131
Views
51
CrossRef citations to date
0
Altmetric
Miscellaneous

Antifungals targeted to protein modification: focus on protein N-myristoyltransferase

Pages 1117-1125 | Published online: 24 Feb 2005

Bibliography

  • DIXON DM, MCNEIL MM, COHENML et al.: Fungal infections: a growing threat. Public Health Rep. (1996) 111:226–235.
  • HAZEN KC: New and emerging yeast pathogens. Clin. Microbial. Rev (1995) 8:462–478.
  • PFALLER MA, JONES RN, MESSER SA, EDMOND MB, WENZEL RP: National surveillance of nosocomial bloodstream infection due to Candida albicans: frequency of occurrence and antifungal susceptibility in the SCOPE Program. Diagn. Microbial. Infect. Dis. (1998) 31(1):327–332.
  • PFALLER MA: Nosocomial candidiasis: emerging species, reservoirs and modes of transmission. Clin. Infect. Dis. (1996) 22\(Suppl. 2):589–94.
  • PFALLER MA, DIEKEMA DJ, JONES RN et al: International surveillance of bloodstream infections due to Candida species: frequency of occurrence and in vitro susceptibilities to fluconazole, ravuconazole and voriconazole of isolates collected from 1997 through 1999 in the SENTRY antimicrobial surveillance program. Clin. Microbial. (2001) 39:3254–3259.
  • DENNING DW: Early diagnosis of invasive aspergillosis. Lancet (2000) 355(9202):423–424.
  • WALD A, LEISENRING W, VAN BURIK JA, BOWDEN RA: Epidemiology of Aspergillus infections in a large cohort of patients undergoing bone marrow transplantation. Infect. Dis. (1997) 175:1459–1466.
  • FISHMAN JA: The treatment of infection due to Pneumocystis carinll. Antimicrob. Agents Chemother. (1998) 42:1309–1314.
  • GEORGOPAPADAKOU NH, WALSH, TJ: Human mycoses: drugs and targets for emerging pathogens. Science (1994) 264:371–373.
  • GEORGOPAPADAKOU NH, WALSH TJ: Antifungal agents: chemotherapeutic targets and immunologic strategies. Antimicrob. Agents Chemother. (1996) 40:279–291.
  • GEORGOPAPADAKOU NH: Antifungals: mechanism of action and resistance, established and novel drugs. Carr. Opin. Microbial (1998) 1:547–557.
  • FROSCO M, BARRETT JF: Importanceof antifungal drug resistance: clinical significance and need for novel therapy. Expert Opin. Investig. Drugs (1998) 7:175–198.
  • SHEEHAN DJ, HITCHCOCK CA, SIBLEY CM: Current and emerging azole antifungal agents. Clin MicroBiol Rev (1999) 12:40–79.
  • WHITE TC, MARR KA, BOWDEN RA: Clinical, cellular and molecular factors that contribute to antifungal drug resistance. Clin MicroBiol. Rev (1998) 11:382–402.
  • ••An excellent review of fungal resistancefocusing on ergosterol synthesis inhibitors.
  • LOMAESTRO BM, PIATEK MA: Update on drug interactions with azole antifungal agents. Ann. Pharmacother. (1998) 32:915–928.
  • MANAVATHU EK, CUTRIGHT JL, CHANDRASEKAR PH: Organism-dependent fungicidal activities of azoles. Antimicrob. Agents Chemother. (1998) 42:3018–3021.
  • ESPINEL-INGROFF A: ha vitro fungicidal activities of voriconazole, itraconazole and amphotericin B against opportunistic moniliaceous and dematiaceous fungi.' Clin. Microbial. (2001) 39:954–958.
  • ELLIS D: Amphotericin B: spectrum and resistance. Antimicrob. Chemother: (2002) 49 (Suppl.):1–7.
  • ••An excellent update on amphotericin.
  • WONG-BERINGER A, JACOBS RA, GUGLIELMO BJ: Lipid formulations of amphotericin B: clinical efficacy and toxicities. Clin. Infect. Dis. (1998) 27:603–618.
  • GEORGOPAPADAKOU NH: Antifungalstargeted to the cell wall. Expert Opin. Investig. Drugs (1997) 6:147–150.
