232
Views
41
CrossRef citations to date
0
Altmetric
Review

Investigational drugs for visceral leishmaniasis

&

Bibliography

  • Control of the Leishmaniasis. Report of a meeting of the WHO Expert Committee on the Control of Leishmaniases. 22-26 March, 2010. Available from: http://whqlibdoc.who.int/trs/WHO_TRS_949_eng.pdf
  • Magill AJ. Epidemiology of the leishmaniases. Dermatol Clin 1995;13(3):505-23
  • Pearson RD, deQueiroz Sousa A. Leishmaniasis. In: Guerrant RL, Walker DH, Weller PF, editor. Tropical infectious diseases: principles, pathogens and practice. Churchill Livingstone; Philadelphia: 1999. p. 797-813
  • Zijlstra EE, Musa AM, Khalil EA, et al. Post-kala-azar dermal leishmaniasis. Lancet Infect Dis 2003;3(2):87-98
  • Thakur CP, Kumar K. Post kala-azar dermal leishmaniasis: a neglected aspect of kala-azar control programmes. Ann Trop Med Parasitol 1992;86(4):355-9
  • Reithinger R, Dujardin JC, Louzir H, et al. Cutaneous leishmaniasis. Lancet Infect Dis 2007;7(9):581-96
  • Alvar J, Velez ID, Bern C, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7(5):e35671
  • Alvar J, Canavate C, Gutierrez-Solar B, et al. Leishmania and human immunodeficiency virus coinfection: the first 10 years. Clin Microbiol Rev 1997;10(2):298-319
  • Desjeux P, Alvar J. Leishmania/HIV co-infections: epidemiology in Europe. Ann Trop Med Parasitol 2003;97(Suppl 1):3-15
  • Alvar J, Aparicio P, Aseffa A, et al. The relationship between leishmaniasis and AIDS: the second 10 years. Clin Microbiol Rev 2008;21(2):334-59; table of contents
  • Sundar S, Chakravarty J, Agarwal D, et al. Single-dose liposomal amphotericin B for visceral leishmaniasis in India. N Engl J Med 2010;362(6):504-12
  • Sundar S, Sinha PK, Rai M, et al. Comparison of short-course multidrug treatment with standard therapy for visceral leishmaniasis in India: an open-label, non-inferiority, randomised controlled trial. Lancet 2011;377(9764):477-86
  • Sundar S, Chakravarty J. Leishmaniasis: an update of current pharmacotherapy. Expert Opin Pharmacother 2013;14(1):53-63
  • Sundar S, More DK, Singh MK, et al. Failure of pentavalent antimony in visceral leishmaniasis in India: report from the center of the Indian epidemic. Clin Infect Dis 2000;31(4):1104-7
  • Rijal S, Chappuis F, Singh R, et al. Treatment of visceral leishmaniasis in south-eastern Nepal: decreasing efficacy of sodium stibogluconate and need for a policy to limit further decline. Trans R Soc Trop Med Hyg 2003;97(3):350-4
  • Sundar S, Singh A, Rai M, et al. Efficacy of miltefosine in the treatment of visceral leishmaniasis in India after a decade of use. Clin Infect Dis 2012;55(4):543-50
  • Winkelmann E, Raether W. New chemotherapeutically active nitroimidazoles. Curr Chemother Infect Dis Proc Int Congr Chemother 11th 1980;2:969-70
  • Raether W, Seidenath H. The activity of fexinidazole (HOE 239) against experimental infections with Trypanosoma cruzi, trichomonads and Entamoeba histolytica. Ann Trop Med Parasitol 1983;77(1):13-26
  • Jennings FW, Urquhart GM. The use of the 2 substituted 5-nitroimidazole, Fexinidazole (Hoe 239) in the treatment of chronic T. brucei infections in mice. Z Parasitenkd 1983;69(5):577-81
  • Torreele E, Tweats D, Kaiser M, et al. Fexinidazole – a new oral nitroimidazole drug candidate entering clinical development for the treatment of sleeping sickness. PLoS Negl Trop Dis 2010;4(12):e923
  • Wilkinson SR, Taylor MC, Horn D, et al. A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proc Natl Acad Sci USA 2008;105(13):5022-7
  • Sokolova AY, Wyllie S, Patterson S, et al. Cross-resistance to nitro drugs and implications for treatment of human African trypanosomiasis. Antimicrob Agents Chemother 2010;54(7):2893-900
  • Hall BS, Bot C, Wilkinson SR. Nifurtimox activation by trypanosomal type I nitroreductases generates cytotoxic nitrile metabolites. J Biol Chem 2011;286(15):13088-95
  • Raether W, Hanel H. Nitroheterocyclic drugs with broad spectrum activity. Parasitol Res 2003;90(Suppl 1):S19-39
  • Wyllie S, Patterson S, Stojanovski L, et al. The anti-trypanosome drug fexinidazole shows potential for treating visceral leishmaniasis. Sci Transl Med 2012;4(119):119re1
  • Escobar P, Yardley V, Croft SL. Activities of hexadecylphosphocholine (miltefosine), AmBisome, and sodium stibogluconate (Pentostam) against Leishmania donovani in immunodeficient SCID mice. Antimicrob Agents Chemother 2001;45(6):1872-5
