715
Views
247
CrossRef citations to date
0
Altmetric
Review

Therapeutic applications of carbon monoxide-releasing molecules

, &
Pages 1305-1318 | Published online: 28 Oct 2005

Bibliography

  • MAINES MD: The heme oxygenase system: a regulator of second messenger gases. Ann. Rev Pharmacol. Toxicol. (1997) 37(37):517–554.
  • •A comprehensive review on the regulation and activity of the HO system.
  • ORTIZ DE MONTELLANO PR: The of heme oxygenase. Curl: Opin. Chem. Biol. (2000) 4(2):221–227.
  • •An excellent review on the mechanism of action of heme oxygenase enzymes.
  • FORESTI R, MOTTERLINI R: The heme pathway and its interaction with nitric oxide in the control of cellular homeostasis. Free Rad. Res. (1999) 31(6):459–475.
  • •The first review proposing a 'cross-talk' between the NO synthase and HO pathways, and their dynamic regulation of Important physiological processes.
  • OTTERBEIN LE, CHOI AM: Heme oxygenase: colors of defense against cellular stress. Am. I Physiol. Lung Cell Mol. Physiol. (2000) 279(6):L1029–L1037.
  • ABRAHAM NG, KAPPAS A: Heme oxygenase and the cardiovascular-renal system. Free Radic. Biol. Med. (2005) 39(1):1–25.
  • MOTTERLINI R, GREEN CJ, FORESTI R: Regulation of heme oxygenase-1 by redox signals involving nitric oxide. Antiox. Redox Signal. (2002) 4(4):615–624.
  • MOTTERLINI R, FORESTI R, BASSI R, CALABRESE V, CLARK JE, GREEN CJ: Endothelial heme oxygenase-1 induction by: modulation by inducible nitric oxide synthase (iNOS) and Snitrosothiols. J. Biol. Chem. (2000) 275(18):13613–13620.
  • BALLA J, JACOB HS, BALLA G, KA, EATON JW, GM: Endothelial-cell heme uptake from heme proteins: induction of sensitization and desensitization to oxidant damage. Proc. Nati Acad. Sci. USA (1993) 90:9285–9289.
  • CLARK JE, FORESTI R, GREEN CJ, MOTTERLINI R: Dynamics of haem oxygenase-1 expression and bilirubin production in cellular protection against oxidative stress. Biochem. J. (2000) 348(3):615–619.
  • CLARK JE, FORESTI R, SARATHCHANDRA P, KAUR H, GREEN CJ, MOTTERLINI R: Heme oxygenase-1-derived bilirubin ameliorates post-ischemic myocardial dysfunction..Physiol. Heart Circ. Physiol. (2000)278(2):H643–H651.
  • FORESTI R, GOATLY H, GREEN CJ, MOTTERLINI R: Role of heme oxygenase-1 in hypoxia-reoxygenation: requirement of substrate heme to promote cardioprotection. Am. J. Physiol. Heart Circ. Physiol. (2001) 281(5):H1976–H1984.
  • DORE S, TAKAHASHI M, FERRIS CD, HESTER LD, GUASTELLA D, SNYDER SH: Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury. Proc. Natl. Acad. Li. USA (1999) 96(5):2445–2450.
  • WANG WW, SMITH DL, ZUCKER SD: Bilirubin inhibits iNOS expression and NO in response to endotoxin in rats. Hepatology (2004) 40(2):424–433.
  • NAKAO A, NETO JS, KANNO S et al: Protection against ischemiaireperfusion injury in cardiac and renal transplantation with carbon monoxide, biliverdin and both. Am. J. Transplant. (2005) 5(2):282–291.
  • FERRIS CD, JAFFREY SR, SAWA A et al: Haem oxygenase-1 prevents cell death by regulating cellular iron. Nat. Cell Biol. (1999) 1(3):152–157.
  • MOTTERLINI R, GONZALES A, FORESTI R, CLARK JE, GREEN CJ, WINSLOW RM: Heme oxygenase- 1-derived carbon monoxide contributes to the suppression of acute hypertensive responses in vivo. Circ. Res. (1998) 83(5):568–577.
  • SAMMUT IA, FORESTI R, CLARK JE et al: Carbon monoxide is a major contributor to the regulation of vascular tone in aortas expressing high levels of haeme oxygenase-1. Br. J. Pharmacol. (1998) 125(7):1437–1444.
  • MORITA T, MITSIALIS SA, KOIKE H, LIU YX, KOUREMBANAS S: Carbon monoxide controls the proliferation of hypoxic vascular smooth muscle cells. J. Biol. Chem. (1997) 272(52):32804–32809.
  • DURANTE W: Heme oxygenase-1 in growth control and its clinical application to vascular disease. J. Cell Physiol (2003) 195(3):373–382.
  • BROUARD S, OTTERBEIN LE, ANRATHER J et al: Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis../. Exp. Med. (2000) 192(7):1015–1026.
  • WAGENER FA, VOLK HD, WILLIS D et al.: Different faces of the heme-heme system in inflammation. Pharmacol Rev. (2003) 55(3):551–571.
  • WILLIS D, MOORE AR, FREDERICK R, WILLOUGHBY DA: Heme oxygenase: a novel target for the modulation of inflammatory response. Nat. Med. (1996) 2(1):87–90.
  • NAKAO A, OTTERBEIN LE, OVERHAUS M et al.: Biliverdin protects the functional integrity of a transplanted syngeneic small bowel. Gastroenterology (2004) 127(2):595–606.
  • KESHAVAN P, DEEM TL, SJ, BABCOCK GE COOK-MILLS JM, ZUCKER SD: Unconjugated bilirubin inhibits VCAM-1-mediated transendothelial leukocyte migration. J. Immunol (2005) 174(6):3709–3718.
  • OTTERBEIN LE, BACH FH, ALAM J et al.: Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat. Med. (2000) 6(4):422–428.
  • ••First study describing the potential anti-inflammatory actions of CO gas.
  • NAKAO A, KIMIZUKA K, STOLZ DB et al: Carbon monoxide inhalation protects rat intestinal grafts from ischemia/ reperfusion injury. Am. J. Pathol (2003) 163(4):1587–1598.
  • INGI T, CHENG J, RONNETT GV: Carbon-monoxide: an endogenous modulator of the nitric oxide-cyclic GMP signaling system. Neuron (1996) 16(4):835–842.
  • WANG R, WU L: The chemical modification of Ka channels by carbon monoxide in vascular smooth muscle cells. J. Biol. Chem. (1997) 272(13):8222–8226.
  • LIU HJ, MOUNT DB, NASJLETTI A, WANG WH: Carbon monoxide stimulates the apical 70-pS K.' channel of the rat thick ascending limb. J. Clia Invest. (1999) 103(7):963–970.
  • SONG R, ZHOU Z, KIM PK et al.: Carbon monoxide promotes Fas/CD95-induced apoptosis in Jurkat cells. J. Biol. Chem. (2004) 279(43):44327–44334.
  • MORSE D, PISCHKE SE, ZHOU Z et al.: Suppression of inflammatory cytokine production by carbon monoxide involves the JNK pathway and AP-1. J. Biol. Chem. (2003) 278(39):36993–36998.
  • MOTTERLINI R, MANN BE, TR, CLARK JE, FORESTI R, GREEN CJ: Bioactivity and actions of carbon monoxide-releasing molecules.: Pharm. Des. (2003) 9(30):2525–2539.
  • RYTER SW, MORSE D, CHOI AM: Carbon monoxide: to boldly go where NO has gone before. Sci. STKE (2004) 2004(230):RE6.
  • RYTER SW, OTTERBEIN LE: Carbon monoxide in biology and medicine. BioEssays (2004) 26(3):270–280.
  • OTTERBEIN LE, MANTELL LL, CHOI AMK: Carbon monoxide provides protection against hyperoxic lung injury. Am. I Physiol (1999) 276(4 Part 1):L688–L694.
  • SOARES MP, UN Y, ANRATHER J et al.: Expression of heme oxygenase-1 can determine cardiac xenograft survival. Nat. Med. (1998) 4(9):1073–1077.
  • PIANTADOSI CA: Biological chemistry of carbon monoxide. Antioxid. Redox. Signal. (2002) 4(2):259–270.
  • HERRMANN WA: 100 Years of metal carbonyls. A serendipitous chemical discovery of major scientific and industrial impact.j Organomet. Chem. (1990) 383(1-3):21–44.
  • •An interesting report on the chemical properties and industrial applications of transition metal carbonyls. This study was Inspirational to the use of metal carbonyls as CO-RMs in biological systems.
  • WRIGHTON MS, GINLEY DS: Photochemistry of metal-metal bonded complexes. II. The photochemistry of rhenium and manganese carbonyl complexes containing a metal-metal bond. J. Am. Chem. Soc. (1975) 97(8):2065–2072.
  • HEPP AF, WRIGHTON MS: Relative importance of metal-metal bond scission and loss of carbon monoxide from photoexcited dimanganese decacarbonyl: spectroscopic detection of a coordinatively unsaturated, CO-bridged dinuclear species in low-temperature alkane matrices. J. Am. Chem. Soc. (1983) 105(17):5934–5935.
  • MOTTERLINI R, FORESTI R, GREEN CJ: Studies on the development of carbon monoxide-releasing molecules: potential applications for the treatment of cardiovascular dysfunction. In: Carbon Monoxide and Cardiovascular Functions. R (Ed.), CRC Press, Boca Raton, Florida, USA (2002):249–271.
  • MOTTERLINI R, CLARK JE, F R, SARATHCHANDRA P, MANN BE, GREEN CJ: Characterization vasoactive effects elicited by carbon monoxide-releasing molecules." Vasc. Res. (2001) 38(S1):25.
  • CLARKE MJ: Ruthenium metallopharmaceuticals. Coordin. Chem. Rev. (2002) 232(1-2):69–93.
  • FRICKER SP, SLADE E, POWELL NA, VAUGHAN 0J, HENDERSON GR, MURRER BA: Ruthenium complexes as nitric oxide scavengers: a potential therapeutic approach to nitric oxide-mediated diseases. BE J. Pharmacol (1997) 122(7):1441–1449.
  • ALESSIO E, MILANI B, BOLLE M et al: Carbonyl derivatives of chloride-dimethyl sulfoxide-ruthenium(II) complexes: synthesis, structural characterization, and reactivity of Ru(C0)x(DMS0) 4 xCl2 complexes (x = 1-3). Inorg. Chem. (1995) 34(19):4722–4734.
  • MOTTERLINI R, CLARK JE, F ORESTI R, SARATHCHANDRA P, MANN BE, GREEN CJ: Carbon monoxide-releasing molecules: characterization of biochemical and vascular activities. Circ. Res. (2002) 90(2):E17–E24.
  • ••First study describing the biochemicalproperties of transition metal carbonyls as CO-RMs and their pharmacological actions in the control of vascular function.
  • JOHNSON TR, MANN BE, CLARK JE, FORESTI R, GREEN CJ, MOTTERLINI R: Metal carbonyls: a new class of pharmaceuticals? Angew. Chem. Int. Ed Engl. (2003) 42(32):3722–3729.
  • ALBERTO R, ORTNER K, N, SCHIBLI R, AP: Synthesis and properties of boranocarbonate: a convenient in situ CO source for the aqueous preparation of 09m)Tc(OH(2))3(C0)31*. J. Am. Chem. Soc. (2001) 123(13):3135–3136.
  • FORESTI R, HAMMAD J, CLARK JE et al: Vasoactive properties of CORM-3, a novel water-soluble carbon monoxide-releasing molecule. Br. J. Pharmacol (2004) 142(3):453–460.
  • MOTTERLINI R, SAWLE P, BAINS S et al: CORM-Al: a new pharmacologically active carbon monoxide-releasing molecule. FASEB J. (2005) 19(2):284–286.
  • ••First study describing the biochemicalproperties and pharmacological activities of a boron-containing compound (CORM-Al) that is water-soluble and releases CO in a pH-dependent fashion in biological systems.
  • YET SF, TIAN R, LAYNE MD, WANG ZY et al.: Cardiac-specific expression of heme oxygenase-1 protects against ischemia and reperfusion injury in transgenic mice. Circ. Res. (2001) 89(2):168–173.
  • SATO K, BALLA J, OTTERBEIN L et al: Carbon monoxide generated by heme oxygenase-1 suppresses the rejection of mouse-to-rat cardiac transplants. (2001) 166(6):4185–4194.
  • CLARK JE, NAUGHTON P, SHUREY S et al.: Cardioprotective actions by a water-soluble carbon monoxide-releasing molecule. Circ. Res. (2003) 93(2):e2–e8.
  • ••First study describing the biochemicalproperties and protective actions of the water-soluble CORM-3 in the context of myocardial ischaemia and heart rejection.
  • GUO Y, STEIN AB, WU WJ, TAN W, ZHU X, LI QH: Administration of a CO-releasing molecule at the time of reperfusion reduces infarct size in vivo. Am. I Physiol Heart Circ. Physiol (2004) 286(5):H1649–H1653.
  • •An interesting study reporting on the protective effects of CORM-3 against myocardial infarction.
  • STEIN AB, GUO Y, TAN W et al.: Administration of a CO-releasing molecule induces late preconditioning against myocardial infarction. I Mol. Cell. Cardiol (2005) 38(1):127–134.
  • SAWLE P, FORESTI R, MANN BE, JOHNSON TR, GREEN CJ, MOTTERLINI R: Carbon monoxide-releasing molecules (CO-Ws) attenuate the inflammatory response elicited by lipopolysaccharide in RAW264.7 murine macrophages. BE J. Pharmacol (2005) 145(6):800–810.
  • •First study reporting on the anti-inflammatory actions of CORM-2 and -3 In macrophages stimulated with LPS.
  • VERA T, HENEGAR JR, HA, RIMOLDI JM, STEC DE: Protective effect of carbon monoxide-releasing compounds in ischemia-induced acute renal failure. I Am. Soc. Nephrol (2005) 16(4):950–958.
  • •A study reporting on the protective effects of CORM-2 and -3 against acute renal failure.
  • SUN JZ, TANG XL, KNOWLTON AA, PARK SW, QIU YM, BOLLI R: Late preconditioning against myocardial stunning. An endogenous protective mechanism that confers resistance to dysfunction 24 h after brief ischemia in conscious pigs. J. Chu. Invest. (1995) 95(1):388–403.
  • HU CM, CHEN YH, CHIANG MT, CHAU LY: Heme oxygenase-1 inhibits angiotensin II-induced cardiac hypertrophy in vitro and in vivo. Circulation (2004) 110(3):309–316.
  • BARBE C, ROCHETAING A, P: Mechanisms underlying the coronary vasodilation in the isolated perfused hearts of rats submitted to one week of high carbon monoxide exposure in vivo. lobe] Toxicol (2002) 14(3):273–285.
  • TONGERS J, FIEDLER B, KONIG D et al: Heme oxygenase-1 inhibition of MAP kinases, calcineurin/NFAT signaling, and hypertrophy in cardiac myocytes. Cardiovasc. Res. (2004) 63(3):545–552.
  • STANFORD SJ, WALTERS MJ, AA et al.: Heme oxygenase is expressed in human pulmonary artery smooth muscle where carbon monoxide has an anti-proliferative role. Eur. Pharmacol (2003) 473(2-3):135–141.
  • STANFORD SJ, WALTERS MJ, MITCHELL JA: Carbon monoxide inhibits endothelin-1 release by human pulmonary artery smooth muscle cells.. Pharmacol (2004) 486(3):349–352.
  • PAE HO, CHOI BM, OH GS et al: Roles of heme oxygenase-1 in the antiproliferative and antiapoptotic effects of nitric oxide on jurkat T cells. Mol. Pharmacol (2004) 66(1):122–128.
  • PAE HO, OH GS, CHOI BM et al: Carbon monoxide produced by heme oxygenase-1 suppresses T cell proliferation via inhibition of IL-2 production. (2004) 172(8):4744–4751.
  • CHOI BM, KIM YM, JEONG YR et al: Induction of heme oxygenase-1 is involved in anti-proliferative effects of paclitaxel on rat vascular smooth muscle cells. Biochem. Biophys. Res. Commun. (2004) 321(1):132–137.
  • VADORI M, SEVESO M, BESENZON F et al: Effects of carbon monoxide-releasing molecule (CORM-3) on porcine endothelial cells and primate PBMC. Xenotransplantation (2005) 12(5):393.
  • JOZKOWICZ A, HUK I, NIGISCH A, WEIGEL G et al: Heme oxygenase-1 and angiogenic activity of endothelial cells: stimulation by carbon monoxide, inhibition by tin protoporphyrin IX.. Redox Signal. (2003) 5(2):155–162.
  • VOLTI GL, SACERDOTI D, SANGRAS B et al: Carbon monoxide signaling in promoting angiogenesis in human microvessel endothelial cells. Antioxid. Redox. Signal. (2005) 7(5-6):704–710.
  • FIUMANA E, PARFENOVA H, JAGGER JH, LEFFLER CW: Carbon monoxide mediates vasodilator effects of glutamate in isolated pressurized cerebral arterioles of newborn pigs. Am. J. Physic] Heart Circ. Physic] (2003) 284(4):H1073–H1079.
  • KONERU P, LEFFLER CW: Role of cGMP in carbon monoxide-induced cerebral vasodilation in piglets. km Physiol Heart Circ. Physic] (2004) 286(1):H304–H309.
  • XI Q, TCHERANOVA D, H, HOROWITZ B, LEFFLER CW, JAGGAR JH: Carbon monoxide activates KCa channels in newborn arteriole smooth muscle cells by increasing apparent Ca2' sensitivity of a-subunits. Am. I Physiol Heart Circ. Physic] (2004) 286(2):H610–H618.
  • BARKOUDAH E, JAGGAR JH, LEFFLER CW: The permissive role of endothelial NO in CO-induced cerebrovascular dilation. Am. J. Physiol Heart Circ. Physic] (2004) 287(4):H1459–H1465.
  • FEDAN JS, DOWDY JA, SCOTT MR, WU DX, RA: Hyperosmolar solution effects in guinea-pig airways. III. Studies on the identity of epithelium-derived relaxing factor in isolated, perfused trachea using pharmacological agents. Pharmacol Exp. Ther. (2004) 308:30–36.
  • RATTAN S, HAJ RA, DE GODOY MA: Mechanism of internal anal sphincter relaxation by CORM-1, authentic CO, and NANC nerve stimulation. Am. I Physic] Castrointest. Liver Physiol (2004) 287(3):G605–G611.
  • MATSUDA NM, MILLER SM, SHA L, FARRUGIA G, SZURSZEWSKI JH: Mediators of non-adrenergic non-cholinergic inhibitory neurotransmission in porcine jejunum. Neurogastroenterol Moth. (2004) 16(5):605–612.
  • VANNACCI A, DI FELICE A, L et al.: The effect of a carbon monoxide-releasing molecule on the activation of guinea-pig mast cells and human basophils.. Res. (2004) 53\(Suppl. 1):S9–S10.
