminal repeat. Virology (2000) 268(2):452–460.
  • MARSHALL NE DAHMUS GK, DAHMUS ME: Regulation of carboxyl-terminal domain phosphatase by HIV-1 tat protein. Biol. Chem. (1998) 273(48):31726–31730.
  • IVANOV D, KWAK YT, NEE E, GUO J, GARCIA-MARTINEZ LF, GAYNOR RB: Cyclin Ti domains involved in complex formation with Tat and TAR RNA are critical for tat-activation. J. Ma Biol. (1999) 288(1):41–56.
  • HOLLOWAY AF, OCCHIODORO F, MITTLER G, MEISTERERNST M, SHANNON MF: Functional interaction between the HIV transactivator Tat and the transcriptional coactivator PC4 in T cells. J. Biol. Chem. (2000) 275(28):21668–21677.
  • LIU Y, LI J, KIM BO, PACE BS, HE JJ: HIV-1 Tat protein-mediated transactivation of the HIV-1 LTR promoter is potentiated by a novel nuclear Tat-interacting protein of 110 kDa, Tip110. J. Biol. Chem. (2002). 277(26):23854–23863.
  • ISHIZUKA T, SATOH T, MONDEN T et al.: Human immunodeficiency virus Type 1 Tat binding protein-1 is a transcriptional coactivator specific for TR. Mol. Endocrinol. (2001) 15(8):1329–1343.
  • PENDERGRAST PS, WANG C, HERNANDEZ N, HUANG S: FBI-1 Can Stimulate HIV-1 Tat Activity and Is Targeted to a Novel Subnuclear Domain that Includes the Tat-P-TEFb-containing Nuclear Speckles. MM. Biol. Cell. (2002) 13(3):915–929.
  • KINO T, SLOBODSKAYA 0, PAVLAKIS GN, CHROUSOS GP: Nuclear receptor coactivator p160 proteins enhance the HIV-1 long terminal repeat promoter by bridging promoter-bound factors and the Tat-P-TEFb complex. Biol. Chem. (2002) 277(4):2396–2405.
  • BROWNING CM, SMITH MJ, CLARK NM et al.: Human GLI-2 is a tat activation response element-independentTat cofactor. Virol. (2001) 75(5):2314–2323.
  • KIM JB, YAMAGUCHI Y, WADA T, HANDA H, SHARP PA: Tat-SF1 protein associates with RAP30 and human SPT5 proteins. MM. Cell. Biol. (1999) 19(9):5960–5968.
  • BOURGEOIS CE KIM YK, CHURCHER MJ, WEST MJ, KARN J: Spt5 cooperates with human immunodeficiency virus Type 1 Tat by preventing premature RNA release at terminator sequences. Mol. Cell. Biol. (2002) 22(4):1079–1093.
  • ANSARI SA, SAFAK M, GALLIA GL, SAWAYA BE, AMINI S, KHALILI K: Interaction of YB-1 with human immunodeficiency virus Type 1 Tat and TAR RNA modulates viral promoter activity.j Gen. Virol. (1999) 80\(Pt 10):2629–2638.
  • CHIU YL, CORONEL E, HO CK, SHUMAN S, RANA TM: HIV-1 Tat protein interacts with mammalian capping enzyme and stimulates capping of TAR RNA. J. Biol. Chem. (2001) 276(16):12959–12966.
  • OTT M, SCHNOLZER M, GARNICA J et al.: Acetylation of the HIV-1 Tat protein by p300 is important for its transcriptional activity. Carr. Biol. (1999) 9(24):1489–1492.
  • MUJTABA S, HE Y, ZENG Let al.: Structural Basis of Lysine-Acetylated HIV-1 Tat Recognition by PCAF Bromodomain. MM. Cell (2002) 9(3):575–586.
  • COL E, CARON C, SEIGNEURIN-BERNY D, GRACIA J, FAVIER A, KHOCHBIN S: The histone acetyltransferase, hGCN5, interacts with and acetylates the HIV transactivator, Tat. Biol. Chem. (2001) 276(30):28179–28184.
