397
Views
8
CrossRef citations to date
0
Altmetric
Reviews

The clinical development of p53-reactivating drugs in sarcomas – charting future therapeutic approaches and understanding the clinical molecular toxicology of Nutlins

, MB (Hons) MRCP(UK), , &

Bibliography

  • Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4A locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 1998;92(6):725-34
  • Toguchida J, Yamaguchi T, Ritchie B, et al. The mutation spectrum of the p53 gene in bone and soft tissue sarcomas. Cancer Res 1992;52:6194-9
  • Momand J, Jung D, Wilczynski S, et al. The MDM2 gene amplification database. Nucleic Acids Res 1998;26(15):3453-9
  • Huang HY, Illei BB, Zhao Z, et al. Ewing's sarcomas with p53 mutation or p16/p14ARF homozygous deletion:a highly lethal subset associated with poor chemoresponse. J Clin Oncol 2005;23(3):548-58
  • Pinto EM, Ribeiro RC, Figueiredo BC, et al. TP53-associated pediatric malignances. Genes Cancer 2011;2(4):485-90
  • Carol H, Reynolds CP, Kang MH, et al. Initial testing of the MDM2 inhibitor RG7112 by the pediatric preclinical testing program. Pediatr Blood Cancer 2013;60(4):633-41
  • Weaver J, Goldblum JR, Turner S, et al. Detection of MDM2 gene amplification or protein expression distinguishes sclerosing mesenteris and retroperitoneal fibrosis from inflammatory well-differentiated liposarcoma. Mod Pathol 2009;22(1):66-70
  • Wunder JS, Eppert K, Burrow SR, et al. Co-amplification and overexpression of CDK4, SAS and MDM2 occurs frequently in human parosteal osteosarcomas. Oncogene 1999;18(3):783-8
  • Taylor AC, Shu L, Danks MK, et al. P53 mutation and MDM2 amplification frequency in pediatric rhabdomyosarcoma tumors and cell lines. Med Pediatr Oncol 2000;35(2):96-103
  • Ragazzini P, Gamberi G, Pazzaglia L, et al. Amplification of CDK4, MDM2, SAS and GLI genes in leiomyosarcoma, alveolar and embryonal rhabdomyosarcoma. Histol Histopathol 2004;19(2):401-11
  • Vassilev LT, Vu BT, Graves B, et al. In vivo activation of the p53 pathway by small molecule antagonists of MDM2. Science 2004;303(5659):844-8
  • Ray-Coquard I, Blay JY, Italiano A, et al. Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well –differentiated or dedifferentiated liposarcoma: an exploratory proof-of-mechanism study. Lancet Oncol 2012;13(11):1133-40
  • Ding Q, Zhang Z, Lin JJ, et al. Discovery of RG7388, a potent and selective p53-MDM2 inhibitor in clinical development. J Med Chem 2013;56(11):5979-83
  • Watters J, Rowley S, Debussche L. Integrated profiling of p53 wild-type cell lines identifies differentially responsive populations and a gene expression signature that predicts sensitivity to SAR405838, a potent and selective disruptor of the p53-MDM2 interaction. Cancer Res 2013;73(Suppl 8):3436
  • Graves B, Thompson T, Xia M, et al. Activation of the p53 pathway by small-molecule-induced MDM2 and MDMX dimerization. Proc Natl Acad Sci USA 2012;109:11788-93
  • Issaeva N, Bozko P, Enge M, et al. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med 2004;10:1321-8
  • Lehmann S, Bykov VJ, Ali D, et al. Targeting p53 in vivo: a first-in-human study with a p53-targeting compound APR-246 in refractory haematologic malignancies and prostate cancer. J Clin Oncol 2012;30(29):3633-9
  • Vu BT, Vassilev LT. Small-molecule inhibitors of the p53-MDM2 interaction. Curr Top Microbiol Immunol 2011;348:151-72
