119
Views
15
CrossRef citations to date
0
Altmetric
Review

Clinical immunologic approaches for the treatment of Alzheimer's disease

Pages 819-828 | Published online: 15 May 2007

Bibliography

  • MOUNT C, DOWNTON C: Alzheimer’s disease: progress or profit? Nat. Med. (2006) 12:780-784.
  • SELKOE DJ: The molecular pathology of Alzheimer’s disease. Neuron (1991) 6:487-498.
  • GLENNER GG, WONG CW: Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Comm. (1984) 120(3):885-890.
  • SELKOE DJ: Alzheimer’s disease: a central role for amyloid. J. Neuropathol. Exp. Neurol. (1994) 53:438-447.
  • HARDY J, SELKOE DJ: The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science (2002) 297:353-356.
  • HARDY J, DUFF K, HARDY KG, PEREZ-TUR J, HUTTON M: Genetic dissection of Alzheimer’s disease and related dementias: amyloid and its relationship to τ. Nat. Neurosci. (1998) 1:355-358.
  • CHARTIER-HARLIN MC, CRAWFORD F, HOULDEN H et al.: Early-onset Alzheimer’s disease caused by mutations at codon 717 of the β-amyloid precursor protein gene. Nature (1991) 353:844-846.
  • NÄSLUND J, HAROUTUNIAN V, MOHS R et al.: Correlation between elevated levels of amyloid β-peptide in the brain and cognitive decline. JAMA (2000) 283:1571-1577.
  • TERRY RD, PECK A, DETERESA R, SCHECHTER R, HOROUPIAN DS: Some morphometric aspects of the brain in senile dementia of the Alzheimer type. Ann. Neurol. (1981) 10:184-192.
  • SELKOE D: Alzheimer’s disease is a synaptic failure. Science (2002) 298:789-791.
  • LESNÉ S, TENG KOH M, KOTILINEK L et al.: A specific amyloid-β protein assembly in the brain impairs memory. Nature (2006) 440:352-357.
  • DRACHMAN DA: Preventing and treating Alzheimer’s disease: strategies and prospects. Expert Rev. Neurother. (2003) 3:565-569.
  • MAGGIO JE, MANTYH PW: Brain amyloid – a physicochemical perspective. Brain Pathol. (1996) 6:147-162.
  • CARLSON JD, YARMUSH ML: Antibody assisted protein refolding. Biotechnology (1992) 10:86-91.
  • SOLOMON B, SCHWARTZ F: Chaperone-like effect of monoclonal antibodies on refolding of heat-denatured carboxypeptidase A. J. Mol. Recogn. (1995) 8:72-76.
  • SOLOMON B, KOPPEL R, HANAN E, KATZAV T: Monoclonal antibodies inhibit in vitro fibrillar aggregation of the Alzheimer β-amyloid peptide. Proc. Natl. Acad. Sci. USA (1996) 93:452-455.
  • SOLOMON B, KOPPEL R, FRENKEL D, HANAN-AHARON E: Disaggregation of Alzheimer β-amyloid by site-directed mAb. Proc. Natl. Acad. Sci. USA (1997) 94:4109-4112.
  • HANNAN E, SOLOMON B: Protective effect of monoclonal antibodies against Alzheimer’s β-amyloid aggregation. Amyloid (1996) 3:130-133.
  • FRENKEL D, BALASS M, SOLOMON B: N-terminal EFRH sequence of Alzheimer’s β-amyloid peptide represents the epitope of its anti-aggregating antibodies. J. Neuroimmunol. (1998) 88:85-90.
  • FRENKEL D, BALASS M, KATCHALSKI-KATZIR E, SOLOMON B: High affinity binding of monoclonal antibodies to the sequential epitope EFRH of β-amyloid peptide is essential for modulation of fibrillar aggregation. J. Neuroimmunol. (1999) 95:136-142.
  • GAMES D, ADAMS D, ALESSANDRINI R et al.: Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature (1995) 373:523-527.
  • HSIAO K, CHAPMAN P, NILSEN S et al.: Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science (1996) 274:99-102.
  • DUFF K, ECKMAN C, ZEHR C et al.: Increased amyloid-β42(43) in brains of mice expressing mutant presenilin 1. Nature (1996) 383:710-713.
  • HIGGINS GA, JACOBSEN H: Transgenic mouse models of Alzheimer’s disease: phenotype and application. Behav. Pharmacol. (2003) 14:419-438.
  • ODDO S, CACCAMO A, SHEPHERD JD et al.: Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron (2003) 39(3):409-421.
  • WEINER HL, FRENKEL D: Immunology and immunotherapy of Alzheimer’s disease. Nat. Rev. Immunol. (2006) 6:404-416.
