103
Views
22
CrossRef citations to date
0
Altmetric
Review

Anti-HIV agents targeting the interaction of gp120 with the cellular CD4 receptor

&
Pages 1199-1212 | Published online: 27 Sep 2005

Bibliography

  • DE CLERCQ E: Emerging anti-HIV drugs. Expert Opin. on Emerging Drugs (2005) 10(2):241–273.
  • ••An excellent review on antiviral agentstargeting different steps of HIV infection.
  • RICHMAN DD: HIV chemotherapy. Nature (2001) 410:995–1001.
  • BLANKSON JN, PERSAUD D, SILICIANO RF: The challenge of viral reservoirs in HIV-1 infection. Ann. Rev Med. (2002) 53:557–593.
  • CHUN TW, FAUCI AS: Latent reservoirs of HIV: obstacles to the eradication of virus. Proc. Nati Acad. Sci. USA (1999) 96:10958–10961.
  • DALGLEISH AG, BEVERLEY PC, CLAPHAM PR, CRAWFORD DH, GREAVES MF, WEISS RA: The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature (1984) 312:763–767.
  • ••A pivotal paper describing the discovery ofCD4 as the main receptor for HIV.
  • FENG Y, BRODER CC, KENNEDY PE, BERGER EA: HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science (1996) 272:872–877.
  • TRKOLA A, DRAGIC T, ARTHOS J et al.: CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature (1996) 384:184–187.
  • WU L, GERARD NP, WYATT R et al.: CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature (1996) 384:179–183.
  • ALKHATIB G, COMBADIERE C, BRODER CC et al: CC CKR5: RANTES, MIP-la, MIP-113 receptor as a cofactor for macrophage-tropicHIV-1. Science (1996) 272:1955-1958..DENG H, LIU R, ELLMEIER W et al: of a major co-receptor for primary isolates of HIV-1. Nature (1996) 381:661–666.
  • BERSON JF, LONG D, DORANZ BJ, RUCKER J, JIRIK FR, DOMS RW: A seven-transmembrane domain receptor involved in fusion and entry of T-cell-tropic human immunodeficiency virus Type 1 strains.' Viral. (1996) 70:6288–6295.
  • CONNOR RI, SHERIDAN KE, CERADINI D, CHOE S, LANDAU NR: Change in coreceptor use correlates with disease progression in HIV-1-infected individuals. I Exp. Med. (1997) 185:621–628.
  • HOFFMAN TL, LABRANCHE CC, ZHANG W et al: Stable exposure of the coreceptor-binding site in a CD4-independent HIV-1 envelope protein. Proc. Natl. Acad. Sci. USA (1999) 96:6359–6364.
  • COCCHI F, DEVICO AL, GARZINO-DEMO A, CARA A, RC, LUSSO P: The V3 domain of the HIV-1 gp120 envelope glycoprotein is critical for chemokine-mediated blockade of infection. Nat. Med. (1996) 2:1244–1247.
  • CHAN DC, FASS D, BERGER JM, KIM PS: Core structure of gp41 from the HIV envelope glycoprotein. Cell (1997) 89:263–273.
  • WEISSENHORN W, DESSEN A, HARRISON SC, SKEHEL JJ, WILEY DC: Atomic structure of the ectodomain from HIV-1 gp41. Nature (1997) 387:426–430.
  • DOMS RW: Beyond receptor expression:the influence of receptor conformation, density, and affinity in HIV-1 infection. Virology (2000) 276:229–237.
  • LITTMAN DR: The structure of the CD4and CD8 genes. Ann. Rev Inununol. (1987) 5:561–584.
  • KRUISBEEK AM, MOND JJ, FOWLKES BJ, CARMEN JA, S, LONGO DL: Absence of the Lyt-2-,L3T4* lineage of T cells in mice treated neonatally with anti-I-A correlates with absence of intrathymic I-A-bearing antigen-presenting cell function.. Exp. Med. (1985) 161:1029–1047.
  • LAMARRE D, CAPON DJ, KARP DR, GREGORY T, LONG E0, SEKALY RP: Class II MHC molecules and the HIV gp 120 envelope protein interact with distinct regions of the CD4 molecule. EMBO J. (1989) 8:3271–3277.
  • RUDD CE, TREVILLYAN JM, DASGUPTA JD, WONG LL, SCHLOSSMAN SF: The CD4 receptor is complexed in detergent lysates to a protein-tyrosine kinase (pp58) from human lymphocytes. Proc. Natl. Acad. Li. USA(1988) 85:5190–5194.
