182
Views
17
CrossRef citations to date
0
Altmetric
Review

Looking for novel ways to treat the hallmarks of Alzheimer's disease

, , &
Pages 1183-1196 | Published online: 09 Aug 2007

Bibliography

  • GOTZ J, ITTNER LM, SCHONROCK N: Alzheimer's disease and frontotemporal dementia: prospects of a tailored therapy? Med. J. Aust. (2006) 185(7):381-384.
  • HEBERT LE, SCHERR PA, BIENIAS JL, BENNETT DA, EVANS DA: Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch. Neurol. (2003) 60(8):1119-1122.
  • WIMO A, WINBLAD B, AGUERO-TORRES H, VON STRAUSS E: The magnitude of dementia occurrence in the world. Alzheimer Dis. Assoc. Disord. (2003) 17(2):63-67.
  • LAFERLA FM, ODDO S: Alzheimer's disease: Aβ, τ and synaptic dysfunction. Trends Mol. Med. (2005) 11(4):170-176.
  • FORMAN MS, TROJANOWSKI JQ, LEE VM: Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nat. Med. (2004) 10(10):1055-1063.
  • PITTMAN AM, FUNG HC, DE SILVA R: Untangling the τ gene association with neurodegenerative disorders. Hum. Mol. Genet. (2006) 15(Spec. No. 2):R188-R195.
  • ROY S, ZHANG B, LEE VM, TROJANOWSKI JQ: Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol. (Berl.) (2005) 109(1):5-13.
  • SCHENK D, HAGEN M, SEUBERT P: Current progress in β-amyloid immunotherapy. Curr. Opin. Immunol. (2004) 16(5):599-606.
  • LLEO A, GREENBERG SM, GROWDON JH: Current pharmacotherapy for Alzheimer's disease. Ann. Rev. Med. (2006) 57:513-533.
  • TROJANOWSKI JQ: Tauists, Baptists, Syners, Apostates, and new data. Ann. Neurol. (2002) 52(3):263-265.
  • SCHENK , CARRILLO, TROJANOWSKI: Cytoskeletal modulators and pleiotropic strategies for Alzheimer drug discovery. Alzheimer's & Dementia: J. Alzheimer's Assoc. (2006) 2(4):275.
  • TRINH NH, HOBLYN J, MOHANTY S, YAFFE K: Efficacy of cholinesterase inhibitors in the treatment of neuropsychiatric symptoms and functional impairment in Alzheimer disease: a meta-analysis. JAMA (2003) 289(2):210-216.
  • ROBERSON ED, MUCKE L: 100 years and counting: prospects for defeating Alzheimer's disease. Science (2006) 314(5800):781-784.
  • LANE RM, KIVIPELTO M, GREIG NH: Acetylcholinesterase and its inhibition in Alzheimer disease. Clin. Neuropharmacol. (2004) 27(3):141-149.
  • NORDBERG A: Mechanisms behind the neuroprotective actions of cholinesterase inhibitors in Alzheimer disease. Alzheimer Dis. Assoc. Disord. (2006) 20(2 Suppl. 1):S12-S18.
  • SVENSSON AL, NORDBERG A: Tacrine and donepezil attenuate the neurotoxic effect of A β(25 – 35) in rat PC12 cells. Neuroreport (1998) 9(7):1519-1522.
  • DAVIS KL, MOHS RC, MARIN D et al.: Cholinergic markers in elderly patients with early signs of Alzheimer disease. JAMA (1999) 281(15):1401-1406.
  • RINNE JO, KAASINEN V, JARVENPAA T et al.: Brain acetylcholinesterase activity in mild cognitive impairment and early Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry (2003) 74(1):113-115.
  • MESSER WS Jr: Cholinergic agonists and the treatment of Alzheimer's disease. Curr. Top. Med. Chem. (2002) 2(4):353-358.
  • CACCAMO A, ODDO S, BILLINGS LM et al.: M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron (2006) 49(5):671-682.
  • COLLINGRIDGE GL: The Sharpey-Schafer Prize Lecture. The mechanism of induction of NMDA receptor-dependent long-term potentiation in the hippocampus. Exp. Physiol. (1992) 77(6):771-797.
  • LYNCH DR, GUTTMANN RP: NMDA receptor pharmacology: perspectives from molecular biology. Curr. Drug Targets (2001) 2(3):215-231.
