522
Views
189
CrossRef citations to date
0
Altmetric
Review

Therapeutic potential of dipeptidyl peptidase IV inhibitors for the treatment of type 2 diabetes

Pages 87-100 | Published online: 02 Mar 2005

Bibliography

  • VILSBOLL T, KRARUP T, DEACON CE MADSBAD S, HOLST JJ: Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in Type 2 diabetic patients. Diabetes (2001) 50:609–613.
  • •This paper describes the extent of GLP-1 deficiency in human subjects with diabetes.
  • RASK E, OLSSON T, SODERBERG S et al.: Impaired incretin response after a mixed meal is associated with insulin resistance in nondiabetic men. Diabetes Care (2001) 24:1640–1645.
  • DUPRE J, ROSS SA,WATSON D, BROWN JC: Stimulation of insulin secretion by gastric inhibitory polypeptide in man. I Clin. Endocrinol. Metab. (1973) 37:826–828.
  • MEIER JJ, NAUCK MA, SCHMIDT WE, GALLWITZ B: Gastric Inhibitory Polypeptide: the neglected incretin revisited. Regul. Pept. (2002) 107:1–13.
  • BAGGIO L, KIEFFER TJ, DRUCKER DJ: GLP-1 but not GIP regulates fasting and non-enteral glucose clearance in mice. Endocrinology (2000) 141:3703–3709.
  • LEWIS JT, DAYANANDAN B, HABENER JF, KIEFFER TJ: Glucose-dependent insulinotropic polypeptide confers early phase insulin release to oral glucose in rats: demonstration by a receptor antagonist. Endocrinology (2000) 141:3710–3716.
  • MIYAWAKI K, YAMADA Y, YANO H et al.: Glucose intolerance caused by a defect in the entero-insular axis: A study in gastric inhibitory polypeptide receptor knockout mice. Proc. Nati Acad. Sci. USA (1999) 96:14843–14847.
  • YIP RG, WOLFE MM: GIP biology and fat metabolism. Life Sci. (2000) 66:91–103.
  • MIYAWAKI K, YAMADA Y, BAN N etal.: Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat. Med. (2002) 8:738–742.
  • LYNN FC, PAMIR N, NG EH, MCINTOSH CH, KIEFFER TJ, PEDERSON RA: Defective glucose-dependent insulinotropic polypeptide receptor expression in diabetic fatty Zucker rats. Diabetes (2001) 50:1004–1011.
  • JONES IR, OWENS DR, MOODY AJ, LUZIO SD, MORRIS T, HAYES TM: The effects of glucose-dependent insulinotropic polypeptide infused at physiological concentrations in normal subjects and Type 2 (non-insulin- dependent) diabetic patients on glucose tolerance and B-cell secretion. Diabetologia (1987) 30:707–712.
  • NAUCK MA, HEIMESAAT MM, ORSKOV C, HOLST JJ, EBERT R, CREUTZFELDT W: Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. Clin. Invest. (1993) 91:301–307.
  • ELAHI D, MCALOON-DYKE M, FUKAGAWA NK et ai:The insulinotropic actions of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (7-37) in normal and diabetic subjects. Regul. Pept. (1994) 51:63–74.
  • VILSBOLL T, KRARUP T, MADSBAD S, HOLST JJ: Defective amplification of the late phase insulin response to glucose by GIP in obese Type II diabetic patients. Diabetologia (2002) 45:1111–1119.
  • MEIER JJ, HUCKING K, HOLST JJ, DEACON CF, SCHMIEGEL WH, NAUCK MA: Reduced insulinotropic effect of gastric inhibitory polypeptide in first-degree relatives of patients with type 2 diabetes. Diabetes (2001) 50:2497–2504.
  • O'HARTE FP, GAULT VA, PARKER JC etal.: Improved stability, insulin-releasing activity and antidiabetic potential of two novel N-terminal analogues of gastric inhibitory polypeptide: N-acetyl-GIP and pG1u-GIP Diabetologia (2002) 45:1281–1291.
  • LUGARI R, DEI CAS A, UGOLOTTI D etal.: Evidence for early impairment of glucagon-like peptide 1-induced insulin secretion in human Type 2 (non insulin-dependent) diabetes. Donn. Metab. Res. (2002) 34:150–154.
  • RUIZ-GRANDE C, PINTADO J, ALARCON C, CASTILLA C, VALVERDE I, LOPEZ-NOVOA JM: Renal catabolism of human glucagon-like peptides 1 and 2. Can. .1 Physiol. Phannacol. (1990) 68:1568–1573.
  • RUIZ-GRANDE C, ALARCON C, ALCANTARA A et al.: Renal catabolism of truncated glucagon-like peptide 1. Donn. Metab. Res. (1993) 25:612–616.
  • MENTLEIN R, GALLWITZ B, SCHMIDT WE: Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1 (7-36) amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur. Biochein. (1993) 214:829–835.
  • •An early original description of the importance of DPP-IV for N-terminal inactivation of incretin hormones.
  • KIEFFER TJ, MCINTOSH CH, PEDERSON RA: Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology (1995) 136:3585–3596.
