398
Views
28
CrossRef citations to date
0
Altmetric
Reviews

The role of heat shock protein 90 in modulating ischemia–reperfusion injury in the kidney

, MB BCh BAO MSc (dist) MRCSEd, , PhD, , BSc MBBS MD FRCSEd FRCS & , MB ChB PhD FRCS (Gen Surg)
Pages 1535-1548 | Published online: 09 Aug 2012

Bibliography

  • US Renal Data System, USRDS 2011 Annual Data Report. Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States. National Institute of Health, National Institute of Diabetes and Digestive and Kidney Diseases; Bethesda, MD: 2011
  • Roderick P, Davies R, Jones C, Simulation model of renal replacement therapy: predicting future demand in England. Nephrol Dial Transplant 2004;19:692-701
  • Tonelli M, Wiebe N, Knoll G, Systematic review: kidney transplantation compared with dialysis in clinically relevant outcomes. Am J Transplant 2011;11:2093-109
  • Galliford J, Game DS. Modern renal transplantation: present challenges and future prospects. Postgrad Med J 2009;85:91-101
  • Aydin Z, van Zonneveld AJ, de Fijter JW, New horizons in prevention and treatment of ischaemic injury to kidney transplants. Nephrol Dial Transplant 2007;22:342-6
  • Yarlagadda SG, Coca SG, Formica RN Jr, Association between delayed graft function and allograft and patient survival: a systematic review and meta-analysis. Nephrol Dial Transplant 2009;24:1039-47
  • Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986;74:1124-36
  • Ritossa F. Discovery of the heat shock response. Cell Stress Chaperones 1996;1:97-8
  • Jo SK, Ko GJ, Boo CS, Heat preconditioning attenuates renal injury in ischemic ARF in rats: role of heat-shock protein 70 on NF-kappaB-mediated inflammation and on tubular cell injury. J Am Soc Nephrol 2006;17:3082-92
  • Benjamin IJ, McMillan DR. Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circ Res 1998;83:117-32
  • Kaarniranta K, Elo M, Sironen R, Hsp70 accumulation in chondrocytic cells exposed to high continuous hydrostatic pressure coincides with mRNA stabilization rather than transcriptional activation. Proc Natl Acad Sci USA 1998;95:2319-24
  • Gerner EW, Schneider MJ. Induced thermal resistance in HeLa cells. Nature 1975;256:500-2
  • Soti C, Nagy E, Giricz Z, Heat shock proteins as emerging therapeutic targets. Br J Pharmacol 2005;146:769-80
  • Tutar Y. Prelude; cellular mechanics. Protein Pept Lett 2009;16:570
  • Kocabiyik S. Essential structural and functional features of small heat shock proteins in molecular chaperoning process. Protein Pept Lett 2009;16:613-22
  • De Maio A. Extracellular heat shock proteins, cellular export vesicles, and the stress observation system: a form of communication during injury, infection, and cell damage. It is never known how far a controversial finding will go! Dedicated to Ferruccio Ritossa. Cell Stress Chaperones 2011;16:235-49
  • Beere HM. "The stress of dying": the role of heat shock proteins in the regulation of apoptosis. J Cell Sci 2004;117:2641-51
  • Anckar J, Sistonen L. Heat shock factor 1 as a coordinator of stress and developmental pathways. Adv Exp Med Biol 2007;594:78-88
  • Almeida MB, do Nascimento JL, Herculano AM, Molecular chaperones: toward new therapeutic tools. Biomed Pharmacother 2011;65:239-43
  • Voellmy R. On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaperones 2004;9:122-33
  • Ananthan J, Goldberg AL, Voellmy R. Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 1986;232:522-4
  • Borkan SC, Gullans SR. Molecular chaperones in the kidney. Annu Rev Physiol 2002;64:503-27
  • Trieb K, Dirnhofer S, Krumbock N, Heat shock protein expression in the transplanted human kidney. Transpl Int 2001;14:281-6
  • Csermely P, Schnaider T, Soti C, The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 1998;79:129-68