  • LEAHY DJ: A structural view of CD4 and CD8. FASEB J. (1995) 9:17–25.
  • •A review on the structure of the CD4 receptor.
  • WANG JH, YAN YW, GARRETT TP et al: Atomic structure of a fragment of human CD4 containing two immunoglobulin-like domains. Nature (1990) 348:411–418.
  • RYU SE, KWONGPD, TRUNEH A et al: Crystal structure of an HIV-binding recombinant fragment of human CD4. Nature (1990) 348:419–426.
  • CHAO BH, COSTOPOULOS DS, CURIEL T et al: A 113-amino acid fragment of CD4 produced in Escherichia coli blocks human immunodeficiency virus-induced cell fusion. Biol. Chem. (1989) 264:5812–5817.
  • ARTHOS J, DEEN KC, CHAIKIN MA et al: Identification of the residues in CD4 critical for the binding of HIV. Cell (1989) 57:469–481.
  • SATTENTAU QJ, DALGLEISH AG, WEISS RA, BEVERLEY PC: Epitopes of the CD4 antigen and HIV infection. Science (1986) 234:1120–1123.
  • JAMESON BA, RAO PE, KONG LI et al:Location and chemical synthesis of a binding site for HIV-1 on the CD4 protein. Science (1988) 240:1335–1339.
  • ASHKENAZI A, PRESTA LG, MARSTERS SA et al: Mapping the CD4 binding site for human immunodeficiency virus by alanine-scanning mutagenesis. Proc. Nail Acad. Sci. USA (1990) 87:7150–7154.
  • CLAYTON LK, SIEH M, PIOUS DA, REINHERZ EL: Identification of human CD4 residues affecting class II MHC versus HIV-1 gp120 binding. Nature (1989) 339:548–551.
  • MIZUKAMI T, FUERST TR, EA, MOSS B: Binding region for human immunodeficiency virus (HIV) and epitopes for HIV-blocking monoclonal antibodies of the CD4 molecule defined by site-directed mutagenesis. Proc. Nati Acad. ScL USA (1988) 85:9273–9277.
  • MOEBIUS U, CLAYTON LK, ABRAHAM S, HARRISON SC, REINHERZ EL: The human immunodeficiency virus gp120 binding site on CD4: delineation by quantitative equilibrium and kinetic binding studies of mutants in conjunction with a high-resolution CD4 atomic structure. J. Exp. Med. (1992) 176:507–517.
  • •An excellent paper describing the importance of Phe43 in the gp120 binding site on CD4.
  • RICHARDSON NE, BROWN NR, HUSSEY RE et al.: Binding site for human immunodeficiency virus coat protein gp120 is located in the NH2-terminal region of T4 (CD4) and requires the intact variable-region-like domain. Proc. Nati Acad. ScL USA (1988) 85:6102–6106.
  • KWONG PD, WYATT R, ROBINSON J, SWEET RW, SODROSKI J, HENDRICKSON WA: Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature (1998) 393:648–659.
  • KWONG PD, WYATT R, QJ, SODROSKI J, HENDRICKSON WA: Oligomeric modeling and electrostatic analysis of the120 envelope glycoprotein of human immunodeficiency virus. J. Viral. (2000) 74:1961–1972.
  • CHEN B, VOGAN EM, GONG H, SKEHEL JJ, WILEY DC, SC: Structure of an unliganded simian immunodeficiency virus gp120 core. Nature (2005) 433:834–841.
  • MURRAY JL, HU QX, NAVENOT JM, PEIPER SC: Role of CD4 hinge region in GP120 utilization by immunoglobulin domain 1. Biochem. Biophys. Res. Commun. (2002) 292:449–455.
  • WU H, KWONG PD, HENDRICKSON WA: Dimeric association and segmental variability in the structure of human CD4. Nature (1997) 387:527–530.
  • POULIN L, EVANS LA, TANG SB et al.:Several CD4 domains can play a role in human immunodeficiency virus infection in cells." Viral. (1991) 65:4893–4901.
  • GOLDING H, BLUMENTHAL R, MANISCHEWITZ J, LITTMAN DR, DIMITROV DS: Cell fusion mediated by interaction of a hybrid CD4.CD8 molecule with the human immunodeficiency virus Type 1 envelope glycoprotein does occur after a long lag time. J. Viral. (1993) 67:6469–6475.
  • BRADY RL, DODSON EJ, GG et al: Crystal structure of domains 3 and 4 of rat CD4: relation to the NH2-terminal domains. Science (1993) 260:979–983.