  • DE FELICE FG, VELASCO PT, LAMBERT MP et al.: Aβ oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J. Biol. Chem. (2007) 282(15):11590-11601.
  • DE STROOPER B, ANNAERT W: Proteolytic processing and cell biological functions of the amyloid precursor protein. J. Cell Sci. (2000) 113(Pt 11):1857-1870.
  • HAASS C, DE STROOPER B: The presenilins in Alzheimer's disease–proteolysis holds the key. Science (1999) 286(5441):916-919.
  • GOLDE TE: Disease modifying therapy for AD? J. Neurochem. (2006) 99(3):689-707.
  • SISODIA SS: β-amyloid precursor protein cleavage by a membrane-bound protease. Proc. Natl. Acad. Sci. USA (1992) 89(13):6075-6079.
  • ETCHEBERRIGARAY R, TAN M, DEWACHTER I et al.: Therapeutic effects of PKC activators in Alzheimer's disease transgenic mice. Proc. Natl. Acad. Sci. USA (2004) 101(30):11141-11146.
  • KOZIKOWSKI AP, NOWAK I, PETUKHOV PA et al.: New amide-bearing benzolactam-based protein kinase C modulators induce enhanced secretion of the amyloid precursor protein metabolite sAPPα. J. Med. Chem. (2003) 46(3):364-373.
  • LARNER AJ: Secretases as therapeutic targets in Alzheimer's disease: patents 2000 – 2004. Expert Opin. Ther. Patents (2004) 14(10):1403-1420.
  • STACHEL SJ, COBURN CA, STEELE TG et al.: Structure-based design of potent and selective cell-permeable inhibitors of human β-secretase (BACE-1). J. Med. Chem. (2004) 47(26):6447-6450.
  • MCGAUGHEY GB, COLUSSI D, GRAHAM SL et al.: β-Secretase (BACE-1) inhibitors: accounting for 10s loop flexibility using rigid active sites. Bioorg. Med. Chem. Lett. (2006) 17(4):1117-1121.
  • HOM RK, GAILUNAS AF, MAMO S et al.: Design and synthesis of hydroxyethylene-based peptidomimetic inhibitors of human β-secretase. J. Med. Chem. (2004) 47(1):158-164.
  • HU B, FAN KY, BRIDGES K et al.: Synthesis and SAR of bis-statine based peptides as BACE 1 inhibitors. Bioorg. Med. Chem. Lett. (2004) 14(13):3457-3460.
  • PARKIN ET, TREW A, CHRISTIE G et al.: Structure–activity relationship of hydroxamate-based inhibitors on the secretases that cleave the amyloid precursor protein, angiotensin converting enzyme, CD23, and pro-tumor necrosis factor-α. Biochemistry (2002) 41(15):4972-4981.
  • HU X, HICKS CW, HE W et al.: Bace1 modulates myelination in the central and peripheral nervous system. Nat. Neurosci. (2006) 9(12):1520-1525.
  • WOLFE MS: When loss is gain: reduced presenilin proteolytic function leads to increased Aβ42/Aβ40. Talking point on the role of presenilin mutations in Alzheimer disease. EMBO Rep. (2007) 8(2):136-140.
  • DOVEY HF, JOHN V, ANDERSON JP et al.: Functional γ-secretase inhibitors reduce β-amyloid peptide levels in brain. J. Neurochem. (2001) 76(1):173-181.
  • SIEMERS E, SKINNER M, DEAN RA et al.: Safety, tolerability, and changes in amyloid β concentrations after administration of a γ-secretase inhibitor in volunteers. Clin. Neuropharmacol. (2005) 28(3):126-132.
  • SIEMERS ER, QUINN JF, KAYE J et al.: Effects of a γ-secretase inhibitor in a randomized study of patients with Alzheimer disease. Neurology (2006) 66(4):602-604.
  • ERIKSEN JL, SAGI SA, SMITH TE et al.: NSAIDs and enantiomers of flurbiprofen target γ-secretase and lower Aβ 42 in vivo. J. Clin. Invest. (2003) 112(3):440-449.