  • SCHENK D, BARBOUR R, DUNN W et al.: Immunization with amyloid-β attenuates Alzheimer’s disease-like pathology in the PDAPP mouse. Nature (1999) 400:173-177.
  • JANUS C, PEARSON J, MCLAURIN J et al.: Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature (2000) 408:979-982.
  • MORGAN D, DIAMOND DM, GOTTSCHALL PE et al.: Aβ peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature (2000) 408:982-985.
  • DODART JC, BALES KR, GANNON KS et al.: Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer’s disease model. Nat. Neurosci. (2002) 5:452-457.
  • SIGURDSSON EM, SCHOLTZOVA H, MEHTA PD, FRANGIONE B, WISNIEWSKI T: Immunization with a nontoxic/nonfibrillar amyloid-β homologous peptide reduces Alzheimer’s disease-associated pathology in transgenic mice. Am. J. Pathol. (2001) 159:439-447.
  • FRENKEL D, DEWACHTER I, VAN LEUVEN F, SOLOMON B: Reduction of β-amyloid plaques in brain of transgenic mouse model of Alzheimer’s disease by EFRH-phage immunization. Vaccine (2003) 21:1060-1065.
  • LAVIE V, BECKER M, COHEN-KUPIEC R et al.: EFRH – phage immunization of Alzheimer’s disease animal model improves behavioral performance in Morris Water Maze trials. J. Molec. Neurosci. (2004) 24(1):105-113.
  • WEINER HL, LEMERE CA, MARON R et al.: Nasal administration of amyloid-β peptide decreases cerebral amyloid burden in a mouse model of Alzheimer’s disease. Ann. Neurol. (2000) 48:567-579.
  • BARD F, CANNON C, BARBOUR R et al.: Peripherally administered antibodies against amyloid-β peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer’s disease. Nat. Med. (2000) 6:916-919.
  • WILCOCK DM, ROJIANI A, ROSENTHAL A et al.: Passive immunotherapy against Aβ in aged APP-transgenic mice reverses cognitive deficits and depletes parenchymal amyloid deposits in spite of increased vascular amyloid and microhemorrhage. J. Neuroinflammation (2004) 1:24.
  • DEMATTOS RB, BALES KR, CUMMINS DJ, DODART JC, PAUL SM, HOLTZMAN DM: Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA (2001) 98:8850-8855.
  • LEVITES, Y, SMITHSON LA, PRICE RW et al.: Insights into the mechanisms of action of anti-Aβ antibodies in Alzheimer’s disease mouse models. FASEB J. (2006) 20:2576-2578.
  • ODDO S, BILLINGS L, KESSLAK JP, CRIBBS DH, LAFERIA FM: Aβ immunotherapy leads to clearance of early, but not late, hyperphosphorylated τ aggregates via the proteasome. Neuron (2004) 43(3):321-322.
  • GILMAN S, KOLLER M, BLACK RS et al. Clinical effects of Aβ immunization (AN1792) in patients with AD in an interrupted trial. Neurology (2005) 64:1553-1562.
  • BAYER AJ, BULLOCK R, JONES RW et al.: Evaluation of the safety and immunogenicity of synthetic Aβ42 (AN1792) in patients with AD. Neurology (2005) 64:94-101.
  • SCHENK DB, SEUBERT P, GRUNDMAN M, BLACK R: Aβ immunotherapy: lessons learned for potential treatment of Alzheimer’s disease. Neurodegen. Dis. (2005) 2:255-260.
  • NICOLL JA, WILKINSON D, HOLMES C, STEART P, MARKHAM H, WELLER RO: Neuropathology of human Alzheimer’s disease after immunization with amyloid-β peptide: a case report. Nat. Med. (2003) 9(4):448-452.
  • FERRER I, BOADA-ROVIRA M, SANCHEZ-GUERRA ML, REY MJ, COSTA-JUSSA F: Neuropathology and pathogenesis of encephalitis following amyloid-β immunization in Alzheimer’s disease. Brain Pathol. (2004) 14:11-20.
  • MASLIAH E, HANSEN L, ADAME A et al.: Aβ vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer’s disease. Neurology (2005) 64:129-131.
  • ORGOGOZO JM, GILMAN S, DARTIGUES JF et al.: Subacute meningoencephalitis in a subset of patients with AD after Aβ42 immunization. Neurology (2003) 61:46-54.
  • CRIBBS DH, GHOCHIKYAN A, TRAN M et al.: Adjuvant-dependent modulation of TH1 and TH2 responses to immunization with β-amyloid. Int. Immunol. (2003) 15:505-514.