  • GEORGOPAPADAKOU NH: Cell-wall active antifungals and emerging targets. In: Antbinfectives: Recent Advances in Chemistry and Structure-activity Relationships. Bentley PH, OTIanlon (Eds), The Royal Society of Chemistry, Cambridge, UK (1997):163–175.
  • MAERTENS JA, BOOGAERTS MA: Fungal cell wall inhibitors: emphasis on clinical aspects. Carr Pharm. Des (2000) 6:225–239.
  • GEORGOPAPADAKOU NH: Antifungals targeted to cell wall: focus on13-1,3-glucan synthase. Expert Opin. Investig. Drugs (2001) 10:269–280.
  • COLLIN B, CLANCY CJ, NGUYEN MH: Antifungal resistance in non albicans Candida species. Drug Resist. Updates (1999) 2:9–14.
  • GEORGOPAPADAKOU NH: Antifungals targeted to sphingolipid synthesis: focus on inositol phosphorylceramide synthase. Expert Opin. Investig. Drugs (2000) 9:1787–1786.
  • •A review of one of the few "clean" fungal targets, with no mammalian counterpart.
  • FARAZI TA, WAKSMAN G, GORDON JI: The biology and enzymology of protein N-myristoylation. J. Biol. Chem. (2001) 276:39501–39504.
  • ••An authoritative minireview of protein N-myristoylation by perhaps the top lab in this field.
  • BOUTIN JA: Myristoylation. Cell. Signal. (1997) 9:15–35.
  • RAJALA RV, DATLA RS, MOYANA TN, KAKKAR R, CARLSEN SA, SHARMA RK: N-myristoyltransferase. MM. Cell. Biochem. (2000) 204:135–155.
  • TOWLER DA, ADAMS SP, EUBANKS SR et al.: Purification and characterization of yeast myristoyl CoA:protein N-myristoyltransferase. Proc. Nati Acad. Sci. USA (1987) 84:2708–2712.
  • ZHA J, VVEILER S, OH KJ, VVEI MC, KORSMEYER SJ: Post-translational N-myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis. Science (2000) 290:1761–1765.
  • KNOLL LJ, JOHNSON DR, BRYANT ML, GORDON JI: Functional significance of myristoyl moiety in N-myristoyl proteins. Methods Enzymol (1995) 250:405–435.
  • AMES JB, ISHIMA R, TANAKA T, GORDON JI, STRYER L, IKURA M: Molecular mechanics of calcium-myristoyl switches. Nature (1997) 389:198–202.
  • RANDAZZO PA, KAHN RA: Myristoylation and ADP-ribosylation factor function. Methods Enzymol (1995) 250:394–405.
  • ASHRAFI K, FARAZI TA, GORDON JI: A role for Saccharomyces cerevhiae fatty acid activation protein 4 in regulating protein N-myristoylation during entry into stationary phase. J. Bio/. Chem. (1998) 273:25864–25874.
  • YOUNG K, EGERTON M, CAMBLE R, WHITE A, MCILHINNEY RA: Immunochemical characterization of human N-myristoyltransferase: evidence for more than one form of the enzyme. Biochem. Soc. Trans. (1997) 25:S631.
  • GIANG DK, CRAVATT BF: A second mammalian N-myristoyltransferase. (1998) 273:6595–6598.
  • GLOVER CJ, HARTMAN KD, FELSTED RL: Human N-myristoyltransferase amino-terminal domain involved in targeting the enzyme to the ribosomal subcellular fraction. J. Biol. Chem. (1997) 272:28680–28689.
  • CLEGG RA: Expression of N-myristoyl transferase is developmentally regulated in mammary epithelial cells. Biochem. Soc. Trans. (1997) 25:S680.
  • MAGNUSON BA, RAJU RV, MOYANA TN, SHARMA RK Increased N-myristoyltransferase activity observed in rat and human colonic tumours. J. Natl Cancer Inst. (1995) 87:1630–1635.
  • RAJU RV, MOYANA TN, SHARMA RK N-Myristoyltransferase overexpression in human colorectal adenocarcinomas. Exp. Cell Res. (1997) 235:145–154.
  • RAJALA RV, RADHI JM, KAKKAR R, DATLA RS, SHARMA RK: Increased expression of N-myristoyltransferase in gallbladder carcinomas. Cancer (2000) 88:1992–1999.
  • FELSTED RL, GLOVER CJ, HARTMAN K: Protein N-myristoylation as a chemotherapeutic target for cancer. J. Natl Cancer Inst. (1995) 87:1571–1573.