  • BLACK S, WILCOCK GK, HAWORTH J et al.: Efficacy and safety of MPC-7869 (R-flurbiprofen), a selective Aβ42-lowering agent, in mild Alzheimers disease (AD): results of a 12-month Phase II trial and 1-year follow-on study. Neurology (2006) 66:A347.
  • SEARFOSS GH, JORDAN WH, CALLIGARO DO et al.: Adipsin, a biomarker of gastrointestinal toxicity mediated by a functional γ-secretase inhibitor. J. Biol. Chem. (2003) 278(46):46107-46116.
  • MILANO J, MCKAY J, DAGENAIS C et al.: Modulation of notch processing by γ-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol. Sci. (2004) 82(1):341-358.
  • DE STROOPER B, ANNAERT W, CUPERS P et al.: A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature (1999) 398(6727):518-522.
  • HOCK C, KONIETZKO U, STREFFER JR et al.: Antibodies against β-amyloid slow cognitive decline in Alzheimer's disease. Neuron (2003) 38(4):547-554.
  • SOLOMON B, KOPPEL R, HANAN E, KATZAV T: Monoclonal antibodies inhibit in vitro fibrillar aggregation of the Alzheimer β-amyloid peptide. Proc. Natl. Acad. Sci. USA (1996) 93(1):452-455.
  • BACHMANN MF, DYER MR: Therapeutic vaccination for chronic diseases: a new class of drugs in sight. Nat. Rev. Drug Discov. (2004) 3(1):81-88.
  • KLEIN WL: Aβ toxicity in Alzheimer's disease: globular oligomers (ADDLs) as new vaccine and drug targets. Neurochem. Int. (2002) 41(5):345-352.
  • LAMBERT MP, VELASCO PT, CHANG L et al.: Monoclonal antibodies that target pathological assemblies of Aβ. J. Neurochem. (2007) 100(1):23-35.
  • TARASKEVICH PS, DOUGLAS WW: Pharmacological and ionic features of γ-aminobutyric acid receptors influencing electrical properties of melanotrophs isolated from the rat pars intermedia. Neuroscience (1985) 14(1):301-308.
  • GERVAIS F, PAQUETTE J, MORISSETTE C et al.: Targeting soluble Aβ peptide with Tramiprosate for the treatment of brain amyloidosis. Neurobiol. Aging (2006) 28(4):537-547.
  • AISEN PS, SAUMIER D, BRIAND R et al.: A Phase II study targeting amyloid-β with 3APS in mild-to-moderate Alzheimer disease. Neurology (2006) 67(10):1757-1763.
  • FINEFROCK AE, BUSH AI, DORAISWAMY PM: Current status of metals as therapeutic targets in Alzheimer's disease. J. Am. Geriatr. Soc. (2003) 51(8):1143-1148.
  • RITCHIE CW, BUSH AI, MACKINNON A et al.: Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Aβ amyloid deposition and toxicity in Alzheimer disease: a pilot Phase II clinical trial. Arch. Neurol. (2003) 60(12):1685-1691.
  • MCLAURIN J, KIERSTEAD ME, BROWN ME et al.: Cyclohexanehexol inhibitors of Aβ aggregation prevent and reverse Alzheimer phenotype in a mouse model. Nat. Med. (2006) 12(7):801-808.
  • TOWNSEND M, CLEARY JP, MEHTA T et al.: Orally available compound prevents deficits in memory caused by the Alzheimer Aβ oligomers. Ann. Neurol. (2006) 60(6):668-676.
  • PANZA F, D'INTRONO A, COLACICCO AM et al.: Lipid metabolism in cognitive decline and dementia. Brain Res. Brain Res. Rev. (2006) 51(2):275-292.
  • FARRER LA, CUPPLES LA, HAINES JL et al.: Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA (1997) 278(16):1349-1356.
  • FRIEDHOFF LT, CULLEN EI, GEOGHAGEN NS, BUXBAUM JD: Treatment with controlled-release lovastatin decreases serum concentrations of human β-amyloid (A β) peptide. Int. J. Neuropsychopharmacol. (2001) 4(2):127-130.
  • SIMONS M, SCHWARZLER F, LUTJOHANN D et al.: Treatment with simvastatin in normocholesterolemic patients with Alzheimer's disease: a 26-week randomized, placebo-controlled, double-blind trial. Ann. Neurol. (2002) 52(3):346-350.