  • KIERNAN RE, VANHULLE C, SCHILTZ L et al.: HIV-1 Tat transcriptional activity is regulated by acetylation. EMBO J. (1999) 18(21):6106–6118.
  • •Demonstrates importance of acetylation for Tat transactivation.
  • HE G, MARGOLIS DM: Counterregulation of chromatin deacetylation and histone deacetylase occupancy at the integrated promoter of human immunodeficiency virus Type 1 (HIV-1) by the HIV-1 repressor YY1 and HIV-1 activator Tat. Mol. Cell. Biol. (2002) 22(9):2965–2973.
  • CREAVEN M, HANS F, MUTSKOV V et al.: Control of the histone-acetyltransferase activity of Tip60 by the HIV-1 transactivator protein, Tat. Biochemistry (1999) 38(27):8826–8830.
  • FURIA B, DENG L, WU K et al: Enhancement of nuclear factor-kappa B acetylation by coactivator p300 and HIV-1 Tat proteins. J. Biol. Chem. (2002) 277(7)4973–4980.
  • DEMARCHI F, GUTIERREZ MI, GIACCA M: Human immunodeficiency virus Type 1 tat protein activates transcription factor NF-kappaB through the cellular interferon-inducible, double-stranded RNA-dependent protein kinase, PKR. Virol. (1999) 73(8):7080–7086.
  • YANG Y, DONG B, MITTELSTADT PR, XIAO H, ASHWELL JD: HIV Tat binds Egr proteins and enhances Egr-dependent transactivation of the Fas ligand promoter. J. Biol. Chem. (2002) 277(22):19482–19487.
  • BARTZ SR, EMERMAN M: Human immunodeficiency virus Type 1 Tat induces apoptosis and increases sensitivity to apoptotic signals by up-regulating FLICE/ caspase-8.Virol. (1999) 73(3):1956–1963.
  • SEVE M, FAVIER A, OSMAN M et al.: The human immunodeficiency virus-1 Tat protein increases cell proliferation, alters sensitivity to zinc chelator-induced apoptosis, and changes Spl DNA binding in HeLa cells. Arch. Biochem. Biophys. (1999) 361(2):165–172.
  • GALLIA GL, DARBINIAN N, TRETIAKOVA A et al.: Association of HIV-1 Tat with the cellular protein, Puralpha, is mediated by RNA. Proc. Natl. Acad. Sci. USA (1999) 96(20): H572–11577.
  • WORTMAN MJ, KRACHMAROV CP, KIM JH et al.: Interaction of HIV-1 Tat with Puralpha in nuclei of human glial cells: characterization of RNA-mediated protein-protein binding. J. Cell. Biochem. (2000) 77(1):65–74.
  • DARBINIAN N, SAWAYA BE, KHALILI K et al.: Functional interaction between cyclin T 1 /cdk9 and Puralpha determines the level of TNFalpha promoter activation by Tat in glial cells. J. Neuraimmuna (2001) 121(1-2):3–11.
  • BENNASSER Y, BAHRAOUI E: HIV-1 Tat protein induces interleukin-10 in human peripheral blood monocytes: involvement of protein kinase C-betaII and -delta. Easel (2002) 16(6):546–554.
  • GONZALEZ E, PUNZON C, GONZALEZ M, FRESNO M: HIV-1 Tat inhibits IL-2 gene transcription through qualitative and quantitative alterations of the cooperative Rel/AP1 complex bound to the CD28RE/AP1 composite element of the IL-2 promoter. Immunol (2001) 166(7):4560–4569.
  • EHRET A, LI-WEBER M, FRANK R, KRAMMER PH: The effect of HIV-1 regulatory proteins on cellular genes: derepression of the IL-2 promoter by Tat. Eur.j Immunol (2001) 31(6):1790–1799.
  • MACIAN F, RAO A: Reciprocal modulatory interaction between human immunodeficiency virus Type 1 Tat and transcription factor NFAT1. MM. Cell. Biol. (1999) 19(5):3645–3653.
  • TRUANT R, CULLEN BR The arginine-rich domains present in human immunodeficiency virus Type 1 Tat and Rev function as direct importin beta-dependent nuclear localization signals. Ma Cell. Biol. (1999) 19(2):1210–1217.