  • MOIR S, PERREAULT J, POULIN L: Postbinding events mediated by human immunodeficiency virus Type 1 are sensitive to modifications in the D4-transmembrane linker region of CD4. Viral. (1996) 70:8019–8028.
  • YACHOU A, SEKALY RP: Binding of soluble recombinant HIV envelope glycoprotein, rgp120, induces conformational changes in the cellular membrane-anchored CD4 molecule. Biochem. Biophys. Res. Commun. (1999) 265:428–433.
  • MYSZKA DG, SWEET RW, HENSLEY P et al: Energetics of the HIV gp120-CD4 binding reaction. Proc. Natl. Acad. Sci. USA (2000) 97:9026–9031.
  • KWONG PD, WYATT R, MAJEED S et al.: Structures of HIV-1 gp120 envelope glycoproteins from laboratory-adapted and primary isolates. Structure Fold. Des. (2000) 8:1329–1339.
  • WYATT R, KWONG PD, DESJARDINS E et al.: The antigenic structure of the HIV gp120 envelope glycoprotein. Nature (1998) 393:705–711.
  • WYATT R, SODROSKI J: The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science (1998) 280: 1884-1888.
  • SMITH DH, BYRN RA, MARSTERS SA, GREGORY T, GROOPMAN JE, DJ: Blocking of HIV-1 infectivity a soluble, secreted form of the CD4 antigen. Science (1987) 238: 1704-1707.
  • TRAUNECKER A, LUKE W, KARJALAINEN K: Soluble CD4 molecules neutralize human immunodeficiency virus Type 1. Nature (1988) 331:84–86.
  • DEEN KC, McDOUGAL JS, R et al: A soluble form of CD4 (T4) protein inhibits AIDS virus infection. Nature (1988) 331:82–84.
  • SCHOOLEY RT, MERIGAN TC, GAUT P et al.: Recombinant soluble CD4 therapy in patients with the acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. A Phase I-II escalating dosage trial. Ann. Intern. Med. (1990) 112:247–253.
  • DAAR ES, LI XL, MOUDGIL T, HO DD: High concentrations of recombinant soluble CD4 are required to neutralize primary human immunodeficiency virus Type 1 isolates. Proc. Natl. Acad. ScL USA (1990) 87:6574–6578.
  • MOORE JP, MCKEATING JA, HUANG YX, ASHKENAZI A, HO DD: Virions of primary human immunodeficiency virus Type 1 isolates resistant to soluble CD4 (sCD4) neutralization differ in sCD4 binding and glycoprotein gp120 retention from sCD4-sensitive isolates. J. Vim]. (1992) 66:235–243.
  • ORLOFF SL, KENNEDY MS, BELPERRON AA, MADDON PJ, McDOUGAL JS: Two mechanisms of soluble CD4 (sCD4)-mediated inhibition of human immunodeficiency virus Type 1 (HIV-1) infectivity and their relation to primary HIV-1 isolates with reduced to sCD4.Viral. (1993)67:1461–1471.
  • SULLIVAN N, SUN Y, SATTENTAU Q et al.: CD4-Induced conformational changes in the human immunodeficiency virus Type 1 gp120 glycoprotein: consequences for virus entry and. J. Virol (1998) 72:4694–4703.
  • SALZWEDEL K, SMITH ED, DEY B, BERGER EA: Sequential CD4-coreceptor interactions in human immunodeficiency virus Type 1 Env function: soluble CD4 activates Env for coreceptor-dependent fusion and reveals blocking activities of antibodies against cryptic conserved epitopes on gp120. Virol (2000) 74:326–333.
  • ALLAWAY GP, DAVIS-BRUNO KL, BEAUDRY GA et al.: Expression and characterization of CD4-IgG2, a novel heterotetramer that neutralizes primary HIV Type 1 isolates. AIDS Res.. Retroviruses (1995) 11:533–539.
  • GAUDUIN MC, ALLAWAY GP, MADDON PJ, BARBAS CF III, BURTON DR, KOUP RA: Effective ex vivo neutralization of human immunodeficiency virus Type 1 in plasma by recombinant immunoglobulin molecules. J. Virol (1996) 70:2586–2592.
  • TRKOLA A, POMALES AB, YUAN H et al.: Cross-clade neutralization of primary isolates of human immunodeficiency virus Type 1 by human monoclonal antibodies and tetrameric CD4-IgG. Virol (1995) 69:6609–6617.