  • Tweats D, Bourdin Trunz B, Torreele E. Genotoxicity profile of fexinidazole – a drug candidate in clinical development for human African trypanomiasis (sleeping sickness). Mutagenesis 2012;27(5):523-32
  • Human African trypanosomiasis: first in man clinical trial of a new medicinal product, the fexinidazole. 9th March, 2011 Available from: http://clinicaltrials.gov/show/NCT00982904 [Accessed on 21st February 2014]
  • Multiple dose study to evaluate security, tolerance and pharmacokinetic of fexinidazole (Drug Candidate for Human African Trypanosomiasis) administered with a loading dose and with food. February 10, 2012 Available from: http://clinicaltrials.gov/show/NCT01483170 [Accessed on 21st February, 2014]
  • Fexinidazole (1200mg) bioavailability under different food intake conditions. Available from: http://clinicaltrials.gov/ct2/show/NCT01340157 [Accessed on 21st February, 2014]
  • Pivotal study of fexinidazole for human African trypanosomiasis in stage 2. Available from: http://clinicaltrials.gov/show/NCT01685827 [Accessed on 21st February, 2014]
  • Trial to determine efficacy of fexinidazole in visceral leihmaniasis patients in Sudan. Available from: http://clinicaltrials.gov/show/NCT01980199 [Accessed on 21st February, 2014]
  • Barry CEIII, Boshoff HI, Dowd CS. Prospects for clinical introduction of nitroimidazole antibiotics for the treatment of tuberculosis. Curr Pharm Des 2004;10(26):3239-62
  • Ginsberg AM, Laurenzi MW, Rouse DJ, et al. Safety, tolerability, and pharmacokinetics of PA-824 in healthy subjects. Antimicrob Agents Chemother 2009;53(9):3720-5
  • Nuermberger E, Tyagi S, Tasneen R, et al. Powerful bactericidal and sterilizing activity of a regimen containing PA-824, moxifloxacin, and pyrazinamide in a murine model of tuberculosis. Antimicrob Agents Chemother 2008;52(4):1522-4
  • Patterson S, Wyllie S, Stojanovski L, et al. The R enantiomer of the antitubercular drug PA-824 as a potential oral treatment for visceral Leishmaniasis. Antimicrob Agents Chemother 2013;57(10):4699-706
  • Gurumurthy M, Mukherjee T, Dowd CS, et al. Substrate specificity of the deazaflavin-dependent nitroreductase from Mycobacterium tuberculosis responsible for the bioreductive activation of bicyclic nitroimidazoles. FEBS J 2012;279(1):113-25
  • Singh R, Manjunatha U, Boshoff HI, et al. PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science 2008;322(5906):1392-5
  • Manjunatha UH, Boshoff H, Dowd CS, et al. Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 2006;103(2):431-6
  • Stover CK, Warrener P, VanDevanter DR, et al. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 2000;405(6789):962-6
  • Winter H, Ginsberg A, Egizi E, et al. Effect of a high-calorie, high-fat meal on the bioavailability and pharmacokinetics of PA-824 in healthy adult subjects. Antimicrob Agents Chemother 2013;57(11):5516-20
  • Winter H, Egizi E, Erondu N, et al. Evaluation of pharmacokinetic interaction between PA-824 and midazolam in healthy adult subjects. Antimicrob Agents Chemother 2013;57(8):3699-703
  • Ginsberg AM, Laurenzi MW, Rouse DJ, et al. Assessment of the effects of the nitroimidazo-oxazine PA-824 on renal function in healthy subjects. Antimicrob Agents Chemother 2009;53(9):3726-33
  • Diacon AH, Dawson R, von Groote-Bidlingmaier F, et al. 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: a randomised trial. Lancet 2012;380(9846):986-93
  • Pham TT, Loiseau PM, Barratt G. Strategies for the design of orally bioavailable antileishmanial treatments. Int J Pharm 2013;454(1):539-52
  • Muller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv Drug Deliv Rev 2001;47(1):3-19
  • Manandhar KD, Yadav TP, Prajapati VK, et al. Antileishmanial activity of nano-amphotericin B deoxycholate. J Antimicrob Chemother 2008;62(2):376-80
  • Asthana S, Jaiswal AK, Gupta PK, et al. Immunoadjuvant chemotherapy of visceral leishmaniasis in hamsters using amphotericin B-encapsulated nanoemulsion template-based chitosan nanocapsules. Antimicrob Agents Chemother 2013;57(4):1714-22
  • Foldvari M, Bagonluri M. Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomedicine 2008;4(3):183-200