  • Poppwicz GM, Domling A, Holak TA. The structure-based design of MDM2/MDMX-p53 inhibitors gets serious. Angew Chem Int Ed 2011;50:2680-8
  • Pilotti S, Della Torre G, Lavarino C, et al. Distinct mdm2/p53 expression patterns in liposarcoma subgroups:implications for different pathogenetic mechanisms. J Pathol 1997;181(1):14-24
  • Muller CR, Paulsen EB, Noordhuis P, et al. Potential for treatment of liposarcomas with the MDM2 antagonist Nutlin-3A. Int J Cancer 2007;121(1):199-205
  • Singer S, Socci ND, Ambrosini G, et al. Gene expression profiling of liposarcoma identifies distinct biological types/subtypes and potential therapeutic targets in well-differentiated and dedifferentiated liposarcoma. Cancer Res 2007;67:6626
  • Kurzrock R, Blay JY, Nguyen BB, et al. A phase 1 study of MDM2 antagonist RG7112 in patients (pts) with relapsed/refractory solid tumors. J Clin Oncol 2012;30(Suppl):abstract 13600
  • Patnaik A, Tolcher A, Beeram M, et al. Clinical pharmacology characterization of RG7112, an MDM2 antagonist, in patients with advanced solid tumors. Proc AACR 2013;73(8 Suppl):abstract: LB-201
  • Chawla SP, Blays JV, Italiano A, et al. Phase Ib study of RG7112 with Doxorubicin (D) in advanced soft tissue sarcoma (ASTS). J Clin Oncol 2013;31(Suppl):abstract 10514
  • Mendrysa SM, McElwee MK, Michalowski J, et al. MDM2 is critical for inhibition of p53 during lymphopoiesis and the response to ionizing irradiation. Mol Cell Biol 2003;23(2):462-72
  • Martins CP, Brown-Swigart L, Evan GI. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 2006;127:1323-34
  • Ventura A, Kirsch DG, McLaughlin ME, et al. Restoration of p53 function leads to tumor regression in vivo. Nature 2007;445(7128):661-5
  • Human Protein Atlas – MDM2. Available from: http://www.proteinatlas.org/ENSG00000135679
  • Allam R, Sayyed SG, Kulkarni OP, et al. MDM2 promotes systemic lupus erythematosus and lupus nephritis. J Am Soc Nephrol 2011;22(11):2016-27
  • Grier JD, Xiong S, Elizondo-Fraire AC, et al. Tissue-specific differences of p53 inhibition by Mdm2 and Mdm4. Mol Cell Biol 2006;26(1):192-8
  • Toth A, Nickson P, Qin LL, et al. Differential regulation of cardiomyocyte survival and hypertrophy by Mdm2, an E3 ubiquitin ligase. J Biol Chem 2005;281(6):3679-89
  • Tovar C, Graves B, Packman K, et al. MDM2 small-molecule antagonist rg7112 activates p53 signaling and regresses human tumors in preclinical cancer models. Cancer Res 2013;73:2587-97
  • Ali D, Jonsson-Videsater K, Deneberg S, et al. APR-246 exhibits anti-leukemic activity and synergism with conventional chemotherapeutic drugs in acute myeloid leukemia cells. Eur J Haematol 2011;86(3):206-15
  • Ito M, Barys L, O'Reilly T, et al. Comprehensive mapping of p53 pathway alterations reveals an apparent role for both snp309 and mdm2 amplification in sarcomagenesis. Clin Cancer Res 2010;17(3):416-26
  • Ambrosini G, Sambol EB, Carvajal D, et al. Mouse double minute antagonist Nutlin-3a enhances chemotherapy-induced apoptosis in cancer cells with mutant p53 by activating E2F1. Oncogene 2007;26(24):3473-81
  • Pishas KI, Neuhaus SJ, Clayer MT, et al. Nutlin-3a efficacy in sarcoma predicted by transcriptomic and epigenetic profiling. Cancer Res 2014;74(3):921-31
  • Grochola LF, Zeron-Medina J, Meriaux S, et al. Single-nucleotide polymorphisms in the p53 signaling pathway. Cold Spring Harb Perspect Biol 2010;2(5):a001032
  • Ashcroft M, Kubbutat MHG, Vousden KH. Regulation of p53 function and stability by phosphorylation. Mol Cell Biol 1999;19(3):1751-8