  • DEACON CE NAUCK MA, TOFT-NIELSEN M, PRIDAL L, WILLMS B, HOLST JJ: Both subcutaneously and intravenously administered glucagon-like peptide 1 are rapidly degraded from the NH2-terminus in Type II diabetic patients and in healthy subjects. Diabetes (1995) 44:1126–1131.
  • HUPE-SODMANN K, MCGREGOR GP, BRIDENBAUGH R et al.: Characterisation of the processing by human neutral endopeptidase 24.11 of GLP-1(7–36) amide and comparison of the substrate specificity of the enzyme for other glucagon-like peptides. Regul. Pept. (1995) 58:149–156.
  • DRUCKER DJ, PHILIPPE J, MOJSOV S, CHICK WL, HABENER JF: Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc. Natl. Acad. Sci. USA (1987) 84:3434–3438.
  • MOJSOV S, WEIR GC, HABENER JF: Insulinotropin: Glucagon-like peptide I (7-37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. Clin. Invest. (1987) 79:616–619.
  • ORSKOV C, HOLST JJ, NIELSEN OV:Effect of truncated glucagon-like peptide-1 [proglucagon- (78-107) amide] on endocrine secretion from pig pancreas, antrum, and nonantral stomach. Endocrinology (1988) 123: 2009-2013.
  • HOLZ GG, KUHTREIBER WM, HABENER JF: Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7-37). Nature (1993) 361:362–365.
  • •Experiments describing the effects of GLP-1 on recruitment of glucose-competent 13 cells, with implications for GLP-1-dependent enhancement of human 13 cell activity.
  • WANG Y, EGAN JM, RAYGADA M, NADIV 0, ROTH J, MONTROSE-RAFIZADEH C: Glucagon-like peptide-1 affects gene transcription and messenger ribonucleic acid stability of components of the insulin secretory system in RIN 1046-38 cells. Endocrinology (1995) 136(11):4910–4917.
  • FEHMANN H-C, HABENER JF: Insulinotropic hormone glucagon-like peptide-I(7-37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma 3TC-1 cells. Endocrinology (1992) 130:159–166.
  • WANG Y, PERFETTI R, GREIG NH et al.: Glucagon-like peptide-1 can reverse the age-related decline in glucose tolerance in rats. J. Clin. Invest. (1997) 99:2883–2889.
  • WILLMS B, WERNER J, HOLST JJ, ORSKOV C, CREUTZFELDT W, NAUCK MA: Gastric emptying, glucose responses, and insulin secretion after a liquid test meal: effects of exogenous glucagon-like peptide-1 (GLP-1)47-36)amide in Type 2 (non-insulin dependent) diabetic patients. I Clin. Endocrinol Metab. (1996) 81:327–332.
  • NAUCK MA, NIEDEREICHHOLZ U, ETTLER R et al.: Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am.j Physiol (1997) 273:E981–E988.
  • KAWAI K, SUZUKI S, OHASHI S, MUKAI H, MURAYMA Y, YAMASHITA K: Effects of truncated glucagon-like peptide-1 on pancreatic hormone release in normal conscious dogs. Acta Endocrinol (Copenh ) (1990) 123:661–667.
  • KASHIMA Y, MIKI T, SHIBASAKI T et al.: Critical role of cAMP-GEFII/Rim2 complex in incretin-potentiated insulin secretion. J. Biol. Chem. (2001) 276:46046–46053.
  • HOLZ GG, LEECH CA, HABENER JF: Activation of a cAMP-regulated Ca2+-signaling pathway in pancreatic b-cells by the insulinotropic hormone glucagon-like peptide-1. I Biol. Chem. (1995) 270:17749–17757.
  • LIGHT PE, MANNING FOX JE, RIEDEL MJ, WHEELER MB: Glucagon-like peptide-1 inhibits pancreatic ATP-sensitive potassium channels via a protein kinase A- and ADP-dependent mechanism. MoL Endocrinol (2002) 16:2135–2144.
  • EDVELL A, LINDSTROM P: Initiation ofincreased pancreatic islet growth in young normoglycemic mice (Umea +/?). Endocrinology (1999) 140:778–783.
  • XU G, STOFFERS DA, HABENER JF, BONNER-WEIR S: Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes (1999) 48:2270–2276.
  • STOFFERS DA, KIEFFER TJ, HUSSAIN MA et al.: Insulinotropic glucagon-like peptide-1 agonists stimulate expression of homeodomain protein IDX-1 and increase I3-cell mass in mouse pancreas. Diabetes (2000) 49:741–748.
  • ZHOU J, WANG X, PINEYRO MA, EGAN JM: Glucagon-like peptide 1 and exendin-4 convert pancreatic AR42J cells into glucagon- and insulin-producing cells. Diabetes (1999) 48:2358–2366.
  • HUI H, WRIGHT C, PERFETTI R: Glucagon-like peptide 1 induces differentiation of islet duodenal homeobox-1-positive pancreatic ductal cells into insulin-secreting cells. Diabetes (2001) 50:785–796.
  • DRUCKER DJ: Glucagon-like peptides: Regulators of cell proliferation, differentiation and apoptosis. MoL EndocrinoL (2003) 17 (In press).
