425
Views
12
CrossRef citations to date
0
Altmetric
Reviews

JAK2 inhibitors in the treatment of myeloproliferative neoplasms

, , &
Pages 1755-1774 | Published online: 19 Sep 2012

Bibliography

  • Adamson JW, Fialkow PJ, Murphy S, Polycythemia vera: stem-cell and probable clonal origin of the disease. N Engl J Med 1976;295(17):913-16
  • Vardiman JW, Thiele J, Arber DA, The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009;114(5):937-51
  • Mesa RA, Silverstein MN, Jacobsen SJ, Population-based incidence and survival figures in essential thrombocythemia and agnogenic myeloid metaplasia: an Olmsted County Study, 1976-1995. Am J Hematol 1999;61(1):10-15
  • Kundranda MN, Tibes R, Mesa RA. Transformation of a chronic myeloproliferative neoplasm to acute myelogenous leukemia: does anything work? Curr Hematol Malig Rep 2012;7(1):78-86
  • Mesa RA, Li CY, Ketterling RP, Leukemic transformation in myelofibrosis with myeloid metaplasia: a single-institution experience with 91 cases. Blood 2005;105(3):973-7
  • Harrison C, Kiladjian JJ, Al-Ali HK, JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med 2012;366(9):787-98
  • Tibes R, Mesa RA. Myeloproliferative neoplasms 5 years after discovery of JAK2V617F: what is the impact of JAK2 inhibitor therapy? Leuk Lymphoma 2011;52(7):1178-87
  • Verstovsek S, Mesa RA, Gotlib J, A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med 2012;366(9):799-807
  • Ash RC, Detrick RA, Zanjani ED. In vitro studies of human pluripotential hematopoietic progenitors in polycythemia vera. Direct evidence of stem cell involvement. J Clin Invest 1982;69(5):1112-18
  • Dai CH, Krantz SB, Means RT Jr, Polycythemia vera blood burst-forming units-erythroid are hypersensitive to interleukin-3. J Clin Invest 1991;87(2):391-6
  • Kamishimoto J, Tago K, Kasahara T, Funakoshi-Tago M. Akt activation through the phosphorylation of erythropoietin receptor at tyrosine 479 is required for myeloproliferative disorder-associated JAK2 V617F mutant-induced cellular transformation. Cell Signal 2011;23(5):849-56
  • Oku S, Takenaka K, Kuriyama T, JAK2 V617F uses distinct signalling pathways to induce cell proliferation and neutrophil activation. Br J Haematol 2010;150(3):334-44
  • Eulenfeld R, Dittrich A, Khouri C, Interleukin-6 signalling: more than Jaks and STATs. Eur J Cell Biol 2012;91(6-7):486-95
  • Fukumoto T, Kubota Y, Kitanaka A, Gab1 transduces PI3K-mediated erythropoietin signals to the Erk pathway and regulates erythropoietin-dependent proliferation and survival of erythroid cells. Cell Signal 2009;21(12):1775-83
  • Takahashi-Tezuka M, Yoshida Y, Fukada T, Gab1 acts as an adapter molecule linking the cytokine receptor gp130 to ERK mitogen-activated protein kinase. Mol Cell Biol 1998;18(7):4109-17
  • Ugo V, Marzac C, Teyssandier I, Multiple signaling pathways are involved in erythropoietin-independent differentiation of erythroid progenitors in polycythemia vera. Exp Hematol 2004;32(2):179-87
  • Wohrle FU, Daly RJ, Brummer T. Function, regulation and pathological roles of the Gab/DOS docking proteins. Cell Commun Signal 2009;7:22
  • Baker SJ, Rane SG, Reddy EP. Hematopoietic cytokine receptor signaling. Oncogene 2007;26(47):6724-37
  • Wood AD, Chen E, Donaldson IJ, ID1 promotes expansion and survival of primary erythroid cells and is a target of JAK2V617F-STAT5 signaling. Blood 2009;114(9):1820-30
  • Murray PJ. The JAK-STAT signaling pathway: input and output integration. J Immunol 2007;178(5):2623-9
  • Kieslinger M, Woldman I, Moriggl R, Antiapoptotic activity of Stat5 required during terminal stages of myeloid differentiation. Genes Dev 2000;14(2):232-44