  • KETAS TJ, FRANK I, KLASSE PJ et al:Human immunodeficiency virus Type 1 attachment, coreceptor, and fusion inhibitors are active against both direct and trans infection of primary cells." Virol (2003) 77:2762–2767.
  • NAGASHIMA KA, THOMPSON DA, ROSENFIELD SI, MADDON PJ, DRAGIC T, OLSON WC: Human immunodeficiency virus Type 1 entry inhibitors PRO 542 and T-20 are potently synergistic in blocking virus-cell and cell-cell fusion." Infect. Dis. (2001) 183:1121–1125.
  • GAUDUIN MC, ALLAWAY GP, OLSON WC, WEIR R, MADDON PJ, KOUP RA: CD4-immunoglobulin G2 protects Hu-PBL-SCID mice against challenge by primary human immunodeficiency virus Type 1 isolates. (1998) 72:3475-3478.
  • TRKOLA A, KETAS T, VN etal: Neutralization sensitivity of human immunodeficiency virus Type 1 primary isolates to antibodies and CD4-based reagents is independent of coreceptor usage." Virol (1998) 72:1876–1885.
  • JACOBSON JM, LOWY I, CV et al.: Single-dose safety, pharmacology, and antiviral activity of the human immunodeficiency virus (HIV) Type 1 entry inhibitor PRO 542 in HIV-infected adults. J. Infect. Dis. (2000) 182:326–329.
  • SHEARER WT, ISRAEL RJ, STARR S et al.: Recombinant CD4-IgG2 in human immunodeficiency virus Type 1-infected children: Phase 1/2 study. j Infect. Dis. (2000) 182:1774–1779.
  • JACOBSON JM, ISRAEL RJ, LOWY I et al.: Treatment of advanced human immunodeficiency virus Type 1 disease with the viral entry inhibitor PRO 542. Antimicrob. Agents Chemother. (2004) 48:423–429.
  • DEY B, DEL CASTILLO CS, EA: Neutralization of human immunodeficiency virus Type 1 by sCD4-17b, a single-chain chimeric protein, based on sequential interaction of gp120 with CD4 and coreceptor. Virol (2003) 77:2859–2865.
  • MARTIN L, STRICHER F, MISSED et al.: Rational design of a CD4 mimic that inhibits HIV-1 entry and exposes cryptic neutralization epitopes. Nat. Biotechnol (2003) 21:71–76.
  • VITA C, DRAKOPOULOU E, J et al.: Rational engineering of a miniprotein that reproduces the core of the CD4 site interacting with HIV-1 envelope glycoprotein. Proc. Natl. Acad. Sci. USA (1999) 96:13091–13096.
  • LI H, SONG H, HEREDIA A et al: Synthetic bivalent CD4-mimetic miniproteins show enhanced anti-HIV activity over the monovalent miniprotein. Biocorgug. Chem. (2004) 15:783–789.
  • WANG T, ZHANG Z, WALLACE OB et al.: Discovery of 4-benzoy1-1-[(4-methoxy-1H- pyrrolor2,3-blpyridin-3-y6oxoacetyll-2- (A)-methylpiperazine (BMS-378806): a novel HIV-1 attachment inhibitor that interferes with CD4-gp120 interactions. J. Med. Chem. (2003) 46:4236–4239.
  • LIN PF, BLAIR W, WANG T et al.: A small molecule HIV-1 inhibitor that targets the HIV-1 envelope and inhibits CD4 receptor binding. Proc. Nati Acad. Sci. USA (2003) 100(19):11013–11018.
  • GUO Q, HO HT, DICKER I et al.: Biochemical and genetic characterizations of a novel human immunodeficiency virus Type 1 inhibitor that blocks gp120-CD4. Virol (2003) 77(19):10528–10536.
  • WANG HG, WILLIAMS RE, LIN PF: A novel class of HIV-1 inhibitors that targets the viral envelope and inhibits CD4 receptor binding. Curr. Pharm. Des. (2004) 10:1785–1793.
  • MOORE PL, CILLIERS T, MORRIS L: Predicted genotypic resistance to the novel entry inhibitor, BMS-378806, among HIV-1 isolates of subtypes A to G. AIDS (2004) 18:2327–2330.
  • SI Z, MADANI N, COX JM et al: Small-molecule inhibitors of HIV-1 entry block receptor-induced conformational changes in the viral envelope glycoproteins. Proc. Nati Acad. Sci. USA (2004) 101:5036–5041.