  • BEAK SA, HEATH MM, SMALL CJ et al: Glucagon-like peptide-1 stimulates luteinizing hormone releasing hormone secretion in a rodent hypothalamic neuronal cell line (GT1-7). J. Clin. Invest. (1998) 101:1334–1341.
  • BEAK SA, SMALL CJ, ILOVAISKAIA I et al.: Glucagon-like peptide-1 (GLP-1) releases thyrotropin (TSH): characterization of binding sites for GLP-1 on alpha-TSH cells. Endocrinology (1996) 137:4130–4138.
  • LARSEN PJ, TANG-CHRISTENSEN M, JESSOP DS: Central administration of glucagon-like peptide-1 activates hypothalamic neuroendocrine neurons in the rat. Endocrinology(1997) 138:4445–4455.
  • TURTON MD, O'SHEA D, GUNN I et al.: A role for glucagon-like peptide-1 in the central regulation of feeding. Nature (1996) 379:69–72.
  • •Original observation describing potent satiety effects following intracerebroventricular GLP-1 administration.
  • DONAHEYJCK, VAN DIJK G, WOODS SC, SEELEY RJ: Intraventricular GLP-1 reduces short- but not long-term food intake or body weight in lean and obese rats. Brain Res. (1998) 779:75–83.
  • YOUNG AA, GEDULIN BR, BHAVSAR S et al.: Glucose-lowering and insulin-sensitizing actions of exendin-4: studies in obese diabetic (ob/ob, db/db) mice, diabetic fatty Zucker rats, and diabetic rhesus monkeys (Macaca mulatta). Diabetes (1999) 48:1026–1034.
  • LARSEN PJ, FLEDELIUS C, KNUDSEN LB, TANG-CHRISTENSEN M: Systemic administration of the long-acting GLP-1 derivative NN2211 induces lasting and reversible weight loss in both normal and obese rats. Diabetes (2001) 50:2530–2539.
  • VERDICH C, FLINT A, GUTZWILLER JP et al.: A meta-analysis of the effect of glucagon-like peptide-1 (7-36) amide on ad libitum energy intake in humans. Clin. Endocrinol Metab. (2001) 86:4382–4389.
  • ZANDER M, MADSBAD S, MADSEN JL, HOLST JJ: Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in Type 2 diabetes: a parallel-group study. Lancet (2002) 359:824–830.
  • •Long-term 6-week GLP-1 infusion study in human diabetics demonstrating improvement in multiple metabolic parameters and significant lowering of HbAlc.
  • WANG Z, WANG RM, OWJI AA, SMITH DM, GHATEI MA, BLOOM SR: Glucagon-like peptide 1 is a physiological incretin in rat. Clin. Invest. (1995) 95:417–421.
  • KOLLIGS F, FEHMANN H-C, GOKE R, GOKE B: Reduction of the incretin effect in rats by the glucagon-like peptide 1 receptor antagonist exendin (9-39) amide. Diabetes (1995) 44:16–19.
  • EDWARDS CM, TODD JF, MAHMOUDI M et al.: Glucagon-like peptide 1 has a physiological role in the control of postprandial glucose in humans: studies with the antagonist exendin 9-39. Diabetes (1999) 48:86–93.
  • SCHIRRA J, STURM K, LEICHT P, ARNOLD R, GOKE B, KATSCHINSKI M: Exendin(9-39)amide is an antagonist of glucagon-like peptide-1(7-36)amide in humans. j Clin. Invest. (1998) 101:1421–1430.
  • SCROCCHI LA, BROWN TJ, MACLUSKY N et al.: Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide receptor gene. Nat. Med. (1996) 2:1254–1258.
  • •Genetic inactivation of the GLP-1 receptor demonstrates the physiological importance of GLP-1 for glucose control in mice.
  • MEERAN K, O'SHEA D, EDWARDS CM et al: Repeated intracerebroventricular administration of glucagon-like peptide-1-(7-36) amide or exendin-(9-39) alters body weight in the rat. Endocrinology (1999) 140:244–250.
  • SCROCCHI LA, DRUCKER DJ: Effects of aging and a high fat diet on body weight and glucose control in GLP-1R-/- mice. Endocrinology (1998) 139:3127–3132.
  • LING Z, WU D, ZAMBRE Y et al: Glucagon-like peptide 1 receptor signaling influences topography of islet cells in mice. Virchows Arch. (2001) 438:382–387.
  • SCROCCHI LA, HILL ME, SALEH J, PERKINS B, DRUCKER DJ: Elimination of GLP-1R signaling does not modify weight gain and islet adaptation in mice with combined disruption of leptin and GLP-1 action. Diabetes (2000) 49:1552–1560.
  • PEDERSON RA, SATKUNARAJAH M, MCINTOSH CH et al.: Enhanced glucose-dependent insulinotropic polypeptide secretion and insulinotropic action in glucagon-like peptide 1 receptor -/- mice. Diabetes (1998) 47:1046–1052.