  • Socolovsky M, Fallon AE, Wang S, Fetal anemia and apoptosis of red cell progenitors in Stat5a-/-5b-/- mice: a direct role for Stat5 in Bcl-X(L) induction. Cell 1999;98(2):181-91
  • Haughn L, Hawley RG, Morrison DK, BCL-2 and BCL-XL restrict lineage choice during hematopoietic differentiation. J Biol Chem 2003;278(27):25158-65
  • Olthof SG, Fatrai S, Drayer AL, Downregulation of signal transducer and activator of transcription 5 (STAT5) in CD34+ cells promotes megakaryocytic development, whereas activation of STAT5 drives erythropoiesis. Stem Cells 2008;26(7):1732-42
  • Mesa RA, Tefferi A, Lasho TS, Janus kinase 2 (V617F) mutation status, signal transducer and activator of transcription-3 phosphorylation and impaired neutrophil apoptosis in myelofibrosis with myeloid metaplasia. Leukemia 2006;20(10):1800-8
  • Ezoe S, Matsumura I, Gale K, GATA transcription factors inhibit cytokine-dependent growth and survival of a hematopoietic cell line through the inhibition of STAT3 activity. J Biol Chem 2005;280(13):13163-70
  • Vannucchi AM, Bianchi L, Paoletti F, Impaired GATA-1 expression and myelofibrosis in an animal model. Pathol Biol (Paris) 2004;52(5):275-9
  • Menon MP, Fang J, Wojchowski DM. Core erythropoietin receptor signals for late erythroblast development. Blood 2006;107(7):2662-72
  • Anand S, Stedham F, Gudgin E, Increased basal intracellular signaling patterns do not correlate with JAK2 genotype in human myeloproliferative neoplasms. Blood 2011;118(6):1610-21
  • Purandare AV, McDevitt TM, Wan H, Characterization of BMS-911543, a functionally selective small-molecule inhibitor of JAK2. Leukemia 2012;26(2):280-8
  • Liu L, Yu V, Pistillo J, New Insights on Assessing Intra-Family Selectivity for Jak2 Inhibitors. Blood (ASH Annual Meeting Abstracts) 2011;118:abstract 5150
  • Baxter EJ, Scott LM, Campbell PJ, Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005;365(9464):1054-61
  • James C, Ugo V, Le Couedic JP, A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005;434(7037):1144-8
  • Kralovics R, Passamonti F, Buser AS, A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005;352(17):1779-90
  • Levine RL, Wadleigh M, Cools J, Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005;7(4):387-97
  • Scott LM, Tong W, Levine RL, JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 2007;356(5):459-68
  • Beer PA, Delhommeau F, LeCouedic JP, Two routes to leukemic transformation after a JAK2 mutation-positive myeloproliferative neoplasm. Blood 2010;115(14):2891-900
  • Larsen TS, Pallisgaard N, Moller MB, Hasselbalch HC. The JAK2 V617F allele burden in essential thrombocythemia, polycythemia vera and primary myelofibrosis--impact on disease phenotype. Eur J Haematol 2007;79(6):508-15
  • Vannucchi AM, Antonioli E, Guglielmelli P, Prospective identification of high-risk polycythemia vera patients based on JAK2(V617F) allele burden. Leukemia 2007;21(9):1952-9
  • Campbell PJ, Griesshammer M, Dohner K, V617F mutation in JAK2 is associated with poorer survival in idiopathic myelofibrosis. Blood 2006;107(5):2098-100
  • Guglielmelli P, Barosi G, Specchia G, Identification of patients with poorer survival in primary myelofibrosis based on the burden of JAK2V617F mutated allele. Blood 2009;114(8):1477-83
  • Walkley CR, Olsen GH, Dworkin S, A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency. Cell 2007;129(6):1097-110
  • Walkley CR, Shea JM, Sims NA, Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell 2007;129(6):1081-95
  • Pardanani A, Lasho TL, Finke C, Prevalence and clinicopathologic correlates of JAK2 exon 12 mutations in JAK2V617F-negative polycythemia vera. Leukemia 2007;21(9):1960-3
  • Pardanani AD, Levine RL, Lasho T, MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 2006;108(10):3472-6