  • Prajapati VK, Awasthi K, Gautam S, et al. Targeted killing of Leishmania donovani in vivo and in vitro with amphotericin B attached to functionalized carbon nanotubes. J Antimicrob Chemother 2011;66(4):874-9
  • Georgakilas V, Kordatos K, Prato M, et al. Organic functionalization of carbon nanotubes. J Am Chem Soc 2002;124(5):760-1
  • Prajapati Vk, Yadav TP, Rai M, et al. An oral formulation of amphotericin B attached to functionalized carbon nanotubes is an effective treatment for experimental visceral leishmaniasis. J Infect Dis 2012;205(2):333-6
  • Wasan EK, Bartlett K, Gershkovich P, et al. Development and characterization of oral lipid-based amphotericin B formulations with enhanced drug solubility, stability and antifungal activity in rats infected with Aspergillus fumigatus or Candida albicans. Int J Pharm 2009;372(1-2):76-84
  • Wasan KM, Wasan EK, Gershkovich P, et al. Highly effective oral amphotericin B formulation against murine visceral leishmaniasis. J Infect Dis 2009;200(3):357-60
  • Wasan EK, Gershkovich P, Zhao J, et al. A novel tropically stable oral amphotericin B formulation (iCo-010) exhibits efficacy against visceral Leishmaniasis in a murine model. PLoS Negl Trop Dis 2010;4(12):e913
  • Sivak O, Gershkovich P, Lin M, et al. Tropically stable novel oral lipid formulation of amphotericin B (iCo-010): biodistribution and toxicity in a mouse model. Lipids Health Dis 2011;10:135
  • Ibrahim F, Gershkovich P, Sivak O, et al. Pharmacokinetics and tissue distribution of amphotericin B following oral administration of three lipid-based formulations to rats. Drug Dev Ind Pharm 2013;39(9):1277-83
  • Gupta PK, Jaiswal AK, Kumar V, et al. Covalent functionalized self-assembled lipo-polymerosome bearing amphotericin B for better management of leishmaniasis and its toxicity evaluation. Mol Pharm 2014; Epub ahead of print
  • Les KA, Balan S, Choi J, et al. Poly(methacrylic acid) complexation of amphotericin B to treat neglected diseases. Polym Chem 2014;5:1037-48
  • Nicoletti S, Seifert K, Gilbert IH. N-(2-hydroxypropyl)methacrylamide-amphotericin B (HPMA-AmB) copolymer conjugates as antileishmanial agents. Int J Antimicrob Agents 2009;33(5):441-8
  • Singodia D, Verma A, Verma RK, Mishra PR. Investigations into an alternate approach to target mannose receptors on macrophages using 4-sulfated N-acetyl galactosamine more efficiently in comparison with mannose-decorated liposomes: an application in drug delivery. Nanomedicine 2012;8(4):468-77
  • Alsaadi M, Italia JL, Mullen AB, et al. The efficacy of aerosol treatment with non-ionic surfactant vesicles containing amphotericin B in rodent models of leishmaniasis and pulmonary aspergillosis infection. J Control Release 2012;160(3):685-91
  • Sanchez-Brunete JA, Dea MA, Rama S, et al. Treatment of experimental visceral leishmaniasis with amphotericin B in stable albumin microspheres. Antimicrob Agents Chemother 2004;48(9):3246-52
  • Nahar M, Jain NK. Preparation, characterization and evaluation of targeting potential of amphotericin B-loaded engineered PLGA nanoparticles. Pharm Res 2009;26(12):2588-98
  • Nahar M, Dubey V, Mishra D, et al. In vitro evaluation of surface functionalized gelatin nanoparticles for macrophage targeting in the therapy of visceral leishmaniasis. J Drug Target 2010;18(2):93-105
  • Pruthi J, Mehra NK, Jain NK. Macrophages targeting of amphotericin B through mannosylated multiwalled carbon nanotubes. J Drug Target 2012;20(7):593-604
  • Chakrabarti G, Basu A, Manna PP, et al. Indolylquinoline derivatives are cytotoxic to Leishmania donovani promastigotes and amastigotes in vitro and are effective in treating murine visceral leishmaniasis. J Antimicrob Chemother 1999;43(3):359-66
  • Galvao LO, Moreira Junior S, Medeiros Junior P, et al. Therapeutic trial in experimental tegumentary leishmaniasis caused by Leishmania (Leishmania) amazonensis. A comparative study between mefloquine and aminosidine. Rev Soc Bras Med Trop 2000;33(4):377-82
  • Nakayama H, Loiseau PM, Bories C, et al. Efficacy of orally administered 2-substituted quinolines in experimental murine cutaneous and visceral leishmaniases. Antimicrob Agents Chemother 2005;49(12):4950-6
  • Sherwood JA, Gachihi GS, Muigai RK, et al. Phase 2 efficacy trial of an oral 8-aminoquinoline (WR6026) for treatment of visceral leishmaniasis. Clin Infect Dis 1994;19(6):1034-9
  • Mishra BB, Singh RK, