152
Views
29
CrossRef citations to date
0
Altmetric
Review

Novel anticonvulsant drugs targeting voltage-dependent ion channels

&
Pages 1167-1177 | Published online: 21 Sep 2006

Bibliography

  • HAUSER WA, ANNEGERS JF, ROCCA WA: Descriptive epidemiology of epilepsy: Contributions of population-based studies from rochester, minnesota. Mayo Clin. Proc. (1996) 71:576-586.
  • HAUSER WA, ANNEGERS JF, KURLAND LT: Prevalence of epilepsy in rochester, minnesota: 1940 – 1980. Epilepsia (1991) 32:429-445.
  • BIRBECK GL, HAYS RD, CUI X, VICKREY BG: Seizure reduction and quality of life improvements in people with epilepsy. Epilepsia (2002) 43:535-538.
  • MARTIN R, VOGTLE L, GILLIAM F, FAUGHT E: What are the concerns of older adults living with epilepsy? Epilepsy Behav. (2005) 7:297-300.
  • MULLEY JC, SCHEFFER IE, PETROU S, BERKOVIC SF: Channelopathies as a genetic cause of epilepsy. Curr. Opin. Neurol. (2003) 16:171-176.
  • STEINLEIN OK: Genes and mutations in human idiopathic epilepsy. Brain Dev. (2004) 26:213-218.
  • LERCHE H, WEBER YG, JURKAT-ROTT K, LEHMANN-HORN F: Ion channel defects in idiopathic epilepsies. Curr. Pharm. Des. (2005) 11:2737-2752.
  • PALMER AM, CARTER N: The role of sodium channels in disease. Drug News Perspect. (2001) 14:568-576.
  • PATSALOS PN, FROSCHER W, PISANI F, VAN RIJN CM: The importance of drug interactions in epilepsy therapy. Epilepsia (2002) 43:365-385.
  • LEHMANN-HORN F, JURKAT-ROTT K: Voltage-gated ion channels and hereditary disease. Physiol. Rev. (1999) 79:1317-1372.
  • CATTERALL WA: Structure and regulation of voltage-gated Ca2+ channels. Ann. Rev. Cell Dev. Biol. (2000) 16:521-555.
  • BEZANILLA F: The voltage sensor in voltage-dependent ion channels. Physiol. Rev. (2000) 80:555-592.
  • FAVRE I, MOCZYDLOWSKI E, SCHILD L: On the structural basis for ionic selectivity among Na+, K+, and Ca2+ in the voltage-gated sodium channel. Biophys. J. (1996) 71:3110-3125.
  • JIANG Y, LEE A, CHEN J et al.: X-ray structure of a voltage-dependent K+ channel. Nature (2003) 423:33-41.
  • MACKINNON R: Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature (1991) 350:232-235.
  • JIANG Y, LEE A, CHEN J et al.: The open pore conformation of potassium channels. Nature (2002) 417:523-526.
  • RAGSDALE DS, SCHEUER T, CATTERALL WA: Frequency and voltage-dependent inhibition of type iia Na+ channels, expressed in a mammalian cell line, by local anesthetic, antiarrhythmic, and anticonvulsant drugs. Mol. Pharmacol. (1991) 40:756-765.
  • ZONA C, AVOLI M: Lamotrigine reduces voltage-gated sodium currents in rat central neurons in culture. Epilepsia (1997) 38:522-525.
  • BENES J, PARADA A, FIGUEIREDO AA et al.: Anticonvulsant and sodium channel-blocking properties of novel 10,11-dihydro-5h-dibenz[b,f]azepine-5-carboxamide derivatives. J. Med. Chem. (1999) 42:2582-2587.
  • TIAN LM, ALKADHI KA: Valproic acid inhibits the depolarizing rectification in neurons of rat amygdala. Neuropharmacology (1994) 33:1131-1138.
  • WU SP, TSAI JJ, GEAN PW: Frequency-dependent inhibition of neuronal activity by topiramate in rat hippocampal slices. Br. J. Pharmacol. (1998) 125:826-832.
  • SOBIESZEK G, BOROWICZ KK, KIMBER-TROJNAR Z et al.: Zonisamide: A new antiepileptic drug. Pol. J. Pharmacol. (2003) 55:683-689.
  • CRUNELLI V, LERESCHE N: Childhood absence epilepsy: genes, channels, neurons and networks. Nat. Rev. Neurosci. (2002) 3:371-382.