  • Tutar L, Tutar Y. Heat shock proteins; an overview. Curr Pharm Biotechnol 2010;11:216-22
  • Buchner J. Hsp90 & Co. - a holding for folding. Trends Biochem Sci 1999;24:136-41
  • Bagatell R, Whitesell L. Altered Hsp90 function in cancer: a unique therapeutic opportunity. Mol Cancer Ther 2004;3:1021-30
  • Chatterjee A, Dimitropoulou C, Drakopanayiotakis F, Heat shock protein 90 inhibitors prolong survival, attenuate inflammation, and reduce lung injury in murine sepsis. Am J Respir Crit Care Med 2007;176:667-75
  • Hahn JS. The Hsp90 chaperone machinery: from structure to drug development. BMB Rep 2009;42:623-30
  • Bharadwaj S, Ali A, Ovsenek N. Multiple components of the HSP90 chaperone complex function in regulation of heat shock factor 1 in vivo. Mol Cell Biol 1999;19:8033-41
  • Madrigal-Matute J, Lopez-Franco O, Blanco-Colio LM, Heat shock protein 90 inhibitors attenuate inflammatory responses in atherosclerosis. Cardiovasc Res 2010;86:330-7
  • Pearl LH, Prodromou C. Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem 2006;75:271-94
  • Dutta R, Inouye M. GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci 2000;25:24-8
  • Neckers L, Workman P. Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res 2012;18:64-76
  • Zou J, Guo Y, Guettouche T, Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 1998;94:471-80
  • Hegde RS, Zuo J, Voellmy R, Short circuiting stress protein expression via a tyrosine kinase inhibitor, herbimycin A. J Cell Physiol 1995;165:186-200
  • Uehara Y, Hori M, Takeuchi T, Screening of agents which convert 'transformed morphology' of Rous sarcoma virus-infected rat kidney cells to 'normal morphology': identification of an active agent as herbimycin and its inhibition of intracellular src kinase. Jpn J Cancer Res 1985;76:672-5
  • Uehara Y, Hori M, Takeuchi T, Phenotypic change from transformed to normal induced by benzoquinonoid ansamycins accompanies inactivation of p60src in rat kidney cells infected with Rous sarcoma virus. Mol Cell Biol 1986;6:2198-206
  • Whitesell L, Mimnaugh EG, De Costa B, Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci USA 1994;91:8324-8
  • Trepel J, Mollapour M, Giaccone G, Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 2010;10:537-49
  • Kim YS, Alarcon SV, Lee S, Update on Hsp90 inhibitors in clinical trial. Curr Top Med Chem 2009;9:1479-92
  • Dello Russo C, Polak PE, Mercado PR, The heat-shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin suppresses glial inflammatory responses and ameliorates experimental autoimmune encephalomyelitis. J Neurochem 2006;99:1351-62
  • Poulaki V, Iliaki E, Mitsiades N, Inhibition of Hsp90 attenuates inflammation in endotoxin-induced uveitis. FASEB J 2007;21:2113-23
  • Rice JW, Veal JM, Fadden RP, Small molecule inhibitors of Hsp90 potently affect inflammatory disease pathways and exhibit activity in models of rheumatoid arthritis. Arthritis Rheum 2008;58:3765-75
  • Yun TJ, Harning EK, Giza K, EC144, a synthetic inhibitor of heat shock protein 90, blocks innate and adaptive immune responses in models of inflammation and autoimmunity. J Immunol 2011;186:563-75
  • Madrigal-Matute J, Fernandez-Garcia CE, Gomez-Guerrero C, HSP90 inhibition by 17-DMAG attenuates oxidative stress in experimental atherosclerosis. Cardiovasc Res 2012;95:116-23
  • Geller R, Taguwa S, Frydman J. Broad action of Hsp90 as a host chaperone required for viral replication. Biochim Biophys Acta 2012;1823:698-706
  • Wirk B. Heat shock protein inhibitors for the treatment of fungal infections. Recent Pat Antiinfect Drug Discov 2011;6:38-44
  • Peterson LB, Blagg BS. To fold or not to fold: modulation and consequences of Hsp90 inhibition. Future Med Chem 2009;1:267-83