  • Pikman Y, Lee BH, Mercher T, MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 2006;3(7):e270
  • Lasho TL, Pardanani A, McClure RF, Concurrent MPL515 and JAK2V617F mutations in myelofibrosis: chronology of clonal emergence and changes in mutant allele burden over time. Br J Haematol 2006;135(5):683-7
  • Oh ST, Simonds EF, Jones C, Jr., et al. Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms. Blood 2010;116(6):988-92
  • Velazquez L, Cheng AM, Fleming HE, Cytokine signaling and hematopoietic homeostasis are disrupted in Lnk-deficient mice. J Exp Med 2002;195(12):1599-611
  • Pardanani A, Lasho T, Finke C, LNK mutation studies in blast-phase myeloproliferative neoplasms, and in chronic-phase disease with TET2, IDH, JAK2 or MPL mutations. Leukemia 2010;24(10):1713-18
  • Delhommeau F, Dupont S, Della Valle V, Mutation in TET2 in myeloid cancers. N Engl J Med 2009;360(22):2289-301
  • Cervantes F, Dupriez B, Pereira A, New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood 2009;113(13):2895-901
  • Tefferi A, Lim KH, Abdel-Wahab O, Detection of mutant TET2 in myeloid malignancies other than myeloproliferative neoplasms: CMML, MDS, MDS/MPN and AML. Leukemia 2009;23(7):1343-5
  • Tefferi A, Pardanani A, Lim KH, TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. Leukemia 2009;23(5):905-11
  • Mardis ER, Ding L, Dooling DJ, Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 2009;361(11):1058-66
  • Figueroa ME, Abdel-Wahab O, Lu C, Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010;18(6):553-67
  • Green A, Beer P. Somatic mutations of IDH1 and IDH2 in the leukemic transformation of myeloproliferative neoplasms. N Engl J Med 2010;362(4):369-70
  • Tefferi A, Lasho TL, Abdel-Wahab O, IDH1 and IDH2 mutation studies in 1473 patients with chronic-, fibrotic- or blast-phase essential thrombocythemia, polycythemia vera or myelofibrosis. Leukemia 2010;24(7):1302-9
  • Sanada M, Suzuki T, Shih LY, Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature 2009;460(7257):904-8
  • Makishima H, Cazzolli H, Szpurka H, Mutations of e3 ubiquitin ligase cbl family members constitute a novel common pathogenic lesion in myeloid malignancies. J Clin Oncol 2009;27(36):6109-16
  • Carbuccia N, Murati A, Trouplin V, Mutations of ASXL1 gene in myeloproliferative neoplasms. Leukemia 2009;23(11):2183-6
  • Gelsi-Boyer V, Trouplin V, Roquain J, ASXL1 mutation is associated with poor prognosis and acute transformation in chronic myelomonocytic leukaemia. Br J Haematol 2010;151(4):365-75
  • Jager R, Gisslinger H, Passamonti F, Deletions of the transcription factor Ikaros in myeloproliferative neoplasms. Leukemia 2010;24(7):1290-8
  • Yoshida K, Sanada M, Shiraishi Y, Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 2011;478(7367):64-9
  • Papaemmanuil E, Cazzola M, Boultwood J, Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med 2011;365(15):1384-95
  • Zhang SJ, Rampal R, Manshouri T, Genetic analysis of patients with leukemic transformation of myeloproliferative neoplasms shows recurrent SRSF2 mutations that are associated with adverse outcome. Blood 2012;119(19):4480-5
  • Patnaik MM, Knudson RA, Gangat N, Chromosome 9p24 abnormalities: prevalence, description of novel JAK2 translocations, JAK2V617F mutation analysis and clinicopathologic correlates. Eur J Haematol 2010;84(6):518-24
  • Jones AV, Chase A, Silver RT, JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat Genet 2009;41(4):446-9
  • Olcaydu D, Harutyunyan A, Jager R, A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat Genet 2009;41(4):450-4
  • Pardanani A, Gotlib JR, Jamieson C, Safety and efficacy of TG101348, a selective JAK2 inhibitor, in myelofibrosis. J Clin Oncol 2011;29(7):789-96