  • CARDENAS ME, CRUZ MC, DEL POETA M, CHUNG N, PERFECT JR, HEITMAN J: Antifungal activities of antineoplastic agents: Saccharomyces cerevisiaeas a model system to study drug action. Clin. Microbial. Rev (1999) 12:583–611.
  • •Yeast is reviewed as a model system for cancer.
  • PARANG K, WIEBE LI, KNAUS EE, HUANG JS, TYRRELL DL, CSIZMADIA F: In vitro antiviral activities of myristic acid analogs against human immunodeficiency and hepatitis B viruses. Antiviral Res. (1997) 34:75–90.
  • GUNARATNE RS, SAJID M, LING IT, TRIPATHI R, PACHEBAT JA, HOLDER AA: Characterization of N-myristoyltransferase from Plasmodium fakiparum. Biochem. J. (2000) 348:459–463.
  • ••While focusing on /?fa/ciparum, it lists theamino acid sequences sequences of several NMTs, including the mammalian and yeast enzymes.
  • DURONIO RJ, TOWLER DA, HEUCKEROTH RO, GORDON JI: Disruption of the yeast N-myristoyl transferase gene causes recessive lethality. Science (1989) 243:796–800.
  • ZHANG L, JACKS ON-MACHELSKIE,GORDON JI: Biochemical studies of Saccharomyces cerevisiae myristoyl-coenzyme A:protein N-myristoyl-transferase mutants. J. Biol. Chem. (1996) 271:33131–33140.
  • LANGNER CA, LODGE JK, TRAVIS SJ et al.: 4-oxatetradecanoic acid is fungicidal for Cryptococcus neoformans and inhibits replication of human immunodeficiency virus I. J. Biol. Chem. (1992) 267:17159–17169.
  • LODGE JK, JACKSON-MACHELSKI E, TOFFALETTI DL, PERFECT JR, GORDON JI: Targeted gene replacement demonstrates that myristoyl-CoA: protein N-myristoyltransferase is essential for viability of Cryptococcus neoformans. Proc. Nati Acad. Sci. USA (1994) 91:12008–12012.
  • WEINBERG RA, MCWHERTER CA, FREEMAN SK, WOOD DC, GORDON JI, LEE SC: Genetic studies reveal that myristoylCoA:protein N-myristoyltransferase is an essential enzyme in Candida albicans. MM. Microbial. (1995) 16:241–250.
  • •The first report showing that NMT is essential in C. albicans.
  • LODGE JK, JACKSON-MACHELSKI E, DEVADAS B et al: N-myristoylation of Arf proteins in Candida albicans: an M vivo assay for evaluating antifungal inhibitors of myristoyl-CoA: protein N-myristoyltransferase. Microbiology (1997) 143:357–366.
  • •An in vivo NMT assay is described.
  • NAKAYAMA H, MIO T, NAGAHASHI S, KOKADO M, ARISAWA M, AOKI Y: Tetracycline-regulaTable system to tightly control gene expression in the pathogenic fungus Candida albicans. Infect. Inman. (2000) 68:6712–6719.
  • LODGE JK, JOHNSON RL, WEINBERG RA, GORDON JI: Comparison of myristoyl-CoA:protein N-myristoyltransferases from three pathogenic fungi: Cryptococcus neoformans, Histoplasma capsulatum and Candida albicans. I Biol. Chem. (1994) 269:2996–3009.
  • •Compares NMT of three major fungal pathogens.
  • BHATNAGAR RS, FUTTERER K, WAKSMAN G, GORDON JI: The structure of myristoyl-CoA:protein N-myristoyltransferase. Biochim. Biophys. Acta (1999) 1441:162–172.
  • TOWLER DA, ADAMS SP, EUBANKS SR et al.: Myristoyl CoA:protein N-myristoyltransferase activities from rat liver and yeast possess overlapping yet distinct peptide substrate specificities. I. Biol. Chem. (1988) 263:1784–1790.
  • ROCQUE WJ, MCWHERTER CA, WOOD DC, GORDON JI: A comparative analysis of the kinetic mechanism and peptide substrate specificity of human and Saccharomyces cerevisiae myristoyl-CoA:protein N-myristoyltransferase. Biol. Chem. (1993) 268:9964–9971.
  • •First report of the peptide substrate specificity of yeast NMT.