  • Isaacs JS, Xu W, Neckers L. Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell 2003;3:213-17
  • Zhang H, Burrows F. Targeting multiple signal transduction pathways through inhibition of Hsp90. J Mol Med (Berl) 2004;82:488-99
  • Hendrick JP, Hartl FU. Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 1993;62:349-84
  • Riordan M, Sreedharan R, Wang S, HSP70 binding modulates detachment of Na-K-ATPase following energy deprivation in renal epithelial cells. Am J Physiol Renal Physiol 2005;288:F1236-42
  • Marber MS, Mestril R, Chi SH, Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest 1995;95:1446-56
  • Trost SU, Omens JH, Karlon WJ, Protection against myocardial dysfunction after a brief ischemic period in transgenic mice expressing inducible heat shock protein 70. J Clin Invest 1998;101:855-62
  • Wang Z, Gall JM, Bonegio RG, Induction of heat shock protein 70 inhibits ischemic renal injury. Kidney Int 2011;79:861-70
  • Nanasi PP, Jednakovits A. Multilateral in vivo and in vitro protective effects of the novel heat shock protein coinducer, bimoclomol: results of preclinical studies. Cardiovasc Drug Rev 2001;19:133-51
  • Lubbers NL, Polakowski JS, Wegner CD, Oral bimoclomol elevates heat shock protein 70 and reduces myocardial infarct size in rats. Eur J Pharmacol 2002;435:79-83
  • Jednakovits A, Ferdinandy P, Jaszlits L, In vivo and in vitro acute cardiovascular effects of bimoclomol. Gen Pharmacol 2000;34:363-9
  • Feinstein DL, Galea E, Aquino DA, Heat shock protein 70 suppresses astroglial-inducible nitric-oxide synthase expression by decreasing NFkappaB activation. J Biol Chem 1996;271:17724-32
  • Yoo CG, Lee S, Lee CT, Anti-inflammatory effect of heat shock protein induction is related to stabilization of I kappa B alpha through preventing I kappa B kinase activation in respiratory epithelial cells. J Immunol 2000;164:5416-23
  • Tang D, Kang R, Xiao W, The anti-inflammatory effects of heat shock protein 72 involve inhibition of high-mobility-group box 1 release and proinflammatory function in macrophages. J Immunol 2007;179:1236-44
  • Ran R, Lu A, Zhang L, Hsp70 promotes TNF-mediated apoptosis by binding IKK gamma and impairing NF-kappa B survival signaling. Genes Dev 2004;18:1466-81
  • Weiss YG, Bromberg Z, Raj N, Enhanced heat shock protein 70 expression alters proteasomal degradation of IkappaB kinase in experimental acute respiratory distress syndrome. Crit Care Med 2007;35:2128-38
  • Israel A. The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb Perspect Biol 2010;2:a000158
  • Brandt GE, Blagg BS. Alternate strategies of Hsp90 modulation for the treatment of cancer and other diseases. Curr Top Med Chem 2009;9:1447-61
  • Salminen A, Paimela T, Suuronen T, Innate immunity meets with cellular stress at the IKK complex: regulation of the IKK complex by HSP70 and HSP90. Immunol Lett 2008;117:9-15
  • Lewis J, Devin A, Miller A, Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-kappaB activation. J Biol Chem 2000;275:10519-26
  • Malhotra V, Shanley TP, Pittet JF, Geldanamycin inhibits NF-kappaB activation and interleukin-8 gene expression in cultured human respiratory epithelium. Am J Respir Cell Mol Biol 2001;25:92-7
  • Chen G, Cao P, Goeddel DV. TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Mol Cell 2002;9:401-10
  • Broemer M, Krappmann D, Scheidereit C. Requirement of Hsp90 activity for IkappaB kinase (IKK) biosynthesis and for constitutive and inducible IKK and NF-kappaB activation. Oncogene 2004;23:5378-86
  • Lee KH, Jang Y, Chung JH. Heat shock protein 90 regulates IkappaB kinase complex and NF-kappaB activation in angiotensin II-induced cardiac cell hypertrophy. Exp Mol Med 2010;42:703-11