  • Yang X. Regulation of p53 responses by post-translational modifications. Cell Death Differ 2003;10:400-3
  • Allton K, Jain AK, Herz HM, et al. Trim24 targets endogenous p53 for degradation. Proc Natl Acad Sci USA 2009;106(28):11612-16
  • Moll UM, Wolff S, Speidel D, et al. Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol 2005;17(6):631-66
  • Yao H, Mi S, Gong W, et al. Anti-apoptosis proteins Mcl-1 and Bcl-xL Have different p53-binding profiles. Biochemistry 2013;52(37):6324-34
  • Schuler M, Bossy-Wetzel E, Goldstein JC, et al. p53 induces apoptosis by caspase activation through mitochondrial cytochrome c release. J Biol Chem 2000;275(10):7337-42
  • Shin JS, Ha JH, He F, et al. Structural insights into the dual-targeting mechanism of nutlin-3. Biochem Biophys Res Commun 2012;420(1):48-53
  • Ha JH, Won EY, Shin JS, et al. Molecular mimicry-based repositioning of nutlin-3 to anti-apoptotic Bcl-2 family proteins. J Am Chem Soc 2011;133(5):1244-7
  • Jiang M, Pabla N, Murphy RF, et al. Nutlin-3 protects kidney cells during cisplatin therapy by suppressing Bax/Bak activation. J Biol Chem 2007;282(4):2636-45
  • Mason KD, Carpinelli MR, Fletcher JI, et al. Programmed anuclear cell death delimits platelet life span. Cell 2007;128(6):1173-86
  • Kaluzhny Y, Yu G, Sun S, et al. BclxL overexpression in megakarocytes leads to impaired platelet fragmentation. Blood 2002;100(5):1670-8
  • Zhang H, Nimmer PM, Tahir SK, et al. Bcl-2 family proteins are essential for platelet survival. Cell Death Differ 2007;14(5):943-51
  • Dzhagalov I, St John A, He YW. The antiapoptotic protein Mcl-1 is essential for the survival of neutrophils but not macrophages. Blood 2007;109(4):1620-6
  • Bazzoni F, Giovedi S, Kiefer MC, et al. Analysis of bak protein expression in human polymorphonuclear neutrophils. Int J Clin Lab Res 1999;29(1):41-5
  • Petros AM, Olejniczak ET, Fesik SW. Structural biology of the Bcl-2 family proteins. Biochim Biophys Acta 1644(2-3):83-94
  • Chen J, Jin S, Abraham V, et al. The Bcl-2/Bcl-XL/Bcl-w inhibitor navitoclax enhances the activity of the chemotherapeutic agents in vitro and in vivo. Mol Cancer Ther 2011;10(12):2340-9
  • Rudin CM, Hann CL, Garon EB, et al. Phase II study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer. Clin Cancer Res 2012;18(11):3163-9
  • Souers AJ, Leverson JD, Boghaert ER, et al. ABT-199, a potenat and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med 2013;19(2):202-8
  • Shen H, Maki CG. Persistent p21 expression after nutlin-3a removal is associated with senescence-like arrest in 4N cells. J Biol Chem 2010;285(30):23105-14
  • Danovi D, Meulmeester E, Pasini D, et al. Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol Cell Biol 2004;24(13):5835-43
  • Hu B, Gilkes DM, Farooqi B, et al. MDMX overexpression prevents p53 activation by the MDM2 inhibitor nutlin. J Biol Chem 2006;281:33030-5
  • Pishas KI, Al-Ejeh F, Zinonos I, et al. Nutlin-3a is a potential therapeutic for ewing sarcoma. Clin Cancer Res 2011;17(3):494-504
  • Popowicz GM, Czarna A, Wolf S, et al. Structures of low-molecular weight inhibitors bound to MDMX and MDM2 reveal new approaches for p53-MDMX/MDM2 antagonist drug discovery. Cell Cycle 2010;9:1104-11
  • Reed D, Shen Y, Shelat AA, et al. Identification and characterization of the first small molecule inhibitor of MDMX. J Biol Chem 2010;285(14):10786-96