  • GUTNIAK M, ORSKOV C, HOLST JJ, AHREN B, EFENDIC S: Antidiabetogenic effect of glucagon-like peptide-1 (7-36) amide in normal subjects and patients with diabetes mellitus. N Engl. I Med. (1992) 326:1316–1322.
  • EDWARDS CM, STANLEY SA, DAVIS R et al.: Exendin-4 reduces fasting and postprandial glucose and decreases energy intake in healthy volunteers. Am. J. Physic] Endocrinol Metab. (2001) 281:E155–E161.
  • GUTNIAK MK, LINDE B, HOLST JJ, EFENDIC S: Subcutaneous injection of the incretin hormone glucagon-like peptide 1 abolishes postprandial glycemia in NIDDM. Diabetes Care (1994) 17:1039–1044.
  • RACHMAN J, GRIBBLE FM, BARROW BA, LEVY IC, BUCHANAN KD, TURNER RC: Normalization of insulin responses to glucose by overnight infusion of glucagon-like peptide 1(7-36)amide in patients with NIDDM. Diabetes (1996) 45:1524–1530.
  • CREUTZFELD WO, KLEINE N, WILLMS B, ORSKOV C, HOLST JJ, NAUCK MA: Glucagonostatic actions and reduction of fasting hyperglycemia by exogenous glucagon-like peptide 1(7-36) amide in Type I diabetic patients. Diabetes Care (1996) 19:580–586.
  • NATHAN DM, SCHREIBER E, FOGEL H, MOJSOV S, HABENERJF: Insulinotropic action of glucagon-like peptide I (7 37) in diabetic and non-diabetic subjects. Diabetes Care (1992) 15:270–276.
  • GUTNIAK MK, JUNTTI-BERGGREN L, HELLSTROM PM, GUENIFI A, HOLST JJ, EFENDIC S: Glucagon-like peptide I enhances the insulinotropic effect of glibenclamide in NIDDM patients and in the perfused rat pancreas. Diabetes Care (1996) 19:857–863.
  • DUPRE J, BEHME MT, HRAMIAK IM et al.: Glucagon-like peptide I reduces postprandial glycemic excursions in IDDM. Diabetes (1995) 44:626–630.
  • DEACON CF, JOHNSEN AH, HOLST JJ: Degradation of glucagon-like peptide-1 by human plasma M vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J. Clin. Endocrinol Metab. (1995) 80:952–957.
  • ORSKOV C, WETTERGREN A, HOLST JJ: Biological effects and metabolic rates of glucagon-like peptide-1 7-36 amide and glucagonlike peptide-1 7-37 in healthy subjects are indistinguishable. Diabetes (1993) 42:658–661.
  • LARSEN J, HYLLEBERG B, NG K, DAMSBO P: Glucagon-like peptide-1 infusion must be maintained for 24 h/day to obtain acceptable glycemia in type 2 diabetic patients who are poorly controlled on sulphonylurea treatment. Diabetes Care (2001) 24:1416–1421.
  • DRUCKER DJ: Development of glucagon-like peptide-1-based pharmaceuticals as therapeutic agents for the treatment of diabetes. Carr. Pharm. Des. (2001) 7:1399–1412.
  • RACHMAN J, BARROW BA, LEVY IC,TURNER RC: Near normalization of diurnal glucose concentrations by continuous administration of glucagon-like peptide 1 (GLP-1) in subjects with NIDDM. Diabetologia (1997) 40:205–211.
  • TOFT-NIELSEN MB, MADSBAD S, HOLST JJ: Continuous subcutaneous infusion of glucagon-like peptide 1 lowers plasma glucose and reduces appetite in Type 2 diabetic patients. Diabetes Care (1999) 22:1137–1143.
  • TODD IF, EDWARDS CM, GHATEI MA, MATHER HM, BLOOM SR: Subcutaneous glucagon-like peptide-1 improves postprandial glycaemic control over a 3-week period in patients with early Type 2 diabetes. Clin. Sci. (Colch.) (1998) 95:325–329.
  • GOKE R, FEHMANN H-C, LINN T et al.: Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting Biol. Chem. (1993) 268:19650–19655.
  • EGAN IM, CLOCQUET AR, ELAHI D:The insulinotropic effect of acute exendin-4 administered to humans: comparison of nondiabetic state to Type 2 diabetes. Clin. Endocrinol Metab. (2002) 87:1282–1290.
  • AGERSO H, JENSEN LB, ELBROND B, ROLAN P, ZDRAVKOVIC M: The pharmacokinetics, pharmacodynamics, safety and tolerability of NN2211, a new long-acting GLP-1 derivative, in healthy men. Diabetologia (2002) 45:195–202.
  • JUHL CB, HOLLINGDAL M, STURIS J: Bedtime administration of NN2211, a long-acting GLP-1 derivative, substantially reduces fasting and postprandial glycemia in Type 2 diabetes. Diabetes (2002) 51:424–429.
  • MENTLEIN R: Dipeptidyl-peptidase IV (CD26)-role in the inactivation of regulatory peptides. Regal. Pept. (1999) 85:9–24.
  • GORRELL MD, GYSBERS V, MCCAUGHAN GW: CD26: a multifunctional integral membrane and secreted protein of activated lymphocytes. Scand. brimunol. (2001) 54:249–264.