  • Pittet JF, Lee H, Pespeni M, Stress-induced inhibition of the NF-kappaB signaling pathway results from the insolubilization of the IkappaB kinase complex following its dissociation from heat shock protein 90. J Immunol 2005;174:384-94
  • Zhang PL, Lun M, Schworer CM, Heat shock protein expression is highly sensitive to ischemia–reperfusion injury in rat kidneys. Ann Clin Lab Sci 2008;38:57-64
  • Aufricht C. Heat-shock protein 70: molecular supertool? Pediatr Nephrol 2005;20:707-13
  • Perdrizet GA, Heffron TG, Buckingham FC, Stress conditioning: a novel approach to organ preservation. Curr Surg 1989;46:23-6
  • Perdrizet GA, Kaneko H, Buckley TM, Heat shock and recovery protects renal allografts from warm ischemic injury and enhances HSP72 production. Transplant Proc 1993;25:1670-3
  • Harrison EM, Sharpe E, Bellamy CO, Heat shock protein 90-binding agents protect renal cells from oxidative stress and reduce kidney ischemia–reperfusion injury. Am J Physiol Renal Physiol 2008;295:F397-405
  • Wagner M, Cadetg P, Ruf R, Heme oxygenase-1 attenuates ischemia/reperfusion-induced apoptosis and improves survival in rat renal allografts. Kidney Int 2003;63:1564-73
  • Redaelli CA, Tien YH, Kubulus D, Hyperthermia preconditioning induces renal heat shock protein expression, improves cold ischemia tolerance, kidney graft function and survival in rats. Nephron 2002;90:489-97
  • Redaelli CA, Wagner M, Kulli C, Hyperthermia-induced HSP expression correlates with improved rat renal isograft viability and survival in kidneys harvested from non-heart-beating donors. Transpl Int 2001;14:351-60
  • Suzuki S, Maruyama S, Sato W, Geranylgeranylacetone ameliorates ischemic acute renal failure via induction of Hsp70. Kidney Int 2005;67:2210-20
  • Fuller TF, Rose F, Singleton KD, Glutamine donor pretreatment in rat kidney transplants with severe preservation reperfusion injury. J Surg Res 2007;140:77-83
  • Zhang Y, Zou Z, Li YK, Glutamine-induced heat shock protein protects against renal ischaemia-reperfusion injury in rats. Nephrology (Carlton) 2009;14:573-80
  • Yang CW, Kim BS, Kim J, Preconditioning with sodium arsenite inhibits apoptotic cell death in rat kidney with ischemia/reperfusion or cyclosporine-induced Injuries. The possible role of heat-shock protein 70 as a mediator of ischemic tolerance. Exp Nephrol 2001;9:284-94
  • Yang CW, Ahn HJ, Han HJ, Pharmacological preconditioning with low-dose cyclosporine or FK506 reduces subsequent ischemia/reperfusion injury in rat kidney. Transplantation 2001;72:1753-9
  • Yeh CH, Hsu SP, Yang CC, Hypoxic preconditioning reinforces HIF-alpha-dependent HSP70 signaling to reduce ischemic renal failure-induced renal tubular apoptosis and autophagy. Life Sci 2010;86:115-23
  • Kim YO, Li C, Sun BK, Preconditioning with 1,25-dihydroxyvitamin D3 protects against subsequent ischemia–reperfusion injury in the rat kidney. Nephron Exp Nephrol 2005;100:e85-94
  • Yang CW, Li C, Jung JY, Preconditioning with erythropoietin protects against subsequent ischemia–reperfusion injury in rat kidney. FASEB J 2003;17:1754-5
  • Park KM, Kramers C, Vayssier-Taussat M, Prevention of kidney ischemia/reperfusion-induced functional injury, MAPK and MAPK kinase activation, and inflammation by remote transient ureteral obstruction. J Biol Chem 2002;277:2040-9
  • Stacchiotti A, Bonomini F, Favero G, Stress proteins in experimental nephrotoxicity: a ten year experience. Ital J Anat Embryol 2010;115:153-8
  • Furuichi K, Wada T, Yokoyama H, Role of cytokines and chemokines in renal ischemia–reperfusion injury. Drug News Perspect 2002;15:477-82
  • Chen F, Castranova V, Shi X. New insights into the role of nuclear factor-kappaB in cell growth regulation. Am J Pathol 2001;159:387-97