  • Hart S, Goh KC, Novotny-Diermayr V, SB1518, a novel macrocyclic pyrimidine-based JAK2 inhibitor for the treatment of myeloid and lymphoid malignancies. Leukemia 2011;25(11):1751-9
  • Monaghan KA, Khong T, Burns CJ, Spencer A. The novel JAK inhibitor CYT387 suppresses multiple signalling pathways, prevents proliferation and induces apoptosis in phenotypically diverse myeloma cells. Leukemia 2011;25(12):1891-9
  • Tyner JW, Bumm TG, Deininger J, CYT387, a novel JAK2 inhibitor, induces hematologic responses and normalizes inflammatory cytokines in murine myeloproliferative neoplasms. Blood 2010;115(25):5232-40
  • Ioannidis S, Lamb ML, Wang T, Discovery of 5-chloro-N2-[(1S)-1-(5-fluoropyrimidin-2-yl)ethyl]-N4-(5-methyl-1H-pyrazol-3-yl)p yrimidine-2,4-diamine (AZD1480) as a novel inhibitor of the Jak/Stat pathway. J Med Chem 2011;54(1):262-76
  • Scuto A, Krejci P, Popplewell L, The novel JAK inhibitor AZD1480 blocks STAT3 and FGFR3 signaling, resulting in suppression of human myeloma cell growth and survival. Leukemia 2011;25(3):538-50
  • Hexner EO, Serdikoff C, Jan M, Lestaurtinib (CEP701) is a JAK2 inhibitor that suppresses JAK2/STAT5 signaling and the proliferation of primary erythroid cells from patients with myeloproliferative disorders. Blood 2008.111(12):5663-71
  • Levis M, Ravandi F, Wang ES, Results from a randomized trial of salvage chemotherapy followed by lestaurtinib for patients with FLT3 mutant AML in first relapse. Blood 2011;117(12):3294-301
  • Nakaya Y, Naito H, Homan J, Preferential inhibition of an activated form of janus kinase 2 (JAK2) by a novel JAK2 Inhibitor, NS-018. Blood (ASH Annual Meeting Abstracts) 2010;116:abstract 4107
  • Shide K, Nakaya Y, Kameda T, NS-018, a Potent Novel JAK2 Inhibitor, Effectively Treats Murine MPN Induced by the Janus Kinase 2 (JAK2) V617F Mutant. Blood (ASH Annual Meeting Abstracts) 2010;116:abstract 4106
  • Harrington EA, Bebbington D, Moore J, VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med 2004;10(3):262-7
  • Dawson MA, Curry JE, Barber K, AT9283, a potent inhibitor of the Aurora kinases and Jak2, has therapeutic potential in myeloproliferative disorders. Br J Haematol 2010;150(1):46-57
  • Shide K, Kameda T, Markovtsov V, R723, a selective JAK2 inhibitor, effectively treats JAK2V617F-induced murine myeloproliferative neoplasm. Blood 2011;117(25):6866-75
  • Li J, Favata M, Kelley JA, INCB16562, a JAK1/2 selective inhibitor, is efficacious against multiple myeloma cells and reverses the protective effects of cytokine and stromal cell support. Neoplasia 2010;12(1):28-38
  • Ferrajoli A, Faderl S, Van Q, WP1066 disrupts Janus kinase-2 and induces caspase-dependent apoptosis in acute myelogenous leukemia cells. Cancer Res 2007;67(23):11291-9
  • Burger R, Le Gouill S, Tai YT, Janus kinase inhibitor INCB20 has antiproliferative and apoptotic effects on human myeloma cells in vitro and in vivo. Mol Cancer Ther 2009;8(1):26-35
  • Lucet IS, Fantino E, Styles M, The structural basis of Janus kinase 2 inhibition by a potent and specific pan-Janus kinase inhibitor. Blood 2006;107(1):176-83
  • Wang Y, Fiskus W, Chong DG, Cotreatment with panobinostat and JAK2 inhibitor TG101209 attenuates JAK2V617F levels and signaling and exerts synergistic cytotoxic effects against human myeloproliferative neoplastic cells. Blood 2009;114(24):5024-33
  • William AD, Lee AC, Goh KC, Discovery of kinase spectrum selective macrocycle (16E)-14-methyl-20-oxa-5,7,14,26-tetraazatetracyclo[19.3.1.1(2,6).1(8,12)]heptaco sa-1(25),2(26),3,5,8(27),9,11,16,21,23-decaene (SB1317/TG02), a potent inhibitor of cyclin dependent kinases (CDKs), Janus kinase 2 (JAK2), and fms-like tyrosine kinase-3 (FLT3) for the treatment of cancer. J Med Chem 2012;55(1):169-96