  • IWAKI-EGAWA S, WATANABE Y, KIKUYA Y, FUJIMOTO Y: Dipeptidyl peptidase IV from human serum: purification, characterization, and N-terminal amino acid sequence. J. Biochem. (Tokyo) (1998) 124:428–433.
  • DURINX C, LAMBEIR AM, BOSMANS E et al.: Molecular characterization of dipeptidyl peptidase activity in serum: soluble CD26/dipeptidyl peptidase IV is responsible for the release of X-Pro dipeptides. Ear: I Biochem. (2000) 267:5608–5613.
  • DAVID F, BERNARD AM, PIERRES M, MARGUET D: Identification of serine 97 624, aspartic acid 702, and histidine 734 as the catalytic triad residues of mouse dipeptidyl-peptidase IV (CD26). A member of a novel family of nonclassical serine hydrolases. J. Biol. Chem (1993) 268:17247–17252.
  • ABBOTT CA, BAKER E, SUTHERLAND GR, MCCAUGHAN GW: Genomic organization, exact localization, and tissue expression of the human CD26 (dipeptidyl peptidase IV) gene. Immunogenetics (1994) 40:331–338.
  • HONG WJ, PETELL JK, SWANK D, SANFORD J, HIXSON DC, DOYLE D: Expression of dipeptidyl peptidase IV in rat tissues is mainly regulated at the mRNA levels. Exp. Cell Res. (1989) 182:256–266.
  • SAKAMOTO J, WATANABE T, TERAMUKAI S et al.: Distribution of adenosine deaminase binding protein in normal and malignant tissues of the gastrointestinal tract studied by monoclonal antibodies.j Surg. Oncol. (1993) 52:124–134.
  • MORIMOTO C, SCHLOSSMAN SF: The structure and function of CD26 in the T-cell immune response. Immunol. Rev (1998) 161:55–70.
  • HILDEBRANDT M, REUTTER W, ARCK P, ROSE M, KLAPP BF: A guardian angel: the involvement of dipeptidyl peptidase IV in psychoneuroendocrine function, nutrition and immune defence. Clin. Sci. (Iond) (2000) 99:93–104.
  • OHTSUKI T, TSUDA H, MORIMOTO C: Good or evil: CD26 and HIV infection. Dermatol. Sci. (2000) 22:152–160.
  • IWATA S, MORIMOTO C: CD26/ dipeptidyl peptidase IV in context. The different roles of a multifunctional ectoenzyme in malignant transformation." Exp. Med. (1999) 190:301–306.
  • DANG NH, MORIMOTO C: CD26: an expanding role in immune regulation and cancer. Histol. Histopathol. (2002) 17:1213–1226.
  • ISHII T, OHNUMA K, MURAKAMI A et al.: CD26-mediated signaling for T cell activation occurs in lipid rafts through its association with CD45RO. Proc. Natl. Acad. Sci. USA (2001) 98:12138–12143.
  • BUHLING F, KUNZ D, REINHOLD D et al.: Expression and functional role of dipeptidyl peptidase IV (CD26) on human natural killer cells. Nat. Inman. (1994) 13:270–279.
  • HEGEN M, KAMEOKA J, DONG RP, MORIMOTO C, SCHLOSSMAN SF: Structure of CD26 (dipeptidyl peptidase IV) and function in human T cell activation. Adv. Exp. Med. Biol. (1997) 421:109–116.
  • HEGEN M, KAMEOKA J, DONG RP, SCHLOSSMAN SF, MORIMOTO C: Cross-linking of CD26 by antibody induces tyrosine phosphorylation and activation of mitogen-activated protein kinase. Immunology (1997) 90:257–264.
  • IKUSHIMA H, MUNAKATA Y, ISHII T et al.: Internalization of CD26 by mannose 6-phosphate/insulin-like growth Factor II receptor contributes to T cell activation. Proc. Natl. Acad. Sci. USA (2000) 97:8439–8444.
  • IKUSHIMA H, MUNAKATA Y, IWATA S et al.: Soluble CD26/dipeptidyl peptidase IV enhances transendothelial migration via its interaction with mannose 6-phosphate/ insulin-like growth Factor II receptor. Cell Immunol. (2002) 215:106–110.
  • OHNUMA K, MUNAKATA Y, ISHII T et al.: Soluble CD26/dipeptidyl peptidase IV induces T cell proliferation through CD86 up-regulation on APCs..1. Immunol. (2001) 167:6745–6755.
  • OHNUMA K, ISHII T, IWATA S et al: Gl/S cell cycle arrest provoked in human T cells by antibody to CD26. Immunology (2002) 107:325–333.
  • COBURN MC, HIXSON DC, REICHNER JS: In vitro immune responsiveness of rats lacking active dipeptidylpeptidase IV Cell Immunol. (1994) 158:269–280.
  • MARGUET D, BAGGIO L, KOBAYASHI T et al.: Enhanced insulin secretion and improved glucose tolerance in mice lacking CD26. Proc. Natl. Acad. Sci. USA (2000) 97:6874–6879.
