121
Views
12
CrossRef citations to date
0
Altmetric
Drug Evaluation

Nilotinib: a novel Bcr-Abl tyrosine kinase inhibitor for the treatment of leukemias

, , &
Pages 1127-1136 | Published online: 12 Jun 2008

Bibliography

  • Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2006. CA Cancer J Clin 2006;56:106-30
  • Faderl S, Talpaz M, Estrov Z, Kantarjian HM. Chronic myelogenous leukemia: biology and therapy. Ann Intern Med 1999;131:207-19
  • Hill JM, Meehan KR. Chronic myelogenous leukaemia: curable with early diagnosis and treatment. Postgrad Med 1999;106:149-52, 157-9
  • Pasternak G, Hochhaus A, Schultheis B, Hehlmann R. Chronic myelogenous leukemia: molecular and cellular aspects. J Cancer Res Clin Oncol 1998;124:643-60
  • Barnes DJ, Melo JV. Cytogenetic and molecular genetic aspects of chronic myeloid leukemia. Acta Haematol 2002;108:180-202
  • Melo JV, Hughes TP, Apperley JF. Chronic myeloid leukemia. Hematology Am Soc Hematol Educ Program 2003;132-52
  • Pendergast AM, Quilliam LA, Cripe LD, et al. BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 1993;75:175-85
  • Puil L, Liu J, Gish G, et al. Bcr-Abl oncoproteins bind directly to activators of the Ras signaling pathway. EMBO J 1994;13:764-73
  • Pelicci G, Lanfrancone L, Salcini AE, et al. Constitutive phosphorylation of Shc proteins in human tumors. Oncogene 1995;11:899-907
  • Oda T, Heaney C, Hagopian JR, et al. Crkl is the major tyrosine-phosphorylated protein in neutrophils from patients with chronic myelogenous leukemia. J Biol Chem 1994;269:22925-8
  • Bhat A, Kolibaba K, Oda T, et al. Interactions of CBL with BCR-ABL and CRKL in BCR-ABL-transformed myeloid cells. J Biol Chem 1997;272:16170-5
  • Marais R, Light Y, Paterson HF, Marshall CJ. Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. EMBO J 1995;14:3136-45
  • Skorski T, Kanakaraj P, Nieborowska-Skorska M, et al. Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells. Blood 1995;86:726-36
  • Skorski T, Bellacosa A, Nieborowska-Skorska M, et al. Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J 1997;16:6151-61
  • Jonuleit T, van der Kuip H, Miething C, et al. Bcr-Abl kinase downregulates cyclin-dependent kinase inhibitor p27 in human and murine cell lines. Blood 2000;96:1933-9
  • Franke TF, Kaplan DR, Cantley LC. PI3K: downstream AKTion blocks apoptosis. Cell 1997;88:435-7
  • Komatsu N, Watanabe T, Uchida M, et al. A member of Forkhead transcription factor FKHRL1 is a downstream effector of STI571-induced cell cycle arrest in BCR-ABL-expressing cells. J Biol Chem 2003;278:6411-9
  • Shuai K, Halpern J, ten Hoeve J, et al. Constitutive activation of STAT5 by the Bcr-Abl oncogene in chronic myelogenous leukemia. Oncogene 1996;13:247-54
  • Ilaria RL Jr, Van Etten RA. P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J Biol Chem 1996;271:31704-10
  • Frank DA, Varticovski L. BCR/abl leads to the constitutive activation of Stat proteins, and shares an epitope with tyrosine phosphorylated Stats. Leukemia 1996;10:1724-30
  • Klejman A, Schreiner SJ, Nieborowska-Skorska M, et al. The Src family kinase Hck couples BCR/ABL to STAT5 activation in myeloid leukemia cells. EMBO J 2002;21:5766-74
  • Horita M, Andreu EJ, Benito A, et al. Blockade of the Bcr-Abl kinase activity induces apoptosis of chronic myelogenous leukemia cells by suppressing signal transducer and activator of transcription 5-dependent expression of Bcl-xL. J Exp Med 2000;191:977-84
  • Nieborowska-Skorska M, Hoser G, Kossev P, et al. Complementary functions of the antiapoptotic protein A1 and serine/threonine kinase pim-1 in the BCR/ABL-mediated leukemogenesis. Blood 2002;99:4531-9
  • Menssen A, Hermeking H. Characterization of the c-MYC-regulated transcriptome by SAGE: identification and analysis of c-MYC target genes. Proc Natl Acad Sci USA 2002;99:6274-9
  • Sawyers CL, Callahan W, Witte ON. Dominant negative MYC blocks transformation by ABL oncogenes. Cell 1992;70:901-10
  • Afar DE, Goga A, McLaughlin J, et al. Differential complementation of Bcr-Abl point mutants with c-Myc. Science 1994;264:424-6
  • Xie S, Wang Y, Liu J, et al. Involvement of Jak2 tyrosine phosphorylation in Bcr-Abl transformation. Oncogene 2001;20:6188-95