  • ALLANSON M, REEVE VE: Ultraviolet A (320-400 nm) modulation of ultraviolet B (290-320 nm)-induced immune suppression is mediated by carbon monoxide. J. Invest. Dermatol (2005) 124(3):644–650.
  • LEE TS, TSAI HL, CHAU LY: Induction of heme oxygenase-1 expression in murine macrophage is essential for the anti-inflammatory effect of 15-deoxy-8-12,15-prostaglandin j2. J. Biol. Chem. (2003) 278(21):19325–19330.
  • OH GS, PAE HO, CHOI BM et al: 3-Hydroxyanthranilic acid, one of metabolites of tryptophan via indoleamine 2,3-dioxygenase pathway, suppresses inducible nitric oxide synthase expression by enhancing heme oxygenase-1 expression. Biochem. Biophys. Res. Commun. (2004) 320(4):1156–1162.
  • YANG NC, LU LH, KAO YH, CHAU LY: Heme oxygenase-1 attenuates interleukin-113-induced nitric oxide synthase expression in vascular smooth muscle cells.. Sci. (2004) 11(6):799–809.
  • FORESTI R, SHUREY S, ANSARI T et al.: Reviewing the use of carbon monoxide-releasing molecules (CO-RMs) in biology: implications in endotoxin-mediated vascular dysfunction.. Biol. (2005) 51(4):409–423.
  • MacMICKING JD, NATHAN C, G et al: Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell (1995) 81(0641–650.
  • YET SF, PELLACANI A, PATTERSON C et al.: Induction of heme oxygenase-1 expression in vascular smooth muscle cells. A link to endotoxic shock. J. Biol. Chem. (1997) 272(7):4295–4301.
  • WIESEL P, PATEL AP, DIFONZO N, MARRIA PB, SIM CU, PELLACANI A: Endotoxin-induced mortality is related to increased oxidative stress and end-organ dysfunction, not refractory hypotension, in heme oxygenase-1-deficient mice. Circulation (2000) 102(24):3015–3022.
  • READE MC, MILLO JL, YOUNG JD, BOYD CA: Nitric oxide synthase is downregulated, while haem oxygenase is increased, in patients with septic shock. Br. J. Anaesth. (2005) 94(4):468–473.
  • TAILLE C, FORESTI R, LANONE S, ZEDDA C, GREEN CJ, AUBIER M: Protective role of heme oxygenases against endotoxin-induced diaphragmatic dysfunction in rats. Am. I Respir. Grit. Care Med. (2001) 163(3 Part 1):753–761.
  • FORESTI R, GREEN CJ, R: Generation of bile pigments by heme oxygenase: a refined cellular stratagem in response to stressful insults. Biochem. Soc. Symp. (2004) 71(70:177–192.
  • TAILLE C, ALMOLKI A, M et al.: Heme oxygenase inhibits human airway smooth muscle proliferation via a bilirubin-dependent modulation of ERK1/2 phosphorylation.. Chem. (2003) 278(29):27160–27168.
  • MOTTERLINI R, FORESTI R, INTAGLIETTA M, WINSLOW RIVI: NO-mediated activation of heme oxygenase: endogenous cytoprotection against oxidative stress to endothelium. Am. J. Physiol Heart Circ. Physic] (1996) 270(1 Part 2):H107–H114.
  • FORESTI R, CLARK JE, GREEN CJ, MOTTERLINI R: Thiol compounds interact with nitric oxide in regulating heme oxygenase-1 induction in endothelial cells. Involvement of superoxide and peroxynitrite anions. J. Biol. Chem. (1997) 272(29):18411–18417.
  • FORESTI R, SARATHCHANDRA P, CLARK JE, GREEN CJ, R: Peroxynitrite induces haem oxygenase-1 in vascular endothelial cells: a link to apoptosis. Biochem. J. (1999) 339(3):729–736.