  • •Mice deficient in CD26 exhibit increased levels of circulating incretins, reduced blood glucose and increased levels of plasma insulin following nutrient challenge.
  • PERNER F, GYURIS T, RAKOCZY G et al.: Dipeptidyl peptidase activity of CD26 in serum and urine as a marker of cholestasis: experimental and clinical evidence. I Lab. Clin. Med. (1999) 134:56–67.
  • FIRNEISZ G, LAKATOS PL, SZALAY F: Serum dipeptidyl peptidase IV (DPP IV, CD26) activity in chronic hepatitis C. Scand. Castroenterol. (2001) 36:877–880.
  • GOTOH H, HAGIHARA M, NAGATSU T, IWATA H, MIURA T: Activity of dipeptidyl peptidase IV and post-proline cleaving enzyme in sera from osteoporotic patients. Clin. Chem. (1988) 34:2499–2501.
  • REINHOLD D, HEMMER B, GRAN B et al.: Dipeptidyl peptidase IV (CD26): role in T cell activation and autoimmune disease. Adv. Exp. Med. Biol. (2000) 477:155–160.
  • VANHAM G, KESTENS L, DE MEESTER I et al.: Decreased expression of the memory marker CD26 on both CD4+ and CD8+ T lymphocytes of HIV-infected subjects. I Acquic Immune Defic. Syndr. (1993) 6:749–757.
  • HOSONO 0, HOMMAT, KOBAYASHI H et al.: Decreased dipeptidyl peptidase IV enzyme activity of plasma soluble CD26 and its inverse correlation with HIV-1 RNA in HIV-1 infected individuals. Clin. Immunol. (1999) 91:283–295.
  • KEANE NM, PRICE P, LEE S, STONE SF, FRENCH MA: An evaluation of serum soluble CD30 levels and serum CD26 (DPPIV) enzyme activity as markers of Type 2 and Type 1 cytokines in HIV patients receiving highly active antiretroviral therapy. Clin. Exp. Immunol. (2001) 126:111–116.
  • MENTLEIN R, STAVES R, RIX-MATZEN H, TINNEBERG HR: Influence of pregnancy on dipeptidyl peptidase IV activity (CD 26 leukocyte differentiation antigen) of circulating lymphocytes. Eur.J Clin. Chem. Clin. Biochem. (1991) 29:477–480.
  • ROSE M, HILDEBRANDT M, FLIEGE H, SEIBOLD S, MONNIKES H, KLAPP BF: T-cell immune parameters and depression in patients with Crohn's disease. Clin. Castroenterol. (2002) 34:40–48.
  • MAES M, DE MEESTER I, VERKERK R et al.: Lower serum dipeptidyl peptidase IV activity in treatment resistant major depression: relationships with immune-inflammatory markers. Psychoneuroendocrinology (1997) 22:65–78.
  • ELGUN S, KESKINEGE A, KUMBASAR H: Dipeptidyl peptidase IV and adenosine deaminase activity. Decrease in depression. Psychoneuroendocrinology (1999) 24:823–832.
  • HILDEBRANDTM, ROSE M, MAYR C et al.: Dipeptidyl peptidase IV (DPP IV, CD26) in patients with mental eating disorders. Adv. Exp. Med. Biol. (2000) 477:197–204.
  • STANCIKOVA M, LOJDA Z, LUKAC J, RUZICKOVA M: Dipeptidyl peptidase IV in patients with systemic lupus erythematosus. Gin. Exp. Rheumatol (1992) 10:381–385.
  • CORDERO 0J, SALGADO FJ, MERA-VARELA A, NOGUEIRA M: Serum interleukin-12, interleukin-15, soluble CD26, and adenosine deaminase in patients with rheumatoid arthritis. Rheumatol Int. (2001) 21:69–74.
  • SCHONERMARCK U, CSERNOK E, TRABANDT A, HANSEN H, GROSS WL: Circulating cytokines and soluble CD 23, CD26 and CD30 in ANCA-associated vasculitides. Gin. Exp. Rheumatol (2000) 18:457–463.
  • LEFEBVRE J, MURPHEY LJ, HARTERT TV, RAO SHAN R, SIMMONS WH, BROWN NJ: Dipeptidyl peptidase IV activity in patients with ACE-inhibitor-associated angioedema. Hypertension (2002) 39:460–464.
  • TANAKA T, UMEKI K, YAMAMOTO I, SAKAMOTO F, NOGUCHI S, OHTAKI S: CD26 (dipeptidyl peptidase IV/DPP IV) as a novel molecular marker for differentiated thyroid carcinoma. Int. Cancer (1995) 64:326–331.
  • UMEKI K, TANAKA T, YAMAMOTO I et al.: Differential expression of dipeptidyl peptidase IV (CD26) and thyroid percoddase in neoplastic thyroid tissues. Endocr. (1996) 43:53–60.
  • WILSON MJ, RUHLAND AR, QUAST BJ, REDDY PK, EWING SL, SINHA AA: Dipeptidylpeptidase IV activities are elevated in prostate cancers and adjacent benign hyperplastic glands. " Andra (2000) 21:220–226.