  • SPARKS DL, CONNOR DJ, SABBAGH MN et al.: Circulating cholesterol levels, apolipoprotein E genotype and dementia severity influence the benefit of atorvastatin treatment in Alzheimer's disease: results of the Alzheimer's Disease Cholesterol-Lowering Treatment (ADCLT) trial. Acta Neurologica Scandinavica (2006) 114(s185):3-7.
  • ATACK JR, BROUGHTON HB, POLLACK SJ: Structure and mechanism of inositol monophosphatase. FEBS Lett. (1995) 361(1):1-7.
  • SHIMOHAMA S, TANINO H, SUMIDA Y, TSUDA J, FUJIMOTO S: Alteration of myo-inositol monophosphatase in Alzheimer's disease brains. Neurosci. Lett. (1998) 245(3):159-162.
  • SCHMIDT AM, YAN SD, YAN SF, STERN DM: The biology of the receptor for advanced glycation end products and its ligands. Biochim. Biophys. Acta (2000) 1498(2-3):99-111.
  • DELACOURTE A, DEFOSSEZ A: Alzheimer's disease: τ proteins, the promoting factors of microtubule assembly, are major components of paired helical filaments. J. Neurol. Sci. (1986) 76(2-3):173-186.
  • GRUNDKE-IQBAL I, IQBAL K, QUINLAN M et al.: Microtubule-associated protein τ. A component of Alzheimer paired helical filaments. J. Biol. Chem. (1986) 261(13):6084-6089.
  • KOSIK KS, JOACHIM CL, SELKOE DJ: Microtubule-associated protein tau (τ) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc. Natl. Acad. Sci. USA (1986) 83(11):4044-4048.
  • NUKINA N, IHARA Y: One of the antigenic determinants of paired helical filaments is related to τ protein. J. Biochem. (Tokyo) (1986) 99(5):1541-1544.
  • WOOD JG, MIRRA SS, POLLOCK NJ, BINDER LI: Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (τ). Proc. Natl. Acad. Sci. USA (1986) 83(11):4040-4043.
  • GOEDERT M, WISCHIK CM, CROWTHER RA, WALKER JE, KLUG A: Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein τ. Proc. Natl. Acad. Sci. USA (1988) 85(11):4051-4055.
  • WISCHIK CM, NOVAK M, THOGERSEN HC et al.: Isolation of a fragment of τ derived from the core of the paired helical filament of Alzheimer disease. Proc. Natl. Acad. Sci. USA (1988) 85(12):4506-4510.
  • GOEDERT M, SPILLANTINI MG, POTIER MC, ULRICH J, CROWTHER RA: Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein τ containing four tandem repeats: differential expression of τ protein mRNAs in human brain. EMBO J. (1989) 8(2):393-399.
  • HIMMLER A, DRECHSEL D, KIRSCHNER MW, MARTIN DW Jr: τ consists of a set of proteins with repeated C-terminal microtubule-binding domains and variable N-terminal domains. Mol. Cell Biol. (1989) 9(4):1381-1388.
  • CLEVELAND DW, HWO SY, KIRSCHNER MW: Purification of τ, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J. Mol. Biol. (1977) 116(2):207-225.
  • CLEVELAND DW, HWO SY, KIRSCHNER MW: Physical and chemical properties of purified τ factor and the role of τ in microtubule assembly. J. Mol. Biol. (1977) 116(2):227-247.
  • WEINGARTEN MD, LOCKWOOD AH, HWO SY, KIRSCHNER MW: A protein factor essential for microtubule assembly. Proc. Natl. Acad. Sci. USA (1975) 72(5):1858-1862.
  • DRUBIN DG, CAPUT D, KIRSCHNER MW: Studies on the expression of the microtubule-associated protein, τ, during mouse brain development, with newly isolated complementary DNA probes. J. Cell Biol. (1984) 98(3):1090-1097.
  • EBNETH A, GODEMANN R, STAMER K et al.: Overexpression of τ protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer's disease. J. Cell Biol. (1998) 143(3):777-794.
  • STAMER K, VOGEL R, THIES E, MANDELKOW E, MANDELKOW EM: τ blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J. Cell Biol. (2002) 156(6):1051-1063.
  • AVILA J: τ phosphorylation and aggregation in Alzheimer's disease pathology. FEBS Lett. (2006) 580(12):2922-2927.