  • Pendergast AM, Muller AJ, Havlik MH, et al. BCR sequences essential for transformation by the BCR-ABL oncogene bind to the ABL SH2 regulatory domain in a non-phosphotyrosine-dependent manner. Cell 1991;66:161-71
  • Skorski T, Nieborowska-Skorska M, Wlodarski P, et al. Blastic transformation of p53-deficient bone marrow cells by p210bcr/abl tyrosine kinase. Proc Natl Acad Sci USA 1996;93:13137-42
  • Hernandez-Boluda JC, Cervantes F, Colomer D, et al. Genomic p16 abnormalities in the progression of chronic myeloid leukemia into blast crisis: a sequential study in 42 patients. Exp Hematol 2003;31:204-10
  • Serrano M, Lee H, Chin L, et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell 1996;85:27-37
  • Beck Z, Kiss A, Toth FD, et al. Alterations of P53 and RB genes and the evolution of the accelerated phase of chronic myeloid leukemia. Leuk Lymphoma 2000;38:587-97
  • Branford S, Rudzki Z, Walsh S, et al. Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood 2003;102:276-83
  • Jabbour E, Kantarjian H, Jones D, et al. Frequency and clinical significance of BCR-ABL mutations in patients with chronic myeloid leukemia treated with imatinib mesilate. Leukemia 2006;20:1767-73
  • Nicolini FE, Corm S, Le QH, et al. Mutation status and clinical outcome of 89 imatinib mesilate-resistant chronic myelogenous leukemia patients: a retrospective analysis from the French intergroup of CML (Fi(phi)-LMC GROUP). Leukemia 2006;20:1061-6
  • Capdeville R. Buchdunger E, Zimmermann J, Matter A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat Rev Drug Discov 2002;1:493-502
  • Daley GQ, Van Etten RA, Baltimore D, et al. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 1990;247:824-30
  • Kelliher MA, McLaughlin J, Witte ON, Rosenberg N. Induction of a chronic myelogenous leukemia-like syndrome in mice with v-abl and BCR/ABL. Proc Natl Acad Sci USA 1990;87:6649-53
  • O'Brien SG, Guilhot F, Larson RA, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 2003;348:994-1004
  • Druker BJ, Guilhot F, O'Brien S, et al. Long-term benefits of imatinib (IM) for patients newly diagnosed with chronic myelogenous leukemia in chronic phase (CML-CP): five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006;355:2408-17
  • Hochhaus A, Kreil S, Corbin AS, et al. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 2002;16:2190-6
  • Gambacorti-Passerini CB, Gunby RH, Piazza R, et al. Molecular mechanisms of resistance to imatinib in Philadelphia-chromosome-positive leukemias. Lancet Oncol 2003;4:75-85
  • Talpaz M, Shah N, Kantarjian HM, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 2006;354:2531-41
  • Kantarjian H, Giles F, Wunderle L, et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med 2006;354:2542-51
  • Golas JM, Arndt K, Etienne C, et al. SKI-606, a 4-anilino-3-quinolinecarbonitrile dual inhibitor of Src and Abl kinases, is a potent antiproliferative agent against chronic myelogenous leukemia cells in culture and causes regression of K562 xenografts in nude mice. Cancer Res 2003;63:375-81
  • Kimura S, Naito H, Segawa H, et al. NS-187, a potent and selective dual Bcr-Abl/Lyn tyrosine kinase inhibitor, is a novel agent for imatinib-resistant leukemia. Blood 2005;106:3948-54
  • Hughes TP, Kaeda J, Branford S, et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med 2003;349:1423-32
  • Goldman JM, Hughes T, Radich J, et al. Contimuing reduction in level of residual disease after 4 years in patients with CML in chronic phase responding to first-line imatinib in the IRIS study [abstract]. Blood 2005;106:51a
  • Kantarjian HM, O'Brien S, Cortes J, et al. Imatinib mesilate therapy improves survival in patients with newly diagnosed Philadelphia chromosome-positive chronic myelogenous leukemia in the chronic phase. Comparison with historic data. Cancer 2003;98:2636-42
  • Kantarjian HM, Talpaz M, O'Brien S, et al. Survival benefit with imatinib mesilate versus interferon alpha-based regimens in newly diagnosed chronic phase chronic myelogenous leukemia. Blood 2006;108:1835-40
  • Roy L, Guilhot J, Kranhke T, et al. Survival advantage from imatinib compared to the combination interferon-alpha plus cytarabine in chronic phase CML: historical comparison between two phase III trials. Blood 2006;108:1478-84