  • CORDERO 0J, AYUDE D, NOGUEIRA M, RODRIGUEZ-BERROCAL FJ, DE LA CADENA MP: Preoperative serum CD26 levels: diagnostic efficiency and predictive value for colorectal cancer. Br. Cancer (2000) 83:1139–1146.
  • UEMATSU T, URADE M, YAMAOKA M, YOSHIOKA W: Reduced expression of dipeptidyl peptidase (DPP) IV in peripheral blood T lymphocytes of oral cancer patients. Oral Pathol Med. (1996) 25:507–512.
  • LAMBEIR AM, PROOST P, DURINX C et al.: Kinetic investigation of chemokine truncation by CD26/dipeptidyl peptidase IV reveals a striking selectivity within the chemokine family. Biol. Chem. (2001) 276:29839–29845.
  • LAMBEIR AM, DURINX C, PROOST P, VAN DAMME J, SCHARPE S, DE MEESTER I: Kinetic study of the processing by dipeptidyl-peptidase IV/ CD26 of neuropeptides involved in pancreatic insulin secretion. FEBS Lett. (2001) 507:327–330.
  • DE MEESTER I, DURINX C, BAL G et al.: Natural substrates of dipeptidyl peptidase IV. Adv. Exp. Med. Biol. (2000) 477:67–87.
  • POSPISILIK JA, HINKE SA, PEDERSON RA et al.: Metabolism of glucagon by dipeptidyl peptidase IV (CD26). Regal Pept. (2001) 6:133–141.
  • HINKE SA, POSPISILIK JA, DEMUTH HU et al.: Dipeptidyl peptidase IV (DPIV/ CD26) degradation of glucagon. Characterization of glucagon degradation products and DPI V-resistantanalogs." Biol. Chem. (2000) 275:3827–3834.
  • POULSEN MD, HANSEN GH, DABELSTEEN E, HOYER PE, NOREN 0, SJOSTROM H: Dipeptidyl peptidase IV is sorted to the secretory granules in pancreatic islet A-cells. I Histochem. Cytochem. (1993) 41:81–88.
  • HANSEN L, DEACON CF, ORSKOV C, HOLST JJ: Glucagon-like peptide 1 (7 36)amide is transformed to glucagon-like peptide-1-(9-36)amide by dipeptidyl peptidase IV in the capillaries Supplying the L cells of the porcine intestine. Endocrinology (1999) 140:5356–5363.
  • PAULY RP, DEMUTH HU, ROSCHE F et al.: Improved glucose tolerance in rats treated with the dipeptidyl peptidase IV (CD26) inhibitor Ile-thiazolidide. Metabolism (1999) 48:385–389.
  • BALKAN B, KWASNIK L, MISERENDINO R, HOLST JJ, LI X: Inhibition of dipeptidyl peptidase IV with NVP-DPP728 increases plasma GLP-1 (7-36 amide) concentrations and improves oral glucose tolerance in obese Zucker rats. Diabetologia (1999) 42:1324–1331.
  • DEACON CF, WAMBERG S, BIE P, HUGHES TE, HOLST JJ: Preservation of active incretin hormones by inhibition of dipeptidyl peptidase IV suppresses meal-induced incretin secretion in dogs." Endocrinol (2002) 172:355–362.
  • REIMER MK, HOLST JJ, AHREN B et al.: Long-term inhibition of dipeptidyl peptidase IV improves glucose tolerance and preserves islet function in mice. Ear: Endocrinol (2002) 146:717–727.
  • NAGAKURA T, YASUDA N, YAMAZAKI K et al.: Improved glucose tolerance via enhanced glucose-dependent insulin secretion in dipeptidyl peptidase IV-deficient Fischer rats. Biochem. Biophys. Res. Commun. (2001) 284:501–506.
  • KNUDSEN LB, PRIDAL L: Glucagon-like peptide-1-(9-36) amide is a major metabolite of glucagon-like peptide-1-(7-36)amide after in vivo administration to dogs and it acts as an antagonist on the pancreatic receptor. Eui: Pharmacol (1996) 318:429–435.
  • AYTAC U, CLARET FX, HO L et al.: Expression of CD26 and its associated dipeptidyl peptidase IV enzyme activity enhances sensitivity to doxorubicin-induced cell cycle arrest at the G(2)/M checkpoint. Cancer Res. (2001) 61:7204–7210.
  • WESLEY UV, ALBINO AP, TIWARI S, HOUGHTON AN: A role for dipeptidyl peptidase IV in suppressing the malignant phenotype of melanocytic cells. I Exp. Med. (1999) 190:311–322.
  • PETHIYAGODA CL, WELCH DR, FLEMING TP: Dipeptidyl peptidase IV (DPPIV) inhibits cellular invasion of melanoma cells. Clin. Exp. Metastasis(2000) 18:391–400.
  • KAJIYAMA H, KIKKAWA F, SUZUKI T, SHIBATA K, INO K, MIZUTANI S: Prolonged survival and decreased invasive activity attributable to dipeptidyl peptidase IV overexpression in ovarian carcinoma. Cancer Res. (2002) 62:2753–2757.