  • MADANI N, PERDIGOTO AL, VA SAN K et al: Localized changes in the gp120 envelope glycoprotein confer resistance to human immunodeficiency virus entry inhibitors BMS-806 and #155.. (2004) 78:3742–3752.
  • LIN PF, HO HT, GONG YF et al.: Characterization of a small molecule HIV-1 attachment inhibitor BMS-488043: virology, resistance and mechanism of action. I I th Conference on Retro viruses and Opportunistic Infections. San Francisco, CA, USA (2004) A-534 (Abstract).
  • HANNA G, YAN J-H, FISKE W, MASTERSON T, ZHANG D, GRASELA D: Safety, tolerability, and pharmacokinetics of a novel, small-molecule HIV-1 attachment inhibitor, BMS-488043, after single and multiple oral doses in healthy subjects. 11th Conference on Retro viruses and Opportunistic Infections. San Francisco, CA, USA (2004):A-535 (Abstract).
  • HANNA G, LALEZARI JP, J et al.: Antiviral activity, safety, and tolerability of a novel, oral small-molecule HIV-1 attachment inhibitor, BMS-488043, in HIV-1 infected subjects. I I th Conference on Retro viruses and Opportunistic Infections. San Francisco, CA, USA (2004) A-141 (Abstract).
  • BOYD MR, GUSTAFSON KR, McMAHON JB et al.: Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: potential applications to microbicide development.. Agents Chemother. (1997) 41:1521–1530.
  • TSAI CC, EMAU P, JIANG Yet al.: Cyanovirin-N gel as a topical microbicide prevents rectal transmission of SHIV89.6P in macaques. AIDS Res. Hum. Retroviruses (2003) 19(7):535–541.
  • TSAI CC, EMAU P, JIANG Y et al: Cyanovirin-N inhibits AIDS virus infections in vaginal transmission models. AIDS Res. Hum. Retroviruses (2004) 20:11–18.
  • COLLELUORI DM, TIEN D, KANG F et al: Expression, purification, and characterization of recombinant cyanovirin-N for vaginal anti-HIV microbicide development. Expr. PuriE (2005) 39:229–236.
  • DEY B, LERNER DL, LUSSO P, BOYD MR, ELDER JH, BERGER EA: Multiple antiviral activities of cyanovirin-N: blocking of human immunodeficiency virus Type 1 gp120 interaction with CD4 and coreceptor and inhibition of diverse enveloped viruses. J. Virol. (2000) 74:4562–4569.
  • ESSER MT, MORI T, MONDOR I et al:Cyanovirin-N binds to gp120 to interfere with CD4-dependent human immunodeficiency virus Type 1 virion binding, fusion, and infectivity but does not affect the CD4 binding site on gp120 or soluble CD4-induced conformational changes in gp120. Virol. (1999) 73:4360–4371.
  • MORI T, BOYD MR: Cyanovirin-N, a potent human immunodeficiency virus-inactivating protein, blocks both CD4-dependent and CD4-independent binding of soluble gp120 (sgp120) to target cells, inhibits sCD4-induced binding of sgp120 to cell-associated CXCR4, and dissociates bound sgp120 from target cells. Antimicrob. Agents Chemother. (2001) 45:664–672.
  • SHENOY SR,'KEEFE BR, BOLMSTEDT AJ, CARTNER LK, BOYD MR: Selective interactions of the human immunodeficiency virus-inactivating protein cyanovirin-N with high-mannose oligosaccharides on gp120 and other glycoproteins. ./. Pharmacol.. Ther. (2001) 297:704–710.
  • BARRIENTOS LG, LOUIS JM, RATNER DM, SEEBERGER PH, GRONENBORN AM: Solution structure of a circular-permuted variant of the potent HIV-inactivating protein cyanovirin-N: structural basis for protein stability and interaction. J. Mol. Biol.(2003) 325:211–223.
  • WITVROUW M, FIKKERT V, HANTSON A et al.: Resistance of human immunodeficiency virus Type 1 to the high-mannose binding agents cyanovirin N and concanavalin A." Virol. (2005) 79:7777–7784.
  • GIOMARELLI B, PROVVEDI R, MEACCI F et al.: The microbicide cyanovirin-N expressed on the surface of commensal bacterium Streptococcus gordonii captures HIV-1. AIDS (2002) 16:1351–1356.
  • BALZARINI J, SCHOLS D, NEYTS J, VAN DAMME E, PEUMANS W, DE CLERCQ E: a-(1-3)- and a-(1-6)-D-mannose-specific plant lectins are markedly inhibitory to human immunodeficiency virus and cytomegalovirus infections in vitro. Antimicrob. Agents Chemother. (1991) 35:410–416.