  • ZHANG M, LI X, PANG X et al.: Bc1-2 Upregulation by HIV-1 Tat during Infection of Primary Human Macrophages in Culture.j Biomed. Sci. (2002) 9(2):133–139.
  • MAHIEUX R, LAMBERT PF, AGBOTTAH E et al: Cell cycle regulation of human interleukin-8 gene expression by the human immunodeficiency virus Type 1 Tat protein. Virol (2001) 75(4):1736–1743.
  • HARRICH D, ULICH C, GARCIA-MARTINEZ LF, GAYNOR RB: Tat is required for efficient HIV-1 reverse transcription. Embo J. (1997) 16(6):1224–1235.
  • •Describes novel function of Tat in regulating reverse transcription in PBMCs.
  • KAMEOKA M, MORGAN M, BINETTE M et al.: The Tat protein of human immunodeficiency virus Type 1 (HIV-1) can promote placement of tRNA primer onto viral RNA and suppress later DNA polymerization in HIV-1 reverse transcription. Virol (2002) 76(8):3637–3645.
  • KAMEOKA M, RONG L, GOTTE M, LIANG C, RUSSELL RS, WAINBERG MA: Role for human immunodeficiency virus Type 1 Tat protein in suppression of viral reverse transcriptase activity during late stages of viral replication.' Virol (2001) 75(6):2675–2683.
  • HARRICH D, ULICH C, GAYNOR RB: A critical role for the TAR element in promoting efficient human immunodeficiency virus Type 1 reverse transcription.Virol (1996) 70(6):40i7-4027.
  • •Demonstrates importance of Tat at late stages of reverse transcription.
  • ALBINI A, FERRINI S, BENELLI R et al.: HIV-1 Tat protein mimicry of chemokines. Proc. Natl. Acad. Sci. USA (1998) 95(22):13153–13158.
  • XIAO H, NEUVEUT C, TIFFANY HL et al.: Selective CXCR4 antagonism by Tat: implications for in vivo expansion of coreceptor use by HIV-1. Proc. Natl. Acad. Sci. USA (2000) 97(21):11466–11471.
  • SECCHIERO P, ZELLA D, CAPITANI S, GALLO RC, ZAULI G: Extracellular HIV-1 tat protein up-regulates the expression of surface CXC-chemokine receptor 4 in resting CD4+ T cells. J. Immunol. (1999) 162(4):2427–2431.
  • MITOLA S, SOZZANI S, LUINI Wet al.: Tat-human immunodeficiency virus-1 induces human monocyte chemotaxis by activation of vascular endothelial growth factor receptor-1. Blood (1997) 90(4):1365–1372.
  • MITOLA S, SOLDI R, ZANON I et al: Identification of specific molecular structures of human immunodeficiency virus Type 1 Tat relevant for its biological effects on vascular endothelial cells. I Virol (2000) 74(1):344–353.
  • BARILLARI G, SGADARI C, FIORELLI V et al.: The Tat protein of human immunodeficiency virus type-1 promotes vascular cell growth and locomotion by engaging the alpha5betal and alphavbeta3 integrins and by mobilizing sequestered basic fibroblast growth factor. Blood (1999) 94(2):663–672.
  • RUSNATI M, URBINATI C, MUSULIN B et al.: Activation of endothelial cell mitogen activated protein kinase ERK(1/2) by extracellular HIV-1 Tat protein. Endothelium (2001) 8(1):65–74.
  • DHAWAN S, PURI RK, KUMAR A, DUPLAN H, MASSON JM, AGGARWAL BB: Human immunodeficiency virus-l-tat protein induces the cell surface expression of endothelial leukocyte adhesion molecule-1, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 in human endothelial cells. Blood (1997) 90(4):1535–1544.
  • KELLY GD, ENSOLI B, GUNTHEL CJ, OFFERMANN MK: Purified Tat induces inflammatory response genes in Kaposi's sarcoma cells. Aids (1998) 12(14):1753–1761.
  • BARILLARI G, ENSOLI B: Angiogenic effects of extracellular human immunodeficiency virus type 1 Tat protein and its role in the pathogenesis of AIDS-associated Kaposi's Sarcoma. Clin. Microbial. Rev (2002) 15(2):310–326.