  • LEE VM, GOEDERT M, TROJANOWSKI JQ: Neurodegenerative tauopathies. Ann. Rev. Neurosci. (2001) 24:1121-1159.
  • GOTZ J, ITTNER LM, KINS S: Do axonal defects in τ and amyloid precursor protein transgenic animals model axonopathy in Alzheimer's disease? J. Neurochem. (2006) 98(4):993-1006.
  • JOSEPHS KA, PETERSEN RC, KNOPMAN DS et al.: Clinicopathologic analysis of frontotemporal and corticobasal degenerations and PSP. Neurology (2006) 66(1):41-48.
  • HUTTON M: Missense and splice site mutations in τ associated with FTDP-17: multiple pathogenic mechanisms. Neurology (2001) 56(11 Suppl. 4):S21-S25.
  • STOKIN GB, LILLO C, FALZONE TL et al.: Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science (2005) 307(5713):1282-1288.
  • PETERSEN RC, SMITH GE, WARING SC et al.: Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. (1999) 56(3):303-308.
  • GANGULI M, DODGE HH, SHEN C, DEKOSKY ST: Mild cognitive impairment, amnestic type: an epidemiologic study. Neurology (2004) 63(1):115-121.
  • LARRIEU S, LETENNEUR L, ORGOGOZO JM et al.: Incidence and outcome of mild cognitive impairment in a population-based prospective cohort. Neurology (2002) 59(10):1594-1599.
  • PETERSEN RC, MORRIS JC: Mild cognitive impairment as a clinical entity and treatment target. Arch. Neurol. (2005) 62(7):1160-1163; discussion 1167.
  • TSCHANZ JT, WELSH-BOHMER KA, LYKETSOS CG et al.: Conversion to dementia from mild cognitive disorder: the Cache County Study. Neurology (2006) 67(2):229-234.
  • BOYLE PA, WILSON RS, AGGARWAL NT, TANG Y, BENNETT DA: Mild cognitive impairment: risk of Alzheimer disease and rate of cognitive decline. Neurology (2006) 67(3):441-445.
  • HANSSON O, ZETTERBERG H, BUCHHAVE P et al.: Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol. (2006) 5(3):228-234.
  • MARKESBERY WR, SCHMITT FA, KRYSCIO RJ et al.: Neuropathologic substrate of mild cognitive impairment. Arch. Neurol. (2006) 63(1):38-46.
  • PETERSEN RC, PARISI JE, DICKSON DW et al.: Neuropathologic features of amnestic mild cognitive impairment. Arch. Neurol. (2006) 63(5):665-672.
  • BASSAN M, ZAMOSTIANO R, DAVIDSON A et al.: Complete sequence of a novel protein containing a femtomolar-activity-dependent neuroprotective peptide. J. Neurochem. (1999) 72(3):1283-1293.
  • GOZES I, MORIMOTO BH, TIONG J et al.: NAP: research and development of a peptide derived from activity-dependent neuroprotective protein (ADNP). CNS Drug Rev. (2005) 11(4):353-368.
  • GOZES I, ALCALAY R, GILADI E et al.: NAP accelerates the performance of normal rats in the water maze. J. Mol. Neurosci. (2002) 19(1-2):167-170.
  • ALCALAY RN, GILADI E, PICK CG, GOZES I: Intranasal administration of NAP, a neuroprotective peptide, decreases anxiety-like behavior in aging mice in the elevated plus maze. Neurosci. Lett. (2004) 361(1-3):128-131.
  • BENI-ADANI L, GOZES I, COHEN Y et al.: A peptide derived from activity-dependent neuroprotective protein (ADNP) ameliorates injury response in closed head injury in mice. J. Pharmacol. Exp. Ther. (2001) 296(1):57-63.
  • ROMANO J, BENI-ADANI L, NISSENBAUM OL et al.: A single administration of the peptide NAP induces long-term protective changes against the consequences of head injury: gene Atlas array analysis. J. Mol. Neurosci. (2002) 18(1-2):37-45.
  • ZALTZMAN R, BENI SM, GILADI E et al.: Injections of the neuroprotective peptide NAP to newborn mice attenuate head-injury-related dysfunction in adults. NeuroReport (2003) 14(3):481-484.