  • Cortes J, Giles F, O'Brien S, et al. Result of high-dose imatinib mesilate in patients with Philadelphia chromosome-positive chronic myeloid leukemia after failure of interferon-α. Blood 2003;102:83-6
  • Talpaz M, Silver RT, Druker BJ, et al. Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase II study. Blood 2002;99:1928-37
  • Sawyers CL, Hochhaus A, Feldman E, at al. Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood 2002;99:3530-9
  • Kantarjian H, Talpaz M, O'Brien S, et al. High-dose imatinib mesilate therapy in newly diagnosed Philadelphia chromosome-positive chronic phase chronic myeloid leukemia. Blood 2004;103:2873-8
  • Hughes TP, Branford S, Matthews J, et al. Trial of higher dose imatinib with selective intensification in newly diagnosed CML patients in chronic phase. Blood 2003:102:31a
  • Cortes J, Giles F, Salvado A, et al. High-dose (HD) imatinib in patients with previously untreated chronic myeloid leukemia (CML) in early chronic phase (CP): preliminary results of a multicenter community based trial. J Clin Oncol 2005;23:564a
  • Rosti G, Martinelli G, Castagnetti F, et al. Imatinib 800 mg: preliminary results of a phase II trial of the GIMEMA CML working party in intermediate sokal risk patients and status-of-the-art of an ongoing multinational, prospective randomized trial of imatinib standard dose (400 mg daily) s high dose (800 mg daily) in high sokal risk patients. Blood 2005;106:320a
  • Aoki E, Kantarjian H, O'Brien S, et al. High-dose imatinib mesilate treatment in patients (pts) with untreated early chronic phase (CP) chronic myeloid leukemia (CML): 2.5-year follow-up [abstract 6535]. Proc Am Soc Clin Oncol 2006;24
  • Shah NP. Loss of response to imatinib: mechanisms and management. Hematology Am Soc Hematol Educ Program 2005;183-7
  • Silver RT, Talpaz M, Sawyers CL, et al. Four years of follow-up of 1027 patients with late chronic phase (L-CP), accelerated phase (AP), or blast crisis (BC) chronic myeloid leukemia (CML) treated with imatinib in three large phase II trials [abstract 23]. Blood 2004;104
  • Gorre ME, Mohammed M, Ellwood K, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001;293:876-80
  • Deininger M, Buchdunger E, Druker BJ. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 2005;105:2640-53
  • Shah NP, Nicoll JM, Nagar B, et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2002;2:117-25
  • von Bubnoff N, Schneller F, Peschel C, Duyster J. BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukemia to STI571: a prospective study. Lancet 2002;359:487-91
  • Corbin AS, Buchdunger E, Pascal F, Druker BJ. Analysis of the structural basis of specificity of inhibition of the Abl kinase by STI571. J Biol Chem 2002;277:32214-9
  • Azam M, Latek RR, Daley GQ, et al. Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR-ABL. Cell 2003;112:831-43
  • Hughes TP, Deininger MW, Hochhaus A, et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood 2006;108:28-37
  • Illmer T, Schaich M, Platzbecker U, et al. P-glycoprotein-mediated drug efflux is a resistance mechanism of chronic myelogenous leukemia cells to treatment with imatinib mesilate. Leukemia 2004;18:401-8
  • Thomas J, Wang L, Clark RE, et al. Active transport of imatinib into and out of cells: implications for drug resistance. Blood 2004;104:3739-45
  • Larghero J, Leguay T, Mourah S, et al. Relationship between elevated levels of the alpha 1 acid glycoprotein in chronic myelogenous leukemia in blast crisis and pharmacological resistance to imatinib (Gleevec) in vitro and in vivo. Biochem Pharmacol 2003;66:1907-13
  • Le Coutre P, Kreuzer KA, Na IK, et al. Determination of alpha-1 acid glycoprotein in patients with Ph+ chronic myeloid leukemia during the first 13 weeks of therapy with STI571. Blood Cells Mol Dis 2002;28:75-85
  • Cortes J, Kantarjian H, Baccarani M, et al. A phase I/2 study of SKI-606, a dual inhibitor of Src and Abl kinases, in adult patients with Philadelphia chromosome positive (Ph+) chronic myelogenous leukemia (CML) or acute lymphocytic leukemia (ALL) relapsed, refractory or intolerant of imatinib [abstract]. Blood 2006;108:11