  • Jiang JK, Ghoreschi K, Deflorian F, Examining the chirality, conformation and selective kinase inhibition of 3-((3R,4R)-4-methyl-3-(methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)piperidin-1-y l)-3-oxopropanenitrile (CP-690,550). J Med Chem 2008;51(24):8012-18
  • Ma L, Zhao B, Walgren R, Efficacy of LY2784544, a Small Molecule Inhibitor Selective for Mutant JAK2 Kinase, In JAK2 V617F-Induced Hematologic Malignancy Models. Blood (ASH Annual Meeting Abstracts) 2010;116:abstract 4087
  • Koppikar P, Abdel-Wahab O, Hedvat C, Efficacy of the JAK2 inhibitor INCB16562 in a murine model of MPLW515L-induced thrombocytosis and myelofibrosis. Blood 2010;115(14):2919-27
  • Santos FP, Kantarjian HM, Jain N, Phase 2 study of CEP-701, an orally available JAK2 inhibitor, in patients with primary or post-polycythemia vera/essential thrombocythemia myelofibrosis. Blood 2010;115(6):1131-6
  • Tibes R, Mesa RA. Evolution of clinical trial endpoints in chronic myeloid leukemia: efficacious therapies require sensitive monitoring techniques. Leuk Res 2012;36(6):664-71
  • Knapper S, Mills KI, Gilkes AF, The effects of lestaurtinib (CEP701) and PKC412 on primary AML blasts: the induction of cytotoxicity varies with dependence on FLT3 signaling in both FLT3-mutated and wild-type cases. Blood 2006.108(10):3494-503
  • Flaherty KT, Puzanov I, Kim KB, Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 2010;363(9):809-19
  • Verstovsek S, Mesa RA, Rhoades SK, Phase I Study of the JAK2 V617F Inhibitor LY2784544, in Patients with Myelofibrosis (MF), Polycythemia Vera (PV), and Essential Thrombocythemia (ET). Blood (ASH Annual Meeting Abstracts) 2011;118:abstract 2814
  • Sayeski PP, Kirabo A, Park S, The Jak2 Kinase Inhibitor, G6, Reduces the Mutant Burden and Reverses Marrow Fibrosis in a Mouse Model of Jak2-V617F Mediated PMF. Blood (ASH Annual Meeting Abstracts) 2011;118:abstract 3858
  • Mesa RA, Schwager S, Radia D, The Myelofibrosis Symptom Assessment Form (MF-SAF): an evidence-based brief inventory to measure quality of life and symptomatic response to treatment in myelofibrosis. Leuk Res 2009;33(9):1199-203
  • Verstovsek S, Kantarjian H, Mesa RA, Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med 2010;363(12):1117-27
  • Verstovsek S, Kantarjian HM, Estrov Z, Comparison of outcomes of advanced myelofibrosis patients treated with ruxolitinib (INCB018424) to those of a historical control group: survival advantage of ruxolitinib therapy. Blood (ASH Annual Meeting Abstracts) 2011;118:abstract 793
  • Tefferi A, Litzow MR, Pardanani A. Long-term outcome of treatment with ruxolitinib in myelofibrosis. N Engl J Med 2011;365(15):1455-7
  • Verstovsek S, Passamonti F, Rambaldi A, Durable responses with the JAK1/JAK2 inhibitor, INCB018424, in patients with Polycythemia Vera (PV) and Essential Thrombocythemia (ET) Refractory or intolerant to Hydroxyurea (HU). Blood (ASH Annual Meeting Abstracts) 2010;116:abstract 313
  • Verstovsek S, Kiladjian J, Waltzman RJ, RESPONSE: a randomized, open label, phase III study of INC424 in polycythemia vera (PV) patients resistant to or intolerant of hydroxyurea (HU). J Clin Oncol 2011;29:(suppl; abstr TPS203)
  • Pardanani A, George G, Lasho T, A phase I/II study of CYT387, an oral JAK-1/2 inhibitor, in myelofibrosis: significant response rates in anemia, splenomegaly, and constitutional symptoms. Blood (ASH Annual Meeting Abstracts) 2010;116:abstract 460
  • Pardanani A, Gotlib J, Gupta V, An expanded multicenter phase I/II study of CYT387, a JAK- 1/2 inhibitor for the treatment of myelofibrosis. Blood (ASH Annual Meeting Abstracts) 2011;118:abstract 3849
  • Wernig G, Kharas MG, Okabe R, Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera. Cancer Cell 2008;13(4):311-20