  • GOZES I, GILADI E, PINHASOV A, BARDEA A, BRENNEMAN DE: Activity-dependent neurotrophic factor: intranasal administration of femtomolar-acting peptides improve performance in a water maze. J. Pharmacol. Exp. Ther. (2000) 293(3):1091-1098.
  • DIVINSKI I, HOLTSER-COCHAV M, VULIH-SCHULTZMAN I, STEINGART RA, GOZES I: Peptide neuroprotection through specific interaction with brain tubulin. J. Neurochem. (2006) 98(3):973-984.
  • MATSUOKA Y, GRAY A, LI H et al.: NAP reduces phosphorylated τ in AD transgenic mice. Alzheimer's & Dementia: J. Alzheimer's Assoc. (2006) 2(3):S614-S615.
  • MATSUOKA Y, GRAY AJ, HIRATA-FUKAE C et al.: Intranasal NAP administration reduces accumulation of amyloid peptide and τ hyperphosphorylation in a transgenic mouse model of Alzheimer's disease at early pathological stage. J. Mol. Neurosci. (2007) 31(2):165-170.
  • KHLISTUNOVA I, BIERNAT J, WANG Y et al.: Inducible expression of τ repeat domain in cell models of tauopathy: aggregation is toxic to cells but can be reversed by inhibitor drugs. J. Biol. Chem. (2006) 281(2):1205-1214.
  • PICKHARDT M, GAZOVA Z, VON BERGEN M et al.: Anthraquinones inhibit τ aggregation and dissolve Alzheimer's paired helical filaments in vitro and in cells. J. Biol. Chem. (2005) 280(5):3628-3635.
  • DICKEY CA, DUNMORE J, LU B et al.: HSP induction mediates selective clearance of τ phosphorylated at proline-directed Ser/Thr sites but not KXGS (MARK) sites. FASEB J. (2006) 20(6):753-755.
  • PETRUCELLI L, DICKSON D, KEHOE K et al.: CHIP and Hsp70 regulate τ ubiquitination, degradation and aggregation. Hum. Mol. Genet. (2004) 13(7):703-714.
  • CASTRO A, MARTINEZ A: Inhibition of τ phosphorylation: a new therapeutic strategy for the treatment of Alzheimer's disease and other neurodegenerative disorders. Expert Opin. Ther. Patents (2000) 10(10):1519-1527.
  • BILLINGSLEY ML, KINCAID RL: Regulated phosphorylation and dephosphorylation of τ protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochem. J. (1997) 323 (Part 3):577-591.
  • SERGEANT N, DELACOURTE A, BUEE L: τ protein as a differential biomarker of tauopathies. Biochim. Biophys. Acta (2005) 1739(2-3):179-197.
  • COHEN P, GOEDERT M: GSK3 inhibitors: development and therapeutic potential. Nat. Rev. Drug Discov. (2004) 3(6):479-487.
  • WOODGETT JR: Judging a protein by more than its name: GSK-3. Sci. STKE (2001) 2001(100):RE12.
  • CHURCHER I: τ therapeutic strategies for the treatment of Alzheimer's disease. Curr. Top. Med. Chem. (2006) 6(6):579-595.
  • NIKOULINA SE, CIARALDI TP, MUDALIAR S et al.: Inhibition of glycogen synthase kinase 3 improves insulin action and glucose metabolism in human skeletal muscle. Diabetes (2002) 51(7):2190-2198.
  • BHAT R, XUE Y, BERG S et al.: Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418. J. Biol. Chem. (2003) 278(46):45937-45945.
  • SMITH DG, BUFFET M, FENWICK AE et al.: 3-Anilino-4-arylmaleimides: potent and selective inhibitors of glycogen synthase kinase-3 (GSK-3). Bioorg. Med. Chem. Lett. (2001) 11(5):635-639.
  • ENGEL T, GONI-OLIVER P, LUCAS JJ, AVILA J, HERNANDEZ F: Chronic lithium administration to FTDP-17 τ and GSK-3β overexpressing mice prevents τ hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. J. Neurochem. (2006) 99(6):1445-1455.
  • LE CORRE S, KLAFKI HW, PLESNILA N et al.: An inhibitor of τ hyperphosphorylation prevents severe motor impairments in τ transgenic mice. Proc. Natl. Acad. Sci. USA (2006) 103(25):9673-9678.