  • MAURER-STROH S, EISENHABER B, EISENHABER F: N-terminal N-myristoylation of proteins: refinement of the sequence motif and its taxon-specific differences. J. Ma BioL (2002) 317:523–540.
  • MAURER-STROH S, EISENHABER B, EISENHABER F: N-terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence. J. Ma Bia (2002) 317:541–557.
  • WIEGAND RC, CARR C, MINNERLY JC et al.: The Candida albicansmyristoyl-CoA:protein N-myristoyltransferase gene. Isolation and expression in Saccharomyces cerevisiae and Escherichia coll. .1. Biol. Chem. (1992) 267:8591–8598.
  • MCILHINNEY RA, PATEL PB, MCGLONE K: Characterization of a polyhistidine-tagged form of human myristoyl-CoA: protein N-myristoyltransferase produced in Escherichia coll. Eur. Biochem. (1994) 222:137–146.
  • KING MJ, SHARMA RK N-myristoyltransferase assay using phosphocellulose paper binding. Anal Biochem. (1991) 199:149–153.
  • GEORGOPAPADAKOU NH, GRACIANI NR, PENNISE CR, TOYN JH, WHITE WH: A scintillation proximity assay for Candida albicans N-myristoyltransferase. 22nd International Congress on Chemotherapy (2001). Abstract P16.001.
  • ••A brief description of the assay of choicefor high throughput screening.
  • PENNISE CR, GEORGOPAPADAKOU NH, COLLINS RD, GRACIANI NR, POMPLIANO DL: A continuous fluorometric assay of myristoyl-coenzyme A:protein N-myristoyltransferase. Anal Biochem (2002) 300:275–277.
  • FRENCH SA, CHRISTAKIS H, O'NEILLRR, MILLER SP: An assay for myristoyl-CoA: protein N-myristoyltransferase activity based on ion-exchange exclusion of [3I-I]myristoyl peptide. Anal Biochem. (1994) 220:115–121.
  • MCWHERTER CA, ROCQUE WJ, ZUPEC ME et al: Scanning alanine mutagenesis and de-peptidization of a Candida albicans myristoyl-CoA:protein N-myristoyltransferase octapeptide substrate reveals three elements critical for molecular recognition. Biol. Chem. (1997) 272:11874–11880.
  • VVESTON SA, CAMBLE R, COLLS J et al: Crystal structure of the antifungal target N-myristoyltransferase. Nat. Struct. Biol. (1998) 5:213–221.
  • ••The first report of the crystallographicstructure of Candida NMT.
  • BHATNAGAR RS, FUTTERER K, FARAZI TA et al: Structure of N-myristoyltransferase with bound myristoyl-CoA and peptide substrate analogs. Nat. Struct. Biol. (1998) 5:1091–1097.
  • ••The crystallographic structure ofSaccharomyces NMT with substrates bound.
  • JOHNSON DR, COX AD, SOLSKI PA et al: Functional analysis of protein N-myristoylation: metabolic labelling studies using three oxygen-substituted analogs of myristic acid and cultured mammalian cells provide evidence for protein-sequence-specific incorporation and analog-specific redistribution. Proc. Nati Acad. Sci. USA (1990) 87:8511–8515.
  • HEUCKEROTH RO, JACKSON-MACHELSKI E, ADAMS SP et al: Novel fatty acyl substrates for myristoyl-CoA:protein N-myristoyltransferase. Lipid Res. (1990) 31:1121–1129.
  • DEVADAS B, ZUPEC ME, FREEMAN SK et al: Design and syntheses of potent and selective dipeptide inhibitors of Candida albicans myristoyl-CoA:protein N-myristoyltransferase. Med. Chem (1995) 38:1837–1840.
  • •The first report of selective peptide inhibitors of Candida NMT.
  • NAGARAJAN SR, DEVADAS B, ZUPEC ME et al.: Conformationally constrained [p-(omega-aminoalkyl)phenacetyl]-L-seryl-L-lysyl dipeptide amides as potent peptidomimetic inhibitors of Candida albicans and human myristoyl-CoA:protein N-myristoyl transferase. Med. Chem (1997) 40:1422–1438.