  • Duffaud F, Even C, Ray-Coquard I, et al. Recombinant erythropoietin for the anaemia of patients with advanced gastrointestinal stromal tumours (GIST) receiving imatinib: an active agent only in non progressive patients. Clin Sarc Res 2012;2:11
  • Waskow C, Terszowski G, Costa C, et al. Rescue of lethal c-KitW/W mice by erythropoietin. Blood 2004;104(6):1688-95
  • Wei SJ, Joseph T, Sim AYL, et al. In vitro selection of mutant hdm2 resistant to nutlin inhibition. PLoS One 2013;8(4):e62564
  • Tovar C, Rosinski J, Filipovic Z, et al. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad Sci USA 2006;103:1888-93
  • Jones RJ, Bjorklund CC, Baladandayuthapani V, et al. Drug resistance to inhibitor of the human double minute-2 E3 ligase is mediated by point mutations of p53, but can be overcome with the p53 targeting agent RITA. Mol Cancer Ther 2012;11(10):2243-53
  • Aziz MH, Shen H, Maki CG, et al. Acquisition of p53 mutations in response to the non-genotoxic activator Nutlin-3. Oncogene 2011;30(46):4678-86
  • Michaelis M, Rothweiler F, Barth S, et al. Adaptation of cancer cells from different entities to the MDM2 inhibitor nutlin-3 results in the emergence of p53-mutated multi-drug-resistant cancer cells. Cell Death Dis 2011;2(12):e243
  • Freed-Pastor WA, Prives C. Mutant p53: one name, many proteins. Genes Dev 2012;26(12):1268-86
  • Yu X, Vazquez A, Levine AJ, et al. Allele-specific p53 mutant reactivation. Cancer Cell 2012;21(5):614-25
  • Liu X, Wilcken R, Joerger C, et al. Small molecule induced reactivation of mutant p53 in cancer cells. Nucleic Acids Res 2013;41(12):6034-44
  • Kravchenko JE, IIyinskaya GV, Komarov PG, et al. Small-molecule RETRA suppresses mutant p53-bearing cancer cells through a p73-dependent salvage pathway. Proc Natl Acad Sci USA 2008;105(17):6302-7
  • Antonescu CR, Besmer P, Guo T, et al. Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin Cancer Res 2005;11:4182-90
  • Debiec-Rychter M, Cools J, Dumez H, et al. Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumors and activity of PKC412 inhibitor against imatinib-resistant mutants. Gastroenterology 2005;128:270-9
  • Wardelmann E, Merkelbach-Bruse S, Pauls K, et al. Polyclonal evolution of multiple secondary KIT mutations in gastrointestinal stromal tumors under treatment with imatinib mesylate. Clin Cancer Res 2006;12:1743-9
  • p53 IACR Database. Available from: http://p53.iarc.fr/
  • Anderson KS, Wong J, Vitonis A, et al. p53 autoantibodies as potential detection detection and prognostic biomarkers in serous ovarian cancer. Cancer Epidemiol Biomarkers Prev 2010;19(3):859-68
  • Miele G, Harrison E, Mefo T, et al. Plucked hair as a biomarker platform for monitoring transcriptional consequences of clinical exposure to antagonism of the HDM2/P53 interaction in tumors. Cancer Res 2013;73(8 Suppl 1):abstract 3350
  • Ravi R, Mookerjee B, Bhujwalla ZM, et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev 2000;14(1):34-44
  • Teodoro JG, Parker AE, Zhu X, et al. P53-mediated inhibition of angiogenesis through up-regulation of a collagen prolyl hydroxylase. Science 2006;313(5789):968-71
  • Assadian S, El-Assaad W, Wang XQD, et al. P53 inhibits angiogenesis by inducing the production of Arresten. Cancer Res 2012;72:1270-9
  • Bensaad K, Tsuruta A, Selak MA, et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 2006;126(1):107-20
  • Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E, et al. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res 2004;64:2627-33
  • Zawacka-Pankau J, Grinkevich VV, Hunten S, et al. Inhibition of glycolytic enzymes mediated by pharmacologically activated p53: targeting the Warburg effect to fight cancer. J Biol Chem 2011;286(48):41600-15
  • Senzer N, Nemunaitis J, Nemunaitis M, et al. p53 therapy in a patient with Li-Fraumeni syndrome. Mol Cancer Ther 2007;6:1478-82
  • Italiano A, Bianchini L, Keslair F, et al. HMGA2 is the partner of MDM2 is well-differentiated and dedifferentiated liposarcomas whereas CDK4 belongs to a distinct inconsistent amplicon. Int J Cancer 2008;122(10):2233-41
  • Erickson-Johnson MR, Seys AR, Roth CW, et al. Carboxypeptidase M: a biomarker for the discrimination of well-differentiated liposarcoma from lipoma. Mod Pathol 2009;22(12):1541-7
  • Wang X, Asmann YW, Erickson-Johnson MR, et al. High-resolution genomic mapping reveals consistent amplification of the fibroblast growth factor receptor substrate 2 gene in well-differentiated and dedifferentiated liposarcoma. Gene Chromosome Canc 2011;50(11):849-58
  • Boland JM, Weiss SW, Oliveira AM, et al. Liposarcomas with mixed well-diffferentiated and pleomorphic features: a clinicopathological study of 12 cases. Am J Surg Pathol 2010;34(6):837-43
  • Zhang K, Chu K, Wu X, et al. Amplification of FRS2 and activation of FGFR.FRS2 signalling pathway in high-grade liposarcoma. Cancer Res 2013;73(4):1298-307
  • Dickson MA, Tap WD, Keohan ML, et al. Phase II trial of the CDK inhibitor PD0332991 in patients with advanced CDK4-amplified well-differentiated or dedifferentiated liposarcoma. J Clin Oncol 2013;31(16):2024-8
  • Agarwal R, Janku F, Shreyaskumar P, et al. Comprehensive theranostic profiling of diverse sarcomas identidies frequent CDK and PI3KCA/PTEN pathway aberrations; implications for precision medicine. Proc CTOS 2013; Session 18: Paper 50
  • Devy L, Huang LH, Naa L, et al. Selective inhibition of matrix metalloproteinase-14 blocks tumor growth, invasion and angiogenesis. Cancer Res 2009;69(4):1517-26
  • Devy L, Dransfield DT. New strategies for the next generation of matrix-metalloproteinase inhibitors: selectively targeting membrane-anchored mmps with therapeutic antibodies. Biochem Res Int 2011;2011:191670
  • Atkinson JM, Falconer RA, Edwards DR, et al. Development of a novel tumor-targeted vascular disrupting agent activated by membrane-type matrix metalloproteinases. Cancer Res 2010;70(17):6902-12
  • Wolf J, LoRusso PM, Camidge RD, et al. A phase I dose escalation study of NVP-BGJ398, a selective pan FGFR inhibitor in genetically preselected advanced solid tumors. Cancer Res 2012;72(8 Suppl 1); Epub ahead of print
  • Davies BR, Greenwood H, Dudley P, et al. Antitumor activity and correlation of AZD5363 monotherapy activity with genetic background. Mol Cancer Ther 2012;11(4):873-87
  • Mayo LD, Donner DB. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of MDM2 from the cytoplasm to the nucleus. Proc Natl Acad Sci USA 2001;98:11598-603
  • Mayo LD, Dixon JE, Durden DL, et al. PTEN protects p53 from MDM2 and sensitizes cancer cells to chemotherapy. J Biol Chem 2002;277:5484-9
  • Gottlieb TM, Leal JF, Seger R, et al. Cross-talk between Akt, p53 and MDM2: possible implications for the regulation of apoptosis. Oncogene 2002;21:1299-303
  • Barretina J, Taylor BS, Banerji S, et al. Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat Genet 2010;42:715-21