  • Verstovsek S, Deeg HJ, Odenike O, Phase 1/2 Study of SB1518, a Novel JAK2/FLT3 Inhibitor, In the Treatment of Primary Myelofibrosis. Blood (ASH Annual Meeting Abstracts) 2010;116:abstract 3082
  • Komrokji RS, Wadleigh M, Seymour JF, Results of a Phase 2 Study of Pacritinib (SB1518), a Novel Oral JAK2 Inhibitor, In Patients with Primary, Post-Polycythemia Vera, and Post-Essential Thrombocythemia Myelofibrosis. Blood (ASH Annual Meeting Abstracts) 2011;118:abstract 282
  • Shabbir M, Stuart R. Lestaurtinib, a multitargeted tyrosine kinase inhibitor: from bench to bedside. Expert Opin Investig Drugs 2010;19(3):427-36
  • Shah NP, Olszynski P, Sokol L, A Phase I Study of XL019, a Selective JAK2 Inhibitor, in Patients with Primary Myelofibrosis, Post-Polycythemia Vera, or Post-Essential Thrombocythemia Myelofibrosis. Blood (ASH Annual Meeting Abstracts) 2008;112:abstract 98
  • Verstovsek S, Pardanani AD, Shah NP, A Phase I Study of XL019, a Selective JAK2 Inhibitor, in Patients with Primary Myelofibrosis and Post-Polycythemia Vera/Essential Thrombocythemia Myelofibrosis. Blood (ASH Annual Meeting Abstracts) 2007;110:abstract 553
  • Hedvat M, Huszar D, Herrmann A, The JAK2 inhibitor AZD1480 potently blocks Stat3 signaling and oncogenesis in solid tumors. Cancer Cell 2009;16(6):487-97
  • Mahon FX, Rea D, Guilhot J, Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol 2010;11(11):1029-35
  • Tefferi A, Pardanani A. Serious adverse events during ruxolitinib treatment discontinuation in patients with myelofibrosis. Mayo Clin Proc 2011;86(12):1188-91
  • Deshpande A, Reddy MM, Schade GO, Kinase domain mutations confer resistance to novel inhibitors targeting JAK2V617F in myeloproliferative neoplasms. Leukemia 2012;26(4):708-15
  • Scherber R, Dueck AC, Johansson P, The Myeloproliferative Neoplasm Symptom Assessment Form (MPN-SAF): international prospective validation and reliability trial in 402 patients. Blood 2011;118(2):401-8
  • Eghtedar A, Verstovsek S, Estrov Z, Phase 2 study of the JAK kinase inhibitor ruxolitinib in patients with refractory leukemias, including postmyeloproliferative neoplasm acute myeloid leukemia. Blood 2012;119(20):4614-18
  • Marubayashi S, Koppikar P, Taldone T, HSP90 is a therapeutic target in JAK2-dependent myeloproliferative neoplasms in mice and humans. J Clin Invest 2010;120(10):3578-93
  • Fiskus W, Verstovsek S, Manshouri T, Heat shock protein 90 inhibitor is synergistic with JAK2 inhibitor and overcomes resistance to JAK2-TKI in human myeloproliferative neoplasm cells. Clin Cancer Res 2011;17(23):7347-58
  • Yuan ZL, Guan YJ, Chatterjee D, Chin YE. Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science 2005;307(5707):269-73
  • Wang JC, Chen C, Dumlao T, Enhanced histone deacetylase enzyme activity in primary myelofibrosis. Leuk Lymphoma 2008;49(12):2321-7
  • Baffert F, Evrot E, Ebel N, Improved Efficacy Upon Combined JAK1/2 and Pan-Deacetylase Inhibition Using Ruxolitinib (INC424) and Panobinostat (LBH589) in Preclinical Mouse Models of JAK2V617F-Driven Disease. Blood (ASH Annual Meeting Abstracts) 2011;118:abstract 798
  • Rambaldi A, Dellacasa CM, Finazzi G, A pilot study of the Histone-Deacetylase inhibitor Givinostat in patients with JAK2V617F positive chronic myeloproliferative neoplasms. Br J Haematol 2010;150(4):446-55
  • Barrio S, Gallardo M, Albizua E, Epigenomic profiling in polycythaemia vera and essential thrombocythaemia shows low levels of aberrant DNA methylation. J Clin Pathol 2011;64(11):1010-13
  • Teofili L, Martini M, Cenci T, Epigenetic alteration of SOCS family members is a possible pathogenetic mechanism in JAK2 wild type myeloproliferative diseases. Int J Cancer 2008;123(7):1586-92