  • SATO Y, FUJI WARA H, HIGUCHI T et al.: Involvement of Dipeptidyl Peptidase IV in Extravillous Trophoblast Invasion and Differentiation. I. Clin. Endocrinol Metab. (2002) 87:4287–4296.
  • GHERSI G, DONG H, GOLDSTEIN LA et al.: Regulation of fibroblast migration on collagenous matrix by a cell surface peptidase complex. Biol. Chem. (2002) 277(32):29231–29241.
  • STEINBRECHER A, REINHOLD D, QUIGLEY L et al.: Targeting dipeptidyl peptidase IV (CD26) suppresses autoimmune encephalomyelitis and up-regulates TGF-beta 1 secretion in vivo. Immunol (2001) 166:2041–2048.
  • SHINOSAKI T, KOBAYASHI T, KIMURA K, KURIHARA H: Involvement of dipeptidyl peptidase IV in immune complex-mediated glomerulonephritis. Lab. Invest. (2002) 82:505–513.
  • GROUZMANN E, MONOD M, LANDIS B et al.: Loss of dipeptidylpeptidase IV activity in chronic rhinosinusitis contributes to the neurogenic inflammation induced by substance P in the nasal mucosa. FASEB.I. (2002) 16:1132–1134.
  • SEDO A, MALIK R: Dipeptidyl peptidase IV-like molecules: homologous proteins or homologous activities? Biochim. Biophys. Acta (2001) 1550:107–116.
  • HOLST JJ, DEACON CF: Inhibition of the activity of dipeptidyl-peptidase IV as a treatment for Type 2 diabetes. Diabetes (1998) 47: 1663-1670.
  • DEACON CF, HOLST JJ: Dipeptidyl peptidase IV inhibition as an approach to the treatment and prevention of Type 2 diabetes: a historical perspective. Biochem. Biophys. Res. Commun. (2002) 294:1–4.
  • DEMUTH HU, HINKE SA, PEDERSON RA, MCINTOSH CH: Rebuttal to Deacon and Holst: `Metformin effects on dipeptidyl peptidase IV degradation of glucagon-like peptide-1' versus Dipeptidyl peptidase inhibition as an approach to the treatment and prevention of Type 2 diabetes: a historical perspective'. Biochem. Biophys. Res. Commun. (2002) 296:229–232.
  • DEACON CF, HUGHES TE, HOLST JJ: Dipeptidyl peptidase IV inhibition potentiates the insulinotropic effect of glucagon-like peptide 1 in the anesthetized pig. Diabetes (1998) 47:764–769.
  • PEDERSON RA, WHITE HA, SCHLENZIG D, PAULY RP, MCINTOSH CH, DEMUTH HU: Improved glucose tolerance in Zucker fatty rats by oral administration of the dipeptidyl peptidase IV inhibitor isoleucine thiazolidide. Diabetes (1998) 47:1253–1258.
  • AHREN B, HOLST JJ, MARTENSSON H, BALKAN B: Improved glucose tolerance and insulin secretion by inhibition of dipeptidyl peptidase IV in mice. Ear. J. Pharmacol. (2000) 404:239–245.
  • DEACON CE DANIELSEN P, KLARSKOV L, OLESEN M, HOLST JJ: Dipeptidyl peptidase IV inhibition reduces the degradation and clearance of GIP and potentiates its insulinotropic and antihyperglycemic effects in anesthetized pigs. Diabetes (2001) 50:1588–1597.
  • POSPISILIK JA, STAFFORD SG, DEMUTH HU et al.: Long-term treatment with the dipeptidyl peptidase IV inhibitor P32/98 causes sustained improvements in glucose tolerance, insulin sensitivity, hyperinsulinemia, and beta-cell glucose responsiveness in VDF (fa/fa) Zucker rats. Diabetes (2002) 51:943–950.
  • POSPISILIK JA, STAFFORD SG, DEMUTH HU, MCINTOSH CH, PEDERSON RA: Long-term treatment with dipeptidyl peptidase iv inhibitor improves hepatic and peripheral insulin sensitivity in the VDF Zucker rat: a euglycemic-hyperinsulinemic clamp study. Diabetes (2002) 51:2677–2683.
  • SUDRE B, BROQUA P, WHITE RB et al: Chronic inhibition of circulating dipeptidyl peptidase IV by FE 999011 delays the occurrence of diabetes in male zucker diabetic fatty rats. Diabetes (2002) 51:1461–1469.
  • AHREN B, SIMONSSON E, LARSSON H et al.: Inhibition of dipeptidyl peptidase IV improves metabolic control over a 4-week study period in Type 2 diabetes. Diabetes Care (2002) 25:869–875.
  • •Demonstration that a 4-week treatment course with a DPP-IV inhibitor lowers blood glucose and HbAlc in human diabetic subjects.
  • HOFFMANN T, GLUND K, MCINTOSH CHS et al:. DPPIV inhibition as treatment of type II diabetes. In: Cell-Surface Aminopeptidases: Basic and Clinical Aspects. S Mizutani (Ed.), Elsevier (2001):381–387.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.