  • •Thorough review of Tat role in Kaposi's sarcoma.
  • LI CJ, UEDA Y, SHI B et al.: Tat proteininduces self-perpetuating permissivity for productive HIV-1 infection. Proc. Natl. Acad. Sci. USA (1997) 94(15):8116–8120.
  • KUMAR A, MANNA SK, DHAWAN S, AGGARWAL BB: HIV-Tat protein activates c-Jun N-terminal kinase and activator protein-1. " Immunol (1998) 161(2):776–781.
  • COTA-GOMEZ A, FLORES NC, CRUZ C et al.: The human immunodeficiency virus-1 Tat protein activates human umbilical vein endothelial cell e-selectin expression via an NF-kappa B-dependent 1113 Mechanism. J. Biol. Chem. (2002) 277(17):14390–14399.
  • MILANI D, MAZZONI M, ZAULI G et al.: HIV-1 Tat induces tyrosine phosphorylation of p125FAK and its association with phosphoinositide 3-kinase in PC12 cells. Aids (1998) 12(11):1275–1284.
  • NEW DR, MAGGIRWAR SB, EPSTEIN LG, DEWHURST S, GELBARD HA HIV-1 Tat induces neuronal death via tumor necrosis factor-alpha and activation of non-N-methyl-D-aspartate receptors by a NFkappaB-independent mechanism. I. Biol. Chem. (1998) 273(28):17852–17858.
  • WATTS NR, SACKETT DL, WARD RD et al.: HIV-1 rev depolymerizes microtubules to form stable bilayered rings. .1 Cell. Biol. (2000) 150(2):349–360.
  • SZEBENI A, MEHROTRA B, BAUMANN A, ADAM SA, WINGFIELD PT, OLSON MO: Nucleolar protein B23 stimulates nuclear import of the HIV-1 Rev protein and NLS-conjugated albumin. Biochemistry (1997) 36(13):3941–3949.
  • MIYAZAKI Y, NOSAKA T, HATANAKA M: The post-transcriptional regulator Rev of HIV: implications for its interaction with the nucleolar protein B23. Biochimie (1996) 78(11-12):1081–1086.
  • FANKHAUSER C, IZAURRALDE E, ADACHI Y, WINGFIELD P, LAEMMLI UK: Specific complex of human immunodeficiency virus Type 1 rev and nucleolar B23 proteins: dissociation by the Rev response element. Mol. Cell. Biol. (1991) 11(5):2567–2575.
  • JAIN C, BELASCO JG: Structural model for the cooperative assembly of HIV-1 Rev multimers on the RRE as deduced from analysis of assembly-defective mutants. MM. Cell (2001) 7(3):603–614.
  • FOUTS DE, TRUE HL, CENGEL KA, CELANDER DW: Site-specific phosphorylation of the human immunodeficiency virus type-1 Rev protein accelerates formation of an efficient RNA-binding conformation. Biochemistry (1997) 36(43):13256–13262.
  • OHTSUKI K, MAEKAWA T, HARADA S, KARINO A, MORIKAWA Y, ITO M: Biochemical characterization of HIV-1 Rev as a potent activator of casein kinase II in vitro. FEBS Lett. (1998) 428(3):235–240.
  • MALIM MH, CULLEN BR HIV-1 structural gene expression requires the binding of multiple Rev monomers to the viral RRE: implications for HIV-1 latency. Cell (1991) 65(2):241–248.
  • TANGE TO, JENSEN TH, KJEMS J: In vitro interaction between human immunodeficiency virus Type 1 Rev protein and splicing factor ASF/5F2-associated protein, p32. J. Biol. Chem. (1996) 271(17):10066–10072.
  • PONGOSKI J, ASAI K, COCHRANE A: Positive and Negative Modulation of Human Immunodeficiency Virus Type 1 Rev Function by cis and trans Regulators of Viral RNA Splicing. J. Vim/. (2002) 76(10):5108–5120.