  • Lee JI, Burckart GJ. Nuclear factor kappa B: important transcription factor and therapeutic target. J Clin Pharmacol 1998;38:981-93
  • Pittet JF, Lu LN, Geiser T, Stress preconditioning attenuates oxidative injury to the alveolar epithelium of the lung following haemorrhage in rats. J Physiol 2002;538:583-97
  • Robson MG. Toll-like receptors and renal disease. Nephron Exp Nephrol 2009;113:e1-7
  • Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the drosophila toll protein signals activation of adaptive immunity. Nature 1997;388:394-7
  • Eleftheriadis T, Lawson BR. Toll-like receptors and kidney diseases. Inflamm Allergy Drug Targets 2009;8:191-201
  • Verstrepen L, Bekaert T, Chau TL, TLR-4, IL-1R and TNF-R signaling to NF-kappaB: variations on a common theme. Cell Mol Life Sci 2008;65:2964-78
  • Johnson GB, Brunn GJ, Platt JL. Activation of mammalian toll-like receptors by endogenous agonists. Crit Rev Immunol 2003;23:15-44
  • Anders HJ, Banas B, Schlondorff D. Signaling danger: toll-like receptors and their potential roles in kidney disease. J Am Soc Nephrol 2004;15:854-67
  • Kim BS, Lim SW, Li C, Ischemia–reperfusion injury activates innate immunity in rat kidneys. Transplantation 2005;79:1370-7
  • Wu H, Chen G, Wyburn KR, TLR4 activation mediates kidney ischemia/reperfusion injury. J Clin Invest 2007;117:2847-59
  • Wolfs TG, Buurman WA, van Schadewijk A, In vivo expression of toll-like receptor 2 and 4 by renal epithelial cells: IFN-gamma and TNF-alpha mediated up-regulation during inflammation. J Immunol 2002;168:1286-93
  • Pulskens WP, Teske GJ, Butter LM, Toll-like receptor-4 coordinates the innate immune response of the kidney to renal ischemia/reperfusion injury. PLoS ONE 2008;3:e3596
  • Lorne E, Dupont H, Abraham E. Toll-like receptors 2 and 4: initiators of non-septic inflammation in critical care medicine? Intensive Care Med 2010;36:1826-35
  • Chen J, Hartono JR, John R, Early interleukin 6 production by leukocytes during ischemic acute kidney injury is regulated by TLR4. Kidney Int 2011;80:504-15
  • Liu M, Gu M, Xu D, Protective effects of Toll-like receptor 4 inhibitor eritoran on renal ischemia–reperfusion injury. Transplant Proc 2010;42:1539-44
  • Leemans JC, Stokman G, Claessen N, Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney. J Clin Invest 2005;115:2894-903
  • Shigeoka AA, Holscher TD, King AJ, TLR2 is constitutively expressed within the kidney and participates in ischemic renal injury through both MyD88-dependent and -independent pathways. J Immunol 2007;178:6252-8
  • Rusai K, Sollinger D, Baumann M, Toll-like receptors 2 and 4 in renal ischemia/reperfusion injury. Pediatr Nephrol 2010;25:853-60
  • Goligorsky MS. TLR4 and HMGB1: partners in crime? Kidney Int 2011;80:450-2
  • Kruger B, Krick S, Dhillon N, Donor Toll-like receptor 4 contributes to ischemia and reperfusion injury following human kidney transplantation. Proc Natl Acad Sci USA 2009;106:3390-5
  • Lu CY, Penfield JG, Kielar ML, Hypothesis: is renal allograft rejection initiated by the response to injury sustained during the transplant process? Kidney Int 1999;55:2157-68
  • Eltzschig HK, Eckle T. Ischemia and reperfusion–from mechanism to translation. Nat Med 2011;17:1391-401
  • Asea A, Rehli M, Kabingu E, Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 2002;277:15028-34
  • Ohashi K, Burkart V, Flohe S, Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 2000;164:558-61
  • Vabulas RM, Ahmad-Nejad P, Ghose S, HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 2002;277:15107-12