  • ETMINAN M, GILL S, SAMII A: Effect of non-steroidal anti-inflammatory drugs on risk of Alzheimer's disease: systematic review and meta-analysis of observational studies. BMJ (2003) 327(7407):128.
  • AKIYAMA H, BARGER S, BARNUM S et al.: Inflammation and Alzheimer's disease. Neurobiol. Aging (2000) 21(3):383-421.
  • MCGEER PL, MCGEER EG: The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res. Brain Res. Rev. (1995) 21(2):195-218.
  • MINAGAR A, SHAPSHAK P, FUJIMURA R et al.: The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J. Neurol. Sci. (2002) 202(1-2):13-23.
  • YASOJIMA K, SCHWAB C, MCGEER EG, MCGEER PL: Distribution of cyclooxygenase-1 and cyclooxygenase-2 mRNAs and proteins in human brain and peripheral organs. Brain Res. (1999) 830(2):226-236.
  • AISEN PS, SCHAFER KA, GRUNDMAN M et al.: Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA (2003) 289(21):2819-2826.
  • REINES SA, BLOCK GA, MORRIS JC et al.: Rofecoxib: no effect on Alzheimer's disease in a 1-year, randomized, blinded, controlled study. Neurology (2004) 62(1):66-71.
  • BALOYANNIS SJ: Mitochondrial alterations in Alzheimer's disease. J. Alzheimers Dis. (2006) 9(2):119-126.
  • NUNOMURA A, CASTELLANI RJ, ZHU X et al.: Involvement of oxidative stress in Alzheimer disease. J. Neuropathol. Exp. Neurol. (2006) 65(7):631-641.
  • ROTTKAMP CA, NUNOMURA A, RAINA AK et al.: Oxidative stress, antioxidants, and Alzheimer disease. Alzheimer Dis. Assoc. Disord. (2000) 14(Suppl. 1):S62-S66.
  • ZHU X, SMITH MA, PERRY G, ALIEV G: Mitochondrial failures in Alzheimer's disease. Am. J. Alzheimer's Dis. Other Dementias (2004) 19(6):345-352.
  • SANO M, ERNESTO C, THOMAS RG et al.: A controlled trial of selegiline, α-tocopherol, or both as treatment for Alzheimer's disease. The Alzheimer's Disease Cooperative Study. N. Engl. Med. (1997) 336(17):1216-1222.
  • KANG JH, COOK N, MANSON J, BURING JE, GRODSTEIN F: A randomized trial of vitamin E supplementation and cognitive function in women. Arch. Intern. Med. (2006) 166(22):2462-2468.
  • MILLER ER III, PASTOR-BARRIUSO R, DALAL D et al.: Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann. Intern. Med. (2005) 142(1):37-46.
  • MENESES A: 5-HT system and cognition. Neurosci. Biobehav. Rev. (1999) 23(8):1111-1125.
  • LABIE C, LAFON C, MARMOUGET C et al.: Effect of the neuroprotective compound SR57746A on nerve growth factor synthesis in cultured astrocytes from neonatal rat cortex. Br. J. Pharmacol. (1999) 127(1):139-144.
  • COON AL, WALLACE DR, MACTUTUS CF, BOOZE RM: L-type calcium channels in the hippocampus and cerebellum of Alzheimer's disease brain tissue. Neurobiol. Aging (1999) 20(6):597-603.
  • FUKUSHIMA T, KOIDE M, AGO Y, BABA A, MATSUDA T: T-817MA, a novel neurotrophic agent, improves sodium nitroprusside-induced mitochondrial dysfunction in cortical neurons. Neurochem. Int. (2006) 48(2):124-130.
  • ROSENBERG RN: Translational research on the way to effective therapy for Alzheimer disease. Arch. Gen. Psychiatry (2005) 62(11):1186-1192.
  • ROGAEVA E, MENG Y, LEE JH et al.: The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat. Genet. (2007) 39(2):168-177.
  • BERTRAM L, MCQUEEN MB, MULLIN K, BLACKER D, TANZI RE: Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat. Genet. (2007) 39(1):17-23.
  • GOLDE TE: Alzheimer disease therapy: can the amyloid cascade be halted? J. Clin. Invest. (2003) 111(1):11-18.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.