  • BALZARINI J, HATSE S, VERMEIRE K-specific plant lectins fromthe Amaryllidaceae family qualify as efficient microbicides for prevention of human immunodeficiency virus infection. Antimicrob. Agents Chemother. (2004) 48:3858–3870.
  • •An interesting report on the potential of plant lectins as microbicides.
  • BALZARINI J, VAN LAETHEM K, HATSE S et al: Profile of resistance of human immunodeficiency virus to mannose-specific plant lectins. I Virol. (2004) 78:10617–10627.
  • BALZARINI J, VAN LAETHEM K, HATSE S et al.: Marked Depletion of Glycosylation Sites in HIV-1 gp120 under Selection Pressure by the Mannose-Specific Plant Lectins of Hippeastrum Hybrid and Galanthus nivalis. Mol. Pharm. (2005) 67:1556–1565.
  • BURTON DR, PYATI J, KODURI R et al.: Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science (1994) 266:1024–1027.
  • BURTON DR, BARBAS CF III, PERSSON MA, KOENIG S, CHANOCK RM, LERNER RA: A large array of human monoclonal antibodies to Type 1 human immunodeficiency virus from combinatorial libraries of asymptomatic seropositive individuals. Proc. Natl. Acad. Li. USA (1991) 88:10134–10137.
  • ROBEN P, MOORE JP, THALI M, SODROSKI J, BARBAS CF III, BURTON DR: Recognition properties of a panel of human recombinant Fab fragments to the CD4 binding site of gp120 that show differing abilities to neutralize human immunodeficiency virus Type if f Virol. (1994) 68:4821–4828.
  • ZWICK MB, PARREN PW, E0 et al: Molecular features of the broadly neutralizing immunoglobulin G1 b12 required for recognition of human immunodeficiency virus Type 1 gp120.. (2003) 77:5863–5876.
  • BURES R, MORRIS L, WILLIAMSON C et al.: Regional clustering of shared neutralization determinants on primary isolates of clade C human immunodeficiency virus Type 1 from South Africa. J. Virol. (2002) 76:2233–2244.
  • PARREN PW, MARX PA, HESSELL AJ et al.: Antibody protects macaques against vaginal challenge with a pathogenic R5 simian/human immunodeficiency virus at serum levels giving complete neutralization in vitro.j Virol. (2001) 75:8340–8347.
  • BURKLY LC, OLSON D, SHAPIRO R et al.: Inhibition of HIV infection by a novel CD4 domain 2-specific monoclonal antibody. Dissecting the basis for its inhibitory effect on HIV-induced cell fusion.' Immunol. (1992) 149:1779–1787.
  • BURKLY L, MULREY N, R, DIMITROV DS: Synergistic inhibition of human immunodeficiency virus Type 1 envelope glycoprotein-mediated cell fusion and infection by an antibody to CD4 domain 2 in combination with anti-gp120 antibodies.. (1995) 69:4267–4273.
  • MOORE JP, SATTENTAU QJ, PJ, BURKLY LC: A monoclonal antibody to CD4 domain 2 blocks soluble CD4-induced conformational changes in the envelope glycoproteins of human immunodeficiency virus Type 1 (HIV-1) and HIV-1 infection of CD4' cells. J. Virol. (1992) 66:4784–4793.
  • REIMANN KA, LIN W, BIXLER S et al: A humanized form of a CD4-specific monoclonal antibody exhibits decreased antigenicity and prolonged plasma half-life in rhesus monkeys while retaining its unique biological and antiviral properties. AIDS Res. Hum. Retroviruses (1997) 13:933–943.
  • REIMANN KA, BURKLY LC, BURRUS B, WAITE BC, LORD CI, NL: In vivo administration to rhesus monkeys of a CD4-specific monoclonal antibody capable of blocking AIDS virus replication. AIDS Res. Hum. Retroviruses (1993) 9:199–207.
  • REIMANN KA, KHUNKHUN R, UN W, GORDON W, FUNG M: A humanized, nondepleting anti-CD4 antibody that blocks virus entry inhibits virus replication in rhesus monkeys chronically infected with simian immunodeficiency virus. AIDS Res. Hum. Retroviruses (2002) 18(11):747–755.
  • BOON L, HOLLAND B, GORDON W et al.: Development of anti-CD4 MAb hu5A8 for treatment of HIV-1 infection: preclinical assessment in non-human primates. Toxicology (2002) 172:191–203.