  • NAJERA I, KRIEG M, KARN J: Synergistic stimulation of HIV-1 rev-dependent export of unspliced mRNA to the cytoplasm by hnRNP Al. J. Mol. Biol. (1999) 285(5):1951–1964.
  • CAMPBELL LH, BORG KT, HAINES JK, MOON RT, SCHOENBERG DR, ARRIGO SJ: Human immunodeficiency virus Type 1 Rev is required in vivo for binding of poly(A)-binding protein to Rev-dependent RNAs. Virol. (1994) 68(9):5433–5438.
  • RUHL M, HIMMELSPACH M, BAHR GM et al.: Eukaryotic initiation factor 5A is a cellular target of the human immunodeficiency virus Type 1 Rev activation domain mediating trans-activation. Cell. Biol. (1993) 123(6 Pt 1):1309–1320.
  • HOFMANN W, REICHART B, EWALD A et al.: Cofactor requirements for nuclear export of Rev response element (RRE)- and constitutive transport element (CTE)-containing retroviral RNAs. An unexpected role for actin. J. Cell. Biol. (2001) 152(5):895–910.
  • •Thorough description of Rev interactions associated with nuclear export of Rev.
  • YI R, BOGERD HP, CULLEN BR: Recruitment of the Crml nuclear export factor is sufficient to induce cytoplasmic expression of incompletely spliced human immunodeficiency virus mRNAs. Vim/. (2002) 76(5):2036–2042.
  • ROSORIUS 0, REICHART B, KRATZER F, HEGER P, DABAUVALLE MC, HAUBERJ: Nuclear pore localization and nucleocytoplasmic transport of eIF-5A: evidence for direct interaction with the export receptor CRIVIL J Cell. Sri. (1999) 112(Pt 14):2369–2380.
  • SCHATZ 0, OFT M, DASCHER C et al.: Interaction of the HIV-1 rev cofactor eukaryotic initiation factor 5A with ribosomal protein L5. Proc. Nati Acad. Sri. USA (1998) 95(4):1607–1612.
  • FRITZ CC, ZAPP ML, GREEN MR: A human nucleoporin-like protein that specifically interacts with HIV Rev. Nature (1995) 376(6540):530–533.
  • BOGERD HP, FRIDELL RA, MADORE S, CULLEN BR: Identification of a novel cellular cofactor for the Rev/Rex class of retroviral regulatory proteins. Cell (1995) 82(3):485–494.
  • FARJOT G, SERGEANT A, MIKAELIAN I: a new nucleoporin-like protein interacts with both HIV-1 Rev nuclear export signal and CRM-1. Biol. Chem. (1999) 274(24):17309–17317.
  • LI J, LIU Y, PARK IW, HE if Expression ofexogenous Sam68, the 68-kilodalton SRC-associated protein in mitosis, is able to alleviate impaired Rev function in astrocytes. J Virol. (2002) 76(9):4526–4535.
  • REDDY TR, SUHASINI M, XU W et al.: A role for KH domain proteins (5am68-like mammalian proteins and quaking proteins) in the post-transcriptional regulation of HIV replication. J Biol. Chem. (2002) 277(8):5778–5784.
  • LI J, TANG H, MULLEN TM et al.: A role for RNA helicase A in post-transcriptional regulation of HIV Type 1. Proc. Nati Acad. Sci. USA (1999) 96(2):709–714.
  • REDDY TR, TANG H, XU W, WONG-STAAL F: 5am68, RNA helicase A and Tap cooperate in the post-transcriptional regulation of human immunodeficiency virus and type D retroviral mRNA. Oncogene (2000) 19(32):3570–3575.
  • XIAO G, KUMAR A, LI K et al.: Inhibition of the HIV-1 rev-RRE complex formation by unfused aromatic cations. Bioorg. Med. Chem. (2001) 9(5):1097–1113.
  • HAMASAKI K, UENO A: Aminoglycoside antibiotics, neamine and its derivatives as potent inhibitors for the RNA-protein interactions derived from HIV-1 activators. Bioorg. Med. Chem. Lett. (2001) 11(4):591–594.
  • TOK JB, DUNN LJ, DES JEAN RC: Binding of dimeric aminoglycosides to the HIV-1 rev responsive element (RRE) RNA construct. Bioorg. Med. Chem. Lett. (2001) 11(9):1127–1131.