  • MONSONEGO A, ZOTA V, KARNI A et al.: Increased T cell reactivity to amyloid-β protein in older humans and patients with Alzheimer’s disease. J. Clin. Invest. (2003) 112:415-422.
  • NICOLL JA, BARTON E, BOCHE D et al.: Aβ species removal after Aβ42 immunization. J. Neuropathol. Exp. Neurol. (2006) 65:1040-1048.
  • O’TOOLE M, JANSZEN DB, SLONIM DK et al.: Risk factors associated with β-amyloid1-42 immunotherapy in preimmunization gene expression patterns of blood cells. Arch. Neurol. (2005) 62:1531-1536.
  • HOCK C, KONIETZKO U, STREFFER JR et al.: Antibodies against β-amyloid slow cognitive decline in Alzheimer’s disease. Neuron (2003) 38:547-554.
  • FOX NC, BLACK RS, GILMAN S et al.: Effects of Aβ immunization (AN1792) on MRI measures of cerebral volume in Alzheimer’s disease. Neurology (2005) 64:1563-1572.
  • PATTON RL, KALBACK WM, ESH CL et al.: Amyloid-β peptide remnants in AN-1792-immunized Alzheimer’s disease patients: a biochemical analysis. Am. J. Pathol. (2006) 169:1048-1063.
  • BLACK RS: A single ascending dose study of bapineuzumab, a humanized monoclonal antibody to Aβ, in AD. 9th Annual Geneva Springfield Symposium on Advances in Alzheimer’s Therapy. Geneva, Switzerland (19 – 22 April 2006).
  • DALAKAS MC: Mechanisms of action of IVIg and therapeutic considerations in the treatment of acute and chronic demyelinating neuropathies. Neurology (2002) 59:S13-S19.
  • DODEL R, HAMPEL H, DEPBOYLU C et al.: Human antibodies against amyloid β peptide: a potential treatment for Alzheimer’s disease. Ann. Neurol. (2002) 52(2):253-256.
  • DODEL RC, DU Y, DEPBOYLU C et al.: Intravenous immunoglobulins containing antibodies against β-amyloid for the treatment of Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry (2004) 75(10):1472-1474.
  • ISTRIN G, BOSIS E, SOLOMON B: Intravenous immunoglobulin enhances the clearance of fibrillar amyloid-β peptide. J. Neurosci. Res. (2006) 84(2):434-443.
  • SELKOE DJ: Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev. (2001) 81:741-766.
  • AKIYAMA H, ARAI T, TANNO E et al.: Cell mediators of inflammation in the Alzheimer’s disease brain. Alzheimer Dis. Assoc. Disord. (2000) 14:S47-S53.
  • BRUCE-KELLER AJ, ESTUS T: Concern over the amyloid vaccine: amyloid heterogeneity and Fc receptor signaling. Neurobiol. Aging (2002) 23:667-670.
  • DAS P, GOLDE TE: Open peer commentary regarding Aβ immunization and CNS inflammation by Pasinetti et al. Neurobiol. Aging (2002) 23:671-674.
  • TAKAI T: Roles of Fc receptors in autoimmunity. Nat. Rev. (2002) 2:580-592.
  • SAMUELSSON A, TOWERS TL, RAVETCH JV: Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science (2001) 291:484-486.
  • FRENKEL D, SOLOMON B, BENHAR I: Modulation of Alzheimer’s β-amyloid neurotoxicity by site-directed single-chain antibody. J. Neuroimmunol. (2000) 106:23-31.
  • TAMMER AH, COIA G, CAPPAI R et al.: Generation of a recombinant Fab antibody reactive with the Alzheimer’s disease-related Aβ peptide. Clin. Exp. Immunol. (2002) 129:453-463.
  • LIU R, YUAN B, EMADI S et al.: Single chain variable fragments against β-amyloid (Aβ) can inhibit Aβ aggregation and prevent Aβ-induced neurotoxicity. Biochemistry (2004) 43(22):6959-6967.
  • FRENKEL D, SOLOMON B: Filamentous phage as vector-mediated antibody delivery to the brain. Proc. Natl. Acad. Sci. USA (2002) 99:5675-5679.
  • THOMAS CE, SCHIEDNER G, KOCHANEK S, CASTRO MG, LOWENSTEIN PR: Peripheral infection with adenovirus causes unexpected long-term brain inflammation in animals injected intracranially with first-generation, but not with high-capacity, adenovirus vectors: toward realistic long-term neurological gene therapy for chronic diseases. Proc. Natl. Acad. Sci. USA (2000) 97:7482-7487.

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.