  • Craig AR, Kantarjian HM, Cortes JE, et al. Phase I study of INNO-406, a dual inhibitor of Abl and Lyn kinases, in adult patients with Philadelphia chromosome positive (Ph+) chronic myelogenous leukemia (CML) or acute lymphocytic leukemia (ALL) relapsed, refractory, or intolerant of imatinib [abstract]. J Clin Oncol 2007;25:368s
  • Weisberg E, Manley PW, Breitenstein W, et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 2005;7:129-41
  • O'Hare T, Walters DK, Stoffregen EP, et al. In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res 2005;65:4500-5
  • Golemovic M, Verstovsek S, Giles F, et al. AMN107, a novel aminopyrimidine inhibitor of Bcr-Abl, has in vitro activity against imatinib-resistant chronic myeloid leukemia. Clin Cancer Res 2005;11:4941-7
  • Mestan J, Brueggen J, Fabbro D, et al. In vivo activity of AMN107, as selective Bcr-Abl kinase inhibitor, in murine leukemia models [abstract]. Proc Am Soc Clin Oncol 2005;24:6522
  • Jensen MR, Brügge J, DiLea C, et al. AMN107: efficacy of the selective Bcr-Abl tyrosine kinase inhibitor in a murine model of chronic myelogenous leukaemia [abstract]. Proc Am Assoc Cancer Res 2006;47:261
  • Griffin JD, Weisberg EL. Simultaneous administration of AMN107 and imatinib in the treatment of imatinib-sensitive and imatinib-resistant chronic myeloid leukaemia [abstract]. Blood 2005;106:205a
  • Weisberg E, Catley L, Wright RD, et al. Beneficial effects of combining nilotinib and imatinib in preclinical models of BCR-ABL+ leukemias. Blood 2007;109:2112-20
  • White DL, Saunders VA, Quinn SR, et al. Imatinib increases the intracellular concentration of nilotinib, which may explain the observed synergy between these drugs. Blood 2007;110(8):3609-10
  • Kantarjian HM, Hochhaus A, Cortes J, et al. Nilotinib is highly active and safe in chronic phase chronic myelogenous leukemia (CML-CP) patients with imatinib-resistance or intolerance [abstract]. Blood 2007;110:735
  • Le Coutre P, Giles FJ, Apperley J, et al. Nilotinib is safe and effective in accelerated phase chronic myelogenous leukemia (CML-AP) patients with imatinib resistance or intolerance [abstract]. Blood 2007;110:471
  • Giles FJ, Larson RA, Kantarjian HM, et al. Nilotinib in patients (pts) with Philadelphia chromosome-positive (Ph+) chronic myelogenous leukemia in blast crisis (CML-BC) who are resistant or intolerant to imatinib [abstract]. Blood 2007;110:1025
  • Ottmann OG, Larson RA, Kantarjian H, et al. Nilotinib in patients (pts) with relapsed/refractory Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) who are resistant or intolerant to imatinib [abstract]. Blood 2007;110:2815
  • Hughes T, Saglio G, Martinelli G, et al. Responses and disease progression in CML-CP patients treated with nilotinib after imatinib failure appear to be affected by the BCR-ABL mutation status and types [abstract]. Blood 2007;110:320
  • Jabbour E, Kantarjian H, Jones D, et al. Event-free survival in patients (pts) with chronic myeloid leukemia (CML) treated with 2nd generation tyrosine kinase inhibitors (TKI) after imatinib failure is dependent on the in vitro sensitivity of BCR-ABL kinase domain (KD) mutations [abstract]. Blood 2007;110:1941
  • Saglio G, Kim DW, Hochhaus A, et al. Correlation of clinical response to nilotinib with BCR-ABL mutation status in advanced phase chronic myelogenous leukemia (CML-AP) patients with imatinib-resistance or intolerance [abstract]. Blood 2007;110:1940
  • Cortes J, O'Brien S, Jabbour E, et al. Efficacy of nilotinib (AMN107) in patients (pts) with newly diagnosed, previously untreated Philadelphia chromosome (Ph)-positive chronic myelogenous leukemia in early chronic phase (CML-CP) [abstract]. Blood 2007;110:29
  • Bradeen H, Eide CA, O'Hare T, et al. Comparison of imatinib, mesilate, dasatinib (BMS-354825), and nilotinib (AMN107) in an N-ethyl-N-nitrosourea (ENU)-based mutagenesis screen: high efficacy of drug combinations. Blood 2006;108:2332-8
  • Cortes J, Jabbour E, Kantarjian H, et al. Dynamics of BCR-ABL kinase domain mutations in chronic myeloid leukemia after sequential treatment with multiple tyrosine kinase inhibitors. Blood 2007;110:4005-11

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.