  • Gibault L, Ferreira C, Perot G, et al. From PTEN loss of expression to RICTOR role in smooth muscle differentiation: complex involvement of the mTOR pathway in leiomyosarcomas and pleomorphic sarcomas. Mod Pathol 2012;25(2):197-211
  • Miyachi M, Kakazu N, Yagyu S, et al. Restoration of p53 pathway by nutlin-3 induces cell cycle arrest and apoptosis in human rhabdomyosarcoma Cells. Clin Cancer Res 2009;15(12):4077-87
  • D'Arcy P, Maruwge W, Ryan BA, et al. The oncoprotein SS18-SSX1 p53 ubiquitination and degradation by enhancing HDM2 stability. Mol Cancer Res 2008;6(1):127-38
  • Ban J, Bennani-Baiti IM, Kauer M, et al. EWS-FLI-1 suppresses NOTCH-activated p53 in Ewing's sarcoma. Cancer Res 2008;68(17):1700-9
  • Li Y, Li X, Fan G, et al. Impairment of p53 acetylation by EWS-Fli-1 chimeric protein in Ewing family tumors. Cancer Lett 2012;320(1):14-22
  • Erkizan HV, Kong Y, Merchant M, et al. A small molecule blocking oncogenic protein EWS-FLI-1 interaction with RNA helicase A inhibits growth of Ewing's sarcoma. Nat Med 2009;15(7):750-6
  • Toretsky JA, Erkizan V, Levenson A, et al. Oncoprotein EWS-FLI-1 activity is enhanced by RNA helicase A. Cancer Res 2006;66(11):5574-81
  • Lain S, Hollick JJ, Campbell J, et al. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell 2008;13(5-2):454-63
  • Li FP, Fraumeni JF. Soft-tissue sarcomas, breast cancer and other neoplasms: a familial syndrome? Ann Intern Med 1969;71:747-52
  • Malkin D, Li FP, Strong LC, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 1990;250(4985):1233-8
  • Malkin D, Jolly KW, Barbier N, et al. Germline mutations of the p53 tumor-suppressor gene in children and young adults with second malignant neoplasms. N Engl J Med 1992;326(20):1309-15
  • Villani A, Tabori U, Schiffman J, et al. Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-fraumeni syndrome: a prospective observational study. Lancet Oncol 2011;12(6):559-67
  • Malkin D. Li-fraumeni syndrome. Genes Cancer 2011;2(4):475-84
  • Bougeard G, Brugieres L, Chompret A, et al. Screening for TP53 rearrangements in families with the Li-fraumeni syndrome reveals a complete deletion of the TP53 gene. Oncogene 2003;22:840-6
  • Gonzalez KD, Noltner KA, Buzin CH, et al. Beyond Li-fraumeni syndrome: clinical characteristics of families with p53 germline mutations. J Clin Oncol 2009;27:1250-6
  • Petitjean A, Mathe E, Kato S, et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 2007;28:622-9
  • Milner J, Medcalf EA. Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell 1991;65:765-74
  • Chan WM, Siu WY, Lau A, et al. How many mutant p53 molecules are needed to inactivate a tetramer? Mol Cell Biol 2004;24(8):3536-51
  • Jackson JG, Lozano G. The mutant p53 mouse as a pre-clinical model. Oncogene 2013;32(37):4325-30
  • Parant JM, George SA, Holden JA, et al. Genetic modeling of Li-fraumeni syndrome in zebrafish. Dis Model Mech 2010;3(1-2):45-56
  • Suster S, Fisher C, Moran CA. Expression of bcl-2 oncoprotein in benign and malignant spindle cell tumors of soft tissue, skin, serosal surfaces, and gastrointestinal tract. Am J Surg Pathol 1998;22(7):863-72
  • Zhao Y, Zhang CL, Zeng BF, et al. Enhanced chemosensitivity of drug-resistant osteosarcoma cells by lentivirus-mediated Bcl-2 silencing. Biochem Biophys Res Commun 2009;390(3):642-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.