  • SREEDHARA A, COWAN JA: Targeted site-specific cleavage of HIV-1 viral Rev responsive element by copper aminoglycosides. Biol. [Borg. Chem. (2001) 6(2):166–172.
  • CABRERA C, GUTIERREZ A, BARRETINA J et al.: Anti-HIV activity of a novel aminoglycoside-arginine conjugate. Antiviral Res. (2002) 53(1):1–8.
  • KIKUTA E, AOKI S, KIMURA E: A new type of potent inhibitors of HIV-1 TAR RNA-Tat peptide binding by zinc(II)-macrocyclic tetraamine complexes. Am. Chem. Soc. (2001) 123(32):7911–7912.
  • DEMIRHAN I, KANYALKAR M, CHANDRA A et al.: Docking studies reveal a selective binding of D-penicillamine to the transactivator protein of human immunodeficiency virus Type 1. FEBS Lett. (2002) 516(1-3):43–46.
  • MISCHIATI C, JEANG KT, FERIOTTO G et al.: Aromatic polyamidines inhibiting the Tat-induced HIV-1 transcription recognize structured TAR-RNA. Antisense Nucleic Acid Drug Dev. (2001) 11(4):209–217.
  • TERREUX R, PAIROT S, CABROL-BASS D, PATINO N, CONDOM R: Interaction of new PNA-based molecules with TAR RNA of HIV-1: molecular modelling and biological evaluation. MM. Graph. Model. (2001) 19(6):579–585, 614–575.
  • ARZUMANOV A, WALSH AP, RAJWANSHI VK, KUMAR R, VVENGEL J, GAIT MJ: Inhibition of HIV-1 Tat- dependent trans activation by steric block chimeric 2'-0-methyl/LNA oligoribonucleotides. Biochemistry (2001) 40(48):14645–14654.
  • ARZUMANOV A, WALSH AP, LIU X, RAJWANSHI VK, VVENGEL J, GAIT MJ: Oligonucleotide analogue interference with the HIV-1 Tat protein-TAR RNA interaction. Nucleosides Nucleotides Nucleic Adds (2001) 20(4-7):471–480.
  • KAUSHIK N, BASU A, PALUMBO P, MYERS RL, PANDEY VN: Anti-TAR polyamide nucleotide analog conjugated with a membrane-permeating peptide inhibits human immunodeficiency virus Type 1 production. Vim]. (2002) 76(8):3881–3891.
  • DUZGUNES N, SIMOES S, SLEPUSHKIN V et al.: Enhanced inhibition of HIV-1 replication in macrophages by antisense oligonucleotides, ribozymes and acyclic nucleoside phosphonate analogs delivered in pH-sensitive liposomes. Nucleosides Nucleotides Nucleic Acids (2001) 20(4-7):515–523.
  • KUMAGAI LTAKAHASHIT, HAMASAKI K, UENO A, MIHARA H: HIV Rev peptides conjugated with peptide nucleic acids and their efficient binding to RRE RNA. Bioorg. Med. Chem. Lett. (2001) 11(9):1169–1172.
  • TAKAHASHI T, HAMASAKI K, UENO A, MIHARA H: Construction of peptides with nucleobase amino acids: design and synthesis of the nucleobase-conjugated peptides derived from HIV-1 Rev and their binding properties to HIV-1 RRE RNA. Bioorg. Med. Chem. (2001) 9(4):991–1000.
  • LUEDTKE NW, BAKER TJ, GOODMAN M, TOR Y: Guanidinoglycosides: a novel family of RNA ligands. I Am. Chem. Soc. (2000) 122(48):12035–12036.
  • WANG D, DE LA FUENTE C, DENG L et al.: Inhibition of human immunodeficiency virus Type 1 transcription by chemical cyclin-dependent kinase inhibitors. Virol (2001) 75(16):7266–7279.
  • RUSNATI M, URBINATI C, CAPUTO A et al.: Pentosan polysulfate as an inhibitor of extracellular HIV-1 Tat. Biol. Chem. (2001) 276(25):22420–22425.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.