  • GEE NS, BROWN JP, DISSANAYAKE VU et al.: The novel anticonvulsant drug, gabapentin (neurontin), binds to the α2δ subunit of a calcium channel. J. Biol. Chem. (1996) 271:5768-5776.
  • FIELD MJ, OLES RJ, LEWIS AS et al.: Gabapentin (neurontin) and S-(+)-3-isobutylgaba represent a novel class of selective antihyperalgesic agents. Br. J. Pharmacol. (1997) 121:1513-1522.
  • DOOLEY DJ, MIESKE CA, BOROSKY SA: Inhibition of K+-evoked glutamate release from rat neocortical and hippocampal slices by gabapentin. Neurosci. Lett. (2000) 280:107-10.
  • DOOLEY DJ, DONOVAN CM, MEDER WP, WHETZEL SZ: Preferential action of gabapentin and pregabalin at p/q-type voltage-sensitive calcium channels: inhibition of K+-evoked [3h]-norepinephrine release from rat neocortical slices. Synapse (2002) 45:171-190.
  • STEFANI A, SPADONI F, SINISCALCHI A, BERNARDI G: Lamotrigine inhibits Ca2+ currents in cortical neurons: functional implications. Eur. J. Pharmacol. (1996) 307:113-116.
  • POOLOS NP, MIGLIORE M, JOHNSTON D: Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites. Nat. Neurosci. (2002) 5:767-774.
  • TOBER C, ROSTOCK A, RUNDFELDT C, BARTSCH R: D-23129: A potent anticonvulsant in the amygdala kindling model of complex partial seizures. Eur. J. Pharmacol. (1996) 303:163-169.
  • ROSTOCK A, TOBER C, RUNDFELDT C et al.: D-23129: a new anticonvulsant with a broad spectrum activity in animal models of epileptic seizures. Epilepsy Res. (1996) 23:211-223.
  • ARMAND V, RUNDFELDT C, HEINEMANN U: Effects of retigabine (D-23129) on different patterns of epileptiform activity induced by low magnesium in rat entorhinal cortex hippocampal slices. Epilepsia (2000) 41:28-33.
  • DOST R, RUNDFELDT C: The anticonvulsant retigabine potently suppresses epileptiform discharges in the low Ca2+ and low Mg+2+ model in the hippocampal slice preparation. Epilepsy Res. (2000) 38:53-66.
  • ARMAND V, RUNDFELDT C, HEINEMANN U: Effects of retigabine (D-23129) on different patterns of epileptiform activity induced by 4-aminopyridine in rat entorhinal cortex hippocampal slices. Naunyn Schmiedebergs Arch. Pharmacol. (1999) 359:33-39.
  • STRAUB H, KOHLING R, HOHLING J et al.: Effects of retigabine on rhythmic synchronous activity of human neocortical slices. Epilepsy Res. (2001) 44:155-165.
  • RUNDFELDT C: Characterization of the K+ channel opening effect of the anticonvulsant retigabine in pc12 cells. Epilepsy Res. (1999) 35:99-107.
  • RUNDFELDT C, NETZER R: The novel anticonvulsant retigabine activates m-currents in chinese hamster ovary-cells tranfected with human kcnq2/3 subunits. Neurosci. Lett. (2000) 282:73-76.
  • DELMAS P, BROWN DA: Pathways modulating neural kcnq/m (kv7) potassium channels. Nat. Rev. Neurosci. (2005) 6:850-862.
  • WUTTKE TV, SEEBOHM G, BAIL S, MALJEVIC S, LERCHE H: The new anticonvulsant retigabine favors voltage-dependent opening of the kv7.2 (kcnq2) channel by binding to its activation gate. Mol. Pharmacol. (2005) 67:1009-1017.
  • SCHENZER A, FRIEDRICH T, PUSCH M et al.: Molecular determinants of kcnq (kv7) K+ channel sensitivity to the anticonvulsant retigabine. J. Neurosci. (2005) 25:5051-5060.
  • OTTO JF, KIMBALL MM, WILCOX KS: Effects of the anticonvulsant retigabine on cultured cortical neurons: changes in electroresponsive properties and synaptic transmission. Mol. Pharmacol. (2002) 61:921-927.
  • PERETZ A, DEGANI N, NACHMAN R et al.: Meclofenamic acid and diclofenac, novel templates of kcnq2/q3 potassium channel openers, depress cortical neuron activity and exhibit anticonvulsant properties. Mol. Pharmacol. (2005) 67:1053-1066.
  • HEURTEAUX C, BERTAINA V, WIDMANN C, LAZDUNSKI M: K+ channel openers prevent global ischemia-induced expression of c-fos, c-jun, heat shock protein, and amyloid β-protein precursor genes and neuronal death in rat hippocampus. Proc. Natl. Acad. Sci. USA (1993) 90:9431-9435.
  • O’MALLEY D, SHANLEY LJ, HARVEY J: Insulin inhibits rat hippocampal neurones via activation of ATP-sensitive K+ and large conductance Ca2+-activated K+ channels. Neuropharmacology (2003) 44:855-863.
  • GRIBKOFF VK, STARRETT JE Jr, DWORETZKY SI et al.: Targeting acute ischemic stroke with a calcium-sensitive opener of maxi-k potassium channels. Nat. Med. (2001) 7:471-477.
  • JENSEN BS: BMS-204352: a potassium channel opener developed for the treatment of stroke. CNS Drug Rev. (2002) 8:353-360.
  • KORSGAARD MP, HARTZ BP, BROWN WD et al.: Anxiolytic effects of maxipost (BMS-204352) and retigabine via activation of neuronal kv7 channels. J. Pharmacol. Exp. Ther. (2005) 314:282-292.
  • DU W, BAUTISTA JF, YANG H et al.: Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat. Genet. (2005) 37:733-738.
  • PEVARELLO P, BONSIGNORI A, DOSTERT P et al.: Synthesis and anticonvulsant activity of a new class of 2-[(arylalky)amino]alkanamide derivatives. J. Med. Chem. (1998) 41:579-590.
  • MAJ R, FARIELLO RG, PEVARELLO P et al.: Anticonvulsant activity of PNU-151774E in the amygdala kindled model of complex partial seizures. Epilepsia (1999) 40:1523-1528.
  • MAJ R, FARIELLO RG, UKMAR G et al.: PNU-151774E protects against kainate-induced status epilepticus and hippocampal lesions in the rat. Eur. J. Pharmacol. (1998) 359:27-32.
  • FARIELLO RG, McARTHUR RA, BONSIGNORI A et al.: Preclinical evaluation of PNU-151774E as a novel anticonvulsant. J. Pharmacol. Exp. Ther. (1998) 285:397-403.
  • SALVATI P, MAJ R, CACCIA C et al.: Biochemical and electrophysiological studies on the mechanism of action of PNU-151774e, a novel antiepileptic compound. J. Pharmacol. Exp. Ther. (1999) 288:1151-1159.
  • SNELL LD, CLAFFEY DJ, RUTH JA et al.: Novel structure having antagonist actions at both the glycine site of the N-methyl-D-aspartate receptor and neuronal voltage-sensitive sodium channels: biochemical, electrophysiological, and behavioral characterization. J. Pharmacol. Exp. Ther. (2000) 292:215-227.
  • WANG ZJ, SNELL LD, TABAKOFF B, LEVINSON SR: Inhibition of neuronal Na+ channels by the novel antiepileptic compound dcuka: identification of the diphenylureido moiety as an inactivation modifier. Exp. Neurol. (2002) 178:129-138.
  • AMBROSIO AF, SILVA AP, ARAUJO I et al.: Neurotoxic/neuroprotective profile of carbamazepine, oxcarbazepine and two new putative antiepileptic drugs, BIA 2-093 and BIA 2-024. Eur. J. Pharmacol. (2000) 406:191-201.
  • KLITGAARD H, MATAGNE A, GOBERT J, WULFERT E: Evidence for a unique profile of levetiracetam in rodent models of seizures and epilepsy. Eur. J. Pharmacol. (1998) 353:191-206.
  • BARTON ME, KLEIN BD, WOLF HH, WHITE HS: Pharmacological characterization of the 6 Hz psychomotor seizure model of partial epilepsy. Epilepsy Res. (2001) 47:217-227.
  • ZONA C, NIESPODZIANY I, MARCHETTI C et al.: Levetiracetam does not modulate neuronal voltage-gated Na+ and t-type Ca2+ currents. Seizure (2001) 10:279-286.
  • NIESPODZIANY I, KLITGAARD H, MARGINEANU DG: Levetiracetam inhibits the high-voltage-activated Ca2+ current in pyramidal neurones of rat hippocampal slices. Neurosci. Lett. (2001) 306:5-8.