  • KURITZKES DR, JACOBSON J, POWDERLY WG et al: Antiretroviral Activity of the Anti-CD4 Monoclonal Antibody TNX-355 in Patients Infected with HIV Type 1. J. Infect. Dis. (2004) 189:286–291.
  • ••Proof-of-concept study in HIV-1-infectedpatients demonstrating the feasibility of targeting the cellular CD4 receptor as a potential treatment approach to HIV.
  • JACOBSON JM, KURITZKES DR, GODOFSKY E et al.: Phase lb study of the anti-CD4 monoclonal antibody TNX-355 in HIV-1 infected subjects: safety and antiretroviral activity of multiple doses. I I th Conference on Retro viruses and Opportunistic Infections. San Francisco, CA, USA (2004):A-536 (Abstract).
  • RUSCONI S, MOONIS M, DP et al.: Naphthalene sulfonate polymers with CD4-blocking and anti-human immunodeficiency virus type 1 activities. Antimicrob. Agents Chemother. (1996) 40:234–236.
  • DEZZUTTI CS, JAMES VN, RAMOS A et al.: In vitro comparison of topical microbicides for prevention of human immunodeficiency virus Type 1 transmission. Antimicrob. Agents Chemother. (2004) 48:3834–3844.
  • GREENHEAD P, HAYES P, WATTS PS, LAING KG, GRIFFIN GE, RJ: Parameters of human immunodeficiency virus infection of human cervical tissue and inhibition by vaginal virucides. ./. Viral. (2000) 74:5577–5586.
  • WEBER J, NUNN A, O'CONNOR T et al: 'Chemical condoms' for the prevention of HIV infection: evaluation of agents against SHIV89.6PD in vitro and in vivo. AIDS (2001) 15:1563–1568.
  • MILLIGAN GN, CHU CE YOUNG CG, STANBERRY LR: Effect of candidate vaginally-applied microbicide compounds on recognition of antigen by CD4' and CD8' T lymphocytes. Biol. Reprod. (2004) 71:1638–1645.
  • VAN DAMME L, WRIGHT A, K et al.: A Phase I study of a novel potential intravaginal microbicide, PRO 2000, in healthy sexually inactive women. Sex. Transm. Infect. (2000) 76:126–130.
  • TABET SR, CALLAHAN MM, CK et al.: Safety and acceptability of penile application of 2 candidate topical microbicides: BufferGel and PRO 2000 gel: 3 randomized trials in healthy low-risk men and HIV-positive men. J. Acquir Immune Defic. Syndr. (2003) 33(4):476–483.
  • MAYER KH, KARIM SA, KELLY C et al.: Safety and tolerability of vaginal PRO 2000 gel in sexually active HIV-uninfected and abstinent HIV-infected women. AIDS (2003) 17:321–329.
  • KELLER M, ZERHOUNI-LAYACHI B, CHESHENKO N et al: The candidate topical microbicide PRO 2000/5 inhibits HIV and HSV infection following vaginal application: results of a double-blind placebo-controlled trial. 12th Conference on Retroviruses and Opportunistic Infections. Boston, MA, USA (2005):A-535 (Abstract).
  • YANG QE, STEPHEN AG, JW et al: Discovery of small-molecule human immunodeficiency virus Type 1 entry inhibitors that target the gp120-binding domain of CD4. Virol (2005) 79:6122–6133.
  • HOXIE JA, MATTHEWS DM, CALLAHAN KJ, CASSEL DL, COOPER RA: Transient modulation and internalization of T4 antigen induced by phorbol esters. J. Immunol (1986) 137(4):1194–1201.
  • ACRES RB, CONLON PJ, DY, GALLIS B: Rapid phosphorylation and modulation of the T4 antigen on cloned helper T cells induced by phorbol myristate acetate or antigen. ./. Biol. Chem. (1986) 261(34):16210–16214.
  • PELCHEN-MATTHEWS A, IJ, MARSH M: Phorbol ester-induced downregulation of CD4 is a multistep process involving dissociation from p56", increased association with-coated pits, and altered endosomal sorting. I Exp. Med. (1993) 178:1209–1222.
  • FIRESTEIN GS, REIFLER D, D, GRUBER HE: Rapid and reversible modulation of T4 (CD4) on monocytoid cells by phorbol myristate acetate: effect on HIV susceptibility. (1988) 113:63-69.