  • Bogani C, Ponziani V, Guglielmelli P, Hypermethylation of CXCR4 promoter in CD34+ cells from patients with primary myelofibrosis. Stem Cells 2008;26:8:1920-30
  • Tibes R, Giles F, McQueen T, Translational in vivo and in vitro studies in patients (pts) with Acute Myeloid Leukemia (AML), Chronic Myeloid Leukemia (CML), and Myeloproliferative Disease (MPD) treated with MK-0457 (MK), a novel aurora kinase, Flt3, JAK2, and Bcr-Abl inhibitor. Blood (ASH Annual Meeting Abstracts) 2006;108:abstract 1362
  • Gabler K, Rolvering C, Palissot V, Combined inhibition of janus and aurora kinase effectively suppresses proliferation of JAK2 V617F-expressing cells. Blood (ASH Annual Meeting Abstracts) 2011;118:abstract 2813
  • Garcon L, Rivat C, James C, Constitutive activation of STAT5 and Bcl-xL overexpression can induce endogenous erythroid colony formation in human primary cells. Blood 2006;108(5):1551-4
  • Silva M, Richard C, Benito A, Expression of Bcl-x in erythroid precursors from patients with polycythemia vera. N Engl J Med 1998;338(9):564-71
  • Zhao R, Follows GA, Beer PA, Inhibition of the Bcl-xL deamidation pathway in myeloproliferative disorders. N Engl J Med 2008;359(26):2778-89
  • Bogenberger JM, Shi CX, Gonzales I, RNAi screening identifies BCL-XL as an erythroid lineage-specific 5-azacytidine sensitizer while the BCL-2/BCL-XL/BCL-W inhibitor ABT-737 results in more universal sensitization in leukemia cells. Blood (ASH Annual Meeting Abstracts) 2011;118:abstract 3513
  • Mesa RA, Yao X, Cripe LD, Lenalidomide and prednisone for myelofibrosis: eastern Cooperative Oncology Group (ECOG) phase 2 trial E4903. Blood 2010;116(22):4436-8
  • Mesa RA, Steensma DP, Pardanani A, A phase 2 trial of combination low-dose thalidomide and prednisone for the treatment of myelofibrosis with myeloid metaplasia. Blood 2003;101(7):2534-41
  • Mesa RA, Pardanani AD, Hussein K, Phase1/-2 study of Pomalidomide in myelofibrosis. Am J Hematol 2010;85(2):129-30
  • Quintas-Cardama A, Vaddi K, Liu P, Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood 2010;115(15):3109-17
  • Levis M, Allebach J, Tse KF, A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo. Blood 2002;99(11):3885-91
  • Howard S, Berdini V, Boulstridge JA, Fragment-based discovery of the pyrazol-4-yl urea (AT9283), a multitargeted kinase inhibitor with potent aurora kinase activity. J Med Chem 2009;52(2):379-88
  • William AD, Lee AC, Poulsen A, Discovery of the macrocycle (9E)-15-(2-(pyrrolidin-1-yl)ethoxy)-7,12,25-trioxa-19,21,24-triaza-tetracyclo[18. 3.1.1(2,5).1(14,18)]hexacosa-1(24),2,4,9,14(26),15,17,20,22-nonaene (SB1578), a potent inhibitor of janus kinase 2/fms-like tyrosine kinase-3 (JAK2/FLT3) for the treatment of rheumatoid arthritis. J Med Chem 2012;55(6):2623-40
  • Shide K, Kameda T, Markovtsov V, Efficacy of R723, a Potent and Selective JAK2 Inhibitor, in JAK2V617F-Induced Murine MPD Model. Blood (ASH Annual Meeting Abstracts) 2009;114:abstract 3897
  • Pardanani A, Hood J, Lasho T, TG101209, a small molecule JAK2-selective kinase inhibitor potently inhibits myeloproliferative disorder-associated JAK2V617F and MPLW515L/K mutations. Leukemia 2007;21(8):1658-68
  • Verstovsek S, Odenike O, Scott B, Phase I Dose-Escalation Trial of SB1518, a Novel JAK2/FLT3 Inhibitor, in Acute and Chronic Myeloid Diseases, Including Primary or Post-Essential Thrombocythemia/Polycythemia Vera Myelofibrosis. Blood (ASH Annual Meeting Abstracts) 2009;114:abstract 3905
  • Deeg HJ, Odenike O, Scott BL, Phase II study of SB1518, an orally available novel JAK2 inhibitor, in patients with myelofibrosis. J Clin Oncol 2011;29(Suppl):abstract 6515

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.