  • Zou N, Ao L, Cleveland JC Jr, Critical role of extracellular heat shock cognate protein 70 in the myocardial inflammatory response and cardiac dysfunction after global ischemia–reperfusion. Am J Physiol Heart Circ Physiol 2008;294:H2805-13
  • Henderson B, Calderwood SK, Coates AR, Caught with their PAMPs down? The extracellular signalling actions of molecular chaperones are not due to microbial contaminants. Cell Stress Chaperones 2010;15:123-41
  • de Jong PR, Schadenberg AW, Jansen NJ, Hsp70 and cardiac surgery: molecular chaperone and inflammatory regulator with compartmentalized effects. Cell Stress Chaperones 2009;14:117-31
  • Tsan MF, Gao B. Heat shock proteins and immune system. J Leukoc Biol 2009;85:905-10
  • Shi Y, Rock KL. Cell death releases endogenous adjuvants that selectively enhance immune surveillance of particulate antigens. Eur J Immunol 2002;32:155-62
  • Asea A. Heat shock proteins and toll-like receptors. Handb Exp Pharmacol 2008;183:111-27
  • Goh YC, Yap CT, Huang BH, Heat-shock protein 60 translocates to the surface of apoptotic cells and differentiated megakaryocytes and stimulates phagocytosis. Cell Mol Life Sci 2011;68:1581-92
  • Cahill CM, Waterman WR, Xie Y, Transcriptional repression of the prointerleukin 1beta gene by heat shock factor 1. J Biol Chem 1996;271:24874-9
  • Asea A. Mechanisms of HSP72 release. J Biosci 2007;32:579-84
  • Zhu J, Quyyumi AA, Wu H, Increased serum levels of heat shock protein 70 are associated with low risk of coronary artery disease. Arterioscler Thromb Vasc Biol 2003;23:1055-9
  • Dulin E, Garcia-Barreno P, Guisasola MC. Extracellular heat shock protein 70 (HSPA1A) and classical vascular risk factors in a general population. Cell Stress Chaperones 2010;15:929-37
  • Zhang X, Xu Z, Zhou L, Plasma levels of Hsp70 and anti-Hsp70 antibody predict risk of acute coronary syndrome. Cell Stress Chaperones 2010;15:675-86
  • Oehler R, Pusch E, Zellner M, Cell type-specific variations in the induction of hsp70 in human leukocytes by feverlike whole body hyperthermia. Cell Stress Chaperones 2001;6:306-15
  • Schroder O, Schulte KM, Ostermann P, Heat shock protein 70 genotypes HSPA1B and HSPA1L influence cytokine concentrations and interfere with outcome after major injury. Crit Care Med 2003;31:73-9
  • Temple SE, Cheong KY, Ardlie KG, The septic shock associated HSPA1B1267 polymorphism influences production of HSPA1A and HSPA1B. Intensive Care Med 2004;30:1761-7
  • Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol 1994;12:991-1045
  • Srivastava P. Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 2002;20:395-425
  • Borges TJ, Wieten L, van Herwijnen MJ, The anti-inflammatory mechanisms of Hsp70. Front Immunol 2012;3:95
  • Gartner EM, Silverman P, Simon M, A phase II study of 17-allylamino-17-demethoxygeldanamycin in metastatic or locally advanced, unresectable breast cancer. Breast Cancer Res Treat 2012;131:933-7
  • Ramanathan RK, Egorin MJ, Erlichman C, Phase I pharmacokinetic and pharmacodynamic study of 17-dimethylaminoethylamino-17-demethoxygeldanamycin, an inhibitor of heat-shock protein 90, in patients with advanced solid tumors. J Clin Oncol 2010;28:1520-6
  • Samuni Y, Ishii H, Hyodo F, Reactive oxygen species mediate hepatotoxicity induced by the Hsp90 inhibitor geldanamycin and its analogs. Free Radic Biol Med 2010;48:1559-63
  • Duerfeldt AS, Peterson LB, Maynard JC, Development of a Grp94 inhibitor. J Am Chem Soc 2012;134:9796-804
  • Zimmerman RF, Ezeanuna PU, Kane JC, Ischemic preconditioning at a remote site prevents acute kidney injury in patients following cardiac surgery. Kidney Int 2011;80:861-7
  • Gurusamy KS, Kumar Y, Sharma D, Ischaemic preconditioning for liver transplantation. Cochrane Database Syst Rev 2008;CD006315

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.