  • GOLDING H, MANISCHEWITZ J, VUJCIC L, BLUMENTHAL R, DIMITROV DS: The phorbol ester phorbol myristate acetate inhibits human immunodeficiency virus Type 1 envelope-mediated fusion by modulating an accessory component(s) in CD4-expressing cells. J. Viral. (1994) 68(3):1962–1969.
  • RABANAL M, FRANCH A, NOE V et al.: CD4 expression decrease by antisense oligonucleotides: inhibition of rat T CD4* cell reactivity. Oligonucleotides (2003) 13:217–228.
  • NOVINA CD, MURRAY ME DM etal: siRNA-directed inhibition of HIV-1 infection. Nat. Med. (2002) 8:681–686.
  • McMANUS MT, HAINES BB, CP et al: Small interfering RNA-mediated gene silencing in T lymphocytes. (2002) 169:5754–5760.
  • VERMEIRE K, SCHOLS D, BELL TW: CD4 down-modulating compounds with potent anti-HIV activity. Curl: Pharm. Des. (2004) 10:1795–1803.
  • VERMEIRE K, ZHANG Y, PRINCEN K et al: CADA inhibits human immunodeficiency virus and human herpesvirus 7 replication by down-modulation of the cellular CD4 receptor. Virology (2002) 302:342–353.
  • ••Discovery of a specific CD4 down-modulator with potent anti-HIV activity.
  • VERMEIRE K, PRINCEN K, HATSE S et al: CADA, a novel CD4-targeted HIV inhibitor, is synergistic with various anti-HIV drugs in vitro. AIDS (2004) 18:2115–2125.
  • VERMEIRE K, SCHOLS D: Specific CD4 down-modulating compounds with potent anti-HIV activity. J. Leukoc. Biol. (2003) 74:667–675.
  • VERMEIRE K, BELL TW, CHOI HJ et al: The anti-HIV potency of cyclotriazadisulfonamide analogs is directly correlated with their ability to down-modulate the CD4 receptor. Mol. Pharm. (2003) 63:203–210.
  • VERMEIRE K, VAN LAETHEM K, VANDAMME AM, BELL TW, DE CLERCQ E, SCHOLS D: Resistance profile of human immunodeficiency virus to CADA, a novel HIV inhibitor that targets the cellular CD4 receptor. Antiviral Res. (2005) 65(3):A43.
  • EDWARDS TG, HOFFMAN TL, BARIBAUD F et al.: Relationships between CD4 independence, neutralization sensitivity, and exposure of a CD4-induced epitope in a human immunodeficiency virus Type 1 envelope protein. J. Viral. (2001) 75:5230–5239.
  • KOLCHINSKY P, KIPRILOV E, SODROSKI J: Increased neutralization sensitivity of CD4-independent human immunodeficiency virus variants. J. Viral. (2001) 75:2041–2050.
  • RAHEMTULLA A, FUNG-LEUNG WP, SCHILHAM MW et al.: Normal development and function of CD8* cells but markedly decreased helper cell activity in mice lacking CD4. Nature (1991) 353:180–184.
  • RAHEMTULLA A, KUNDIG TM, NARENDRAN A et al: Class II major histocompatibility complex-restricted T cell function in CD4-deficient mice. Eur. Inllnunol. (1994) 24:2213–2218.
  • LOCKSLEY RM, REINER SL, HATAM F, LITTMAN DR, KILLEEN N: Helper T cells without CD4: control of leishmaniasis in CD4-deficient mice. Science (1993) 261:1448–1451.
  • ZHENG B, OZEN ZZ, CAO S, ZHANG Y, HAN S: CD4-deficient T helper cells are capable of supporting somatic hypermutation and affinity maturation of germinal center B cells. Eur. Inllnunol. (2002) 32:3315–3325.
  • VIDAL K, DANIEL C, HILL M, LITTMAN DR, ALLEN PM: Differential requirements for CD4 in TCR-ligand interactions. Immune]. (1999) 163:4811–4818.
  • LAYNE SP, MERGES MJ, DEMBO M, SPOUGE JL, NARA PL: HIV requires multiple gp120 molecules for CD4-mediated infection. Nature (1990) 346:277–279.
  • VERMEIRE K, SCHOLS D: Cyclotriazadisulfonamides: promising new CD4-targeted anti-HIV drugs. Antlinicrob. Chernother. (2005) 56:270–272.

Websites

  • http://www.unaids.org/en/resources/ epidemiology.asp/ Provides current information on the AIDS epidemic worldwide.
  • http://www.tanox.com/ current information on TNX-355.
  • http://www.indevus.com/ current information on PRO 2000.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.