  • NAUGHTON P, FORESTI R, BAINS S, HOQUE M, GREEN CJ, R: Induction of heme oxygenase-1 by nitrosative stress: a role for nitroxyl anion. J. Biol. Chem. (2002) 277(43):40666–40674.
  • LEE TS, CHAU LY: Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice. Nat. Med. (2002) 8(3):240–246.
  • SEVESO M, VADORI M, BESENZON F et al.: Anti-inflammatory responses and tolerability following the in vivo administration of a carbon monoxide-releasing molecule in primates. Xenotransplantation (2005) 12(5):393.
  • SEVESO M, VADORI M, BESENZON F et al.: Pharmacological effects and tolerability profile of a carbon monoxide- molecule (CORM-3) in primates. Am. J. Transplant. (2005) 5(10:306.
  • •A preliminary report describing the anti-inflammatory actions of CORM-3 in primates within the context of xenotransplantation.
  • AGARWAL A, KIM Y, MATAS AJ, ALAM J, NATH KA: Gas-generating systems in acute renal allograft rejection in the rat. Transplantation (1996) 61(1):93–98.
  • KAIDE JI, ZHANG F, WEI Y et al: Carbon monoxide of vascular origin attenuates the sensitivity of renal arterial vessels to vasoconstrictors. ./. Clin. Invest. (2001) 107(9):1163–1171.
  • WIESEL P, PATEL AP, CARVAJAL IM et al.: Exacerbation of chronic renovascular hypertension and acute renal failure in heme oxygenase-1-deficient mice. Circ. Res. (2001) 88(10):1088–1094.
  • NETO JS, NAKAO A, KIMIZUKA K, ROMANOSKY AJ, STOLZ DB, UCHIYAMA T: Protection of transplant-induced renal ischemia/reperfusion injury with carbon monoxide. Am. J. Physiol Rena] Physiol (2004) 287(5):F979–F989.
  • MOSLEY K, WEMBRIDGE DE, CATTELL V, COOK HT: Heme oxygenase is induced in nephrotoxic nephritis and hemin, a stimulator of heme oxygenase synthesis, ameliorates disease. Kidney Int. (1998) 53(3):672–678.
  • DATTA PK, KOUKOURITAKI SB, HOPP KA, LIANOS EA: Heme oxygenase-1 induction attenuates inducible nitric oxide synthase expression and proteinuria in glomerulonephritis. J. Am. Soc. Nephrol (1999) 10(12):2540–2550.
  • AGARWAL A, BALLA J, ALAM J, CROATT AJ, NATH KA: Induction of heme oxygenase in toxic renal injury: a protective role in cisplatin nephrotoxicity in the rat. Kidney Irm (1995) 48(4):1298–1307.
  • WAGNER M, CADETG P, RUF R, MAZZUCCHELLI L, FERRARI P, REDAELLI CA: Heme oxygenase-1 attenuates ischemia/reperfusion-induced apoptosis and improves survival in rat renal allografts. Kidney Int. (2003) 63(4):1564–1573.
  • OHTA K, YACHIE A, FUJIMOTO K et al.: Tubular injury as a cardinal pathologic feature in human heme oxygenase-1 deficiency. Am. J. Kidney Dis. (2000) 35(5):863–870. 280(27):25350–25360.
  • YACHIE A, NIIDA Y, WADA T, IGARASHI N, KANEDA H, TOMA T: stress causes enhanced endothelial injury in human heme oxygenase-1. J. Clin. Invest. (1999) 103(129–135.
  • •• A crucial article reporting on the first case of HO-1 deficiency. The profile and pathological in a 6-year old boy lacking ability to generate CO and biliverdin discussed.
  • ARREGUI B, LOPEZ B, SALOM MG, VALERO F, NAVARRO C, FENOY FJ: renal hemodynamic effects of decacarbonyl and cobalt. Kidney Int. (2004) 65(2):564–574.
  • SANDOUKA A, FULLER BJ, MANN BE, CJ, FORESTI R, R: Treatment with carbon-releasing molecules (CO-RMs) cold storage improves renal function reperfusion. Kidney Int. (2006) (In Press).
  • MOTTERLINI R, SANDOUKA A, Y et al.: Therapeutic actions of monoxide-releasing molecules (CO-RMs) in renal injury. 4th International on Heme Oxygenase, Boston, (2005).
  • FORESTI R, MOTTERLINI R: Carbon-releasing molecules (CO-RMs): a to emulate the beneficial effects of oxygenase-1. In: Heme Oxygenase: the Orchestration of its Products in. Otterbein LE, Zuckerbraun BS (Eds), Nova Publishers, New York, USA (2005):191–210.
  • ALESSIO E, MESTRONI G, A, SAVA G: Ruthenium agents. Curr. Top.. Chem. (2004) 4(15):1525–1535.
  • SRIVASTAVA AK, MEHDI MZ: Insulinomimetic anti-diabetic effects of compounds. Diabet. Med. (2005) 22(1):2–13.
  • CREMONESI P, ACEBRON A, RAJA KB, RJ: Iron absorption: and molecular insights into the of iron species for intestinal. Pharmacol. Toxicol. (2002) 91(3):97–102.
  • YANG W, GAO X, WANG B: Boronic acid as potential pharmaceutical. Med. Res. Rev. (2003) 23(3):346–368.
  • GROZIAK MP: Boron therapeutics on the. Am. J. Ther. (2001) 8(5):321–328.
  • CHATTERJEE PK: Water-soluble carbon-releasing molecules: helping to the vascular activity of the ‘silent’. Br. J. Pharmacol. (2004) 142(3):391–393.
  • WILLIAMS SE, WOOTTON P, HS et al.: Hemoxygenase-2 is an sensor for a calcium-sensitive channel. Science (2004) 306(5704):2093–2097.
  • TANG XD, XU R, REYNOLDS MF, ML, HEINEMANN SH, T: Haem can bind to and inhibit calcium-dependent Slo1 BK. Nature (2003) 425(6957):531–535.
  • •• An excellent study in combination with 119 reporting on the covalent of heme to potassium channels their susceptibility to be regulated by molecules including CO.
  • LOPEZ-BARNEO J, CASTELLANO A: facets of maxi-K+ channels: the connection. J. Gen. Physiol. (2005) 126(1):1–5.
  • •• An excellent study in combination with 118 reporting on the covalent of haem to potassium channels their susceptibility to be regulated by molecules including CO.
  • AONO S: Biochemical and biophysical of the CO-sensing transcriptional CooA. Acc. Chem. Res. (2003) 36(11):825–831.
  • DIOUM EM, RUTTER J, JR, GONZALEZ G,-GONZALEZ MA, SL: NPAS2: a gas-responsive factor. Science (2002) 298(5602):2385–2387.
  • REINKING J, LAM MM, PARDEE K al.: The Drosophila nuclear receptor e75 heme and is gas responsive. Cell (2005) 122(2):195–207.
  • TAILLE C, EL-BENNA J, LANONE S, J, MOTTERLINI R: respiratory chain and(P)H oxidase are targets for the effect of carbon monoxide human airway smooth muscle.. Biol. Chem. (2005) 280(27):25350–25360.
  • •Study reporting that NAD(P)H oxidase and mitochondria, which are both important sources of reactive oxygen species, are targets for CO liberated by-RMs.
  • SANDOUKA A, BALOGUN E, FORESTI R et al.: Carbon monoxide-releasing molecules (CO-RMs) modulate respiration in isolated mitochondria.. Biol. (2005) 51(4):425–432.
  • DESMARD M, AMARA M, LANONE S, MOTTERLINI R, BOCZKOWSKI J: Carbon monoxide reduces the expression and activity of matrix metalloproteinases 1 and 2 in alveolar epithelial cells. Cell. Mol. Biol. (2005) 51(4):403–408.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.