  • DEVADAS B, FREEMAN SK, ZUPEC ME et al: Design and synthesis of novel imidazole-substituted dipeptide amides as potent and selective inhibitors of Candida albicans myristoyl-CoA:protein N-myristoyltransferase and identification of related tripeptide inhibitors with mechanism-based antifungal activity. Med. Chem (1997) 40:2609–2625.
  • SIKORSKI JA, DEVADAS B, ZUPEC MEet al: Selective peptidic and peptidomimetic inhibitors of Candida albicans myristoylCoA: protein N-myristoyltransferase: a new approach to antifungal therapy. Biopolymers (1997) 43:43–71.
  • •Peptidomirnetic inhibitors of Candida NMT are introduced.
  • LODGE JK, JACKSON-MACHELSKI E, HIGGINS M et al: Genetic and biochemical studies establish that the fungicidal effect of a fully depeptidized inhibitor of Cryptococcus neoformans myristoyl-CoA:protein N-myristoyltransferase (Nmt) is Nmt-dependent. I Biol. Chem. (1998) 273:12482–12491.
  • DEVADAS B, FREEMAN SK, MCWHERTER CA et al: Novel biologically active nonpeptidic inhibitors of myristoyl-CoA:protein N-myristoyltransferase. I Med. Chem. (1998) 41:996–1000.
  • KARKI RG, KULKARNI VM: A feature based pharmacophore for Candida albicans myristoylCoA: protein N-myristoyltransferase inhibitors. Eurj Med. Chem (2001) 36:147–163.
  • ARMOUR DR, BELL SA, KEMP MI, EDWARDS MP, WOOD A: Discovery of a novel series of nonpeptidic fungal N-myristoyltransferase inhibitors. 22nd Am Chem Soc, Div Med. Chem Meeting (2001), Abstract 349.
  • ••The first report of potent, arninobenzothiazole inhibitors of NMT
  • BELL SB, ARMOUR DR, EDWARDS MP, KEMP MI, WOOD A: Discovery of fungicidal N-myristoyktransferase inhibitors. 22nd Am Chem Soc, Div. Med. Chem Meeting (2001), Abstract 350.
  • MASUBUCHI M, KAWASAKI K, EBIIKE H et al: Design and synthesis of novel benzofurans as a new class of antifungal agents targeting fungal N-myristoyltransferase. Part 1. Bioorg Med. Chem Lett (2001) 11:1833–1837.
  • EBIIKE H, MASUBUCHI M, LIU P et al: Design and synthesis of novel benzofurans as a new class of antifungal agents targeting fungal N-myristoyltransferase. Part 2. Bioorg Med. Chem Lett (2002) 12:607-610. More potent, nonpeptidic inhibitors of NMT, active in murine models of candidiasis.
  • MIURA T, KLAUS W, ROSS A, SAKATA K, MASUBUCHI M, SENN H: Protein- bound conformation of a specific inhibitor against Candida albicans myristoyl-CoA:protein N-myristoyltransferase in the ternary complex with CaNmt and myristoyl-CoA by transferred NOE measurements. Ear: Biochem. (2001) 268:4833–4841.
  • FARAZI TA, WAKSMAN G, GORDON JI: Structures of Saccharomyces cerevisiae N-myristoyltransferase with bound myristoylCoA and peptide provide insights about substrate recognition and catalysis. Biochemistry (2001) 40:6335–6343.
  • FUTTERER K, MURRAY CL, BHATNAGAR RS, GOKEL GW, GORDON JI, WAKSMAN G: Crystallographic phasing of myristoyl-CoA-protein N-myristoyltransferase using an iodinated analog of myristoyl-CoA. Acta Crystallogr. D Biol Crystallogr (2001) 57:393–400.
  • FARAZI TA, MANCHESTER JK, GORDON JI: Transient-state kinetic analysis of Saccharomyces cerevisiae myristoylCoA:protein N-myristoyltransferase reveals that a step after chemical transformation is rate limiting. Biochemistry (2000) 39:15807–15816.
  • FARAZI TA, MANCHESTER JK, WAKSMAN G, GORDON JI: presteady-state kinetic studies of Saccharomyces cerevisiae myristoylCoA:protein N-myristoyltransferase mutants identify residues involved in catalysis. Biochemistry (2001) 40:9177–9186.
  • BELL SB: Non-peptidic inhibitors of Candidaprotein N-myristoyltransferase. SRI Conference: New chemical technologies accelerating drug discovery. San Diego, CA, USA (March 29–30, 2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.