  • LYNCH BA, LAMBENG N, NOCKA K et al.: The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc. Natl. Acad. Sci. USA (2004) 101:9861-9866.
  • CROWDER KM, GUNTHER JM, JONES TA et al.: Abnormal neurotransmission in mice lacking synaptic vesicle protein 2a (SV2A). Proc. Natl. Acad. Sci. USA (1999) 96:15268-15273.
  • MARGINEANU DG, KLITGAARD H: In: Antiepileptic drugs. Levy RH, Mattson RH, Meldrum Bsperucca E (Eds), Lippincott Williams & Wilkins, Philadelphia, USA (2002) 5:419-427.
  • POULAIN P, MARGINEANU DG: Levetiracetam opposes the action of GABAa antagonists in hypothalamic neurones. Neuropharmacology (2002) 42:346-352.
  • KENDA BM, MATAGNE AC, TALAGA PE et al.: Discovery of 4-substituted pyrrolidone butanamides as new agents with significant antiepileptic activity. J. Med. Chem. (2004) 47:530-549.
  • ZONA C, PIERI M, KLITGAARD H, MARGINEANU D: Ucb 34714, a new pyrrolidone derivative, inhibits Na+ currents in rat cortical neurones in culture. Epilepsia (2004) 45(Suppl. 7):146.
  • COULTER DA: Antiepileptic drug cellular mechanisms of action: where does lamotrigine fit in? J. Child Neurol. (1997) 12(Suppl. 1):S2-S9.
  • MASUDA Y, KARASAWA T, SHIRAISHI Y et al.: 3-sulfamoylmethyl- 1,2-benzisoxazole, a new type of anticonvulsant drug. Pharmacological profile. Arzneimittelforschung (1980) 30:477-483.
  • SHIMIZU M, UNO H, ITO T, MASUDA Y, KUROKAWA M: [Research and development of zonisamide, a new type of antiepileptic drug]. Yakugaku Zasshi (1996) 116:533-547.
  • UEDA Y, DOI T, TOKUMARU J, WILLMORE LJ: Effect of zonisamide on molecular regulation of glutamate and gaba transporter proteins during epileptogenesis in rats with hippocampal seizures. Brain Res. Mol. Brain Res. (2003) 116:1-6.
  • SUZUKI S, KAWAKAMI K, NISHIMURA S et al.: Zonisamide blocks t-type calcium channel in cultured neurons of rat cerebral cortex. Epilepsy Res. (1992) 12:21-27.
  • SELAK I: Pregabalin (Pfizer). Curr. Opin. Investig. Drugs (2001) 2:828-834.
  • BIALER M, JOHANNESSEN SI, KUPFERBERG HJ et al.: Progress report on new antiepileptic drugs: a summary of the sixth EILAT conference (EILAT vi). Epilepsy Res. (2002) 51:31-71.
  • ANDRE V, RIGOULOT MA, KONING E, FERRANDON A, NEHLIG A: Long-term pregabalin treatment protects basal cortices and delays the occurrence of spontaneous seizures in the lithium-pilocarpine model in the rat. Epilepsia (2003) 44:893-903.
  • TAYLOR CP: The biology and pharmacology of calcium channel α2-δ proteins Pfizer satellite symposium to the 2003 society for neuroscience meeting. Sheraton New Orleans Hotel, New Orleans, La November 10, 2003. CNS Drug Rev. (2004) 10:183-188.
  • MANEUF YP, HUGHES J, McKNIGHT AT: Gabapentin inhibits the substance P-facilitated K+-evoked release of [3h]glutamate from rat caudial trigeminal nucleus slices. Pain (2001) 93:191-116.
  • FINK K, DOOLEY DJ, MEDER WP et al.: Inhibition of neuronal ca2+ influx by gabapentin and pregabalin in the human neocortex. Neuropharmacology (2002) 42:229-236.
  • FEHRENBACHER JC, TAYLOR CP, VASKO MR: Pregabalin and gabapentin reduce release of substance P and CGRP from rat spinal tissues only after inflammation or activation of protein kinase c. Pain (2003) 105:133-141.
  • KAVOUSSI R: Pregabalin: from molecule to medicine. Eur. Neuropsychopharmacol. (2006) 16(Suppl. 2):S128-S133.
  • SCHMIDT D, LOSCHER W: Drug resistance in epilepsy: putative neurobiologic and clinical mechanisms. Epilepsia (2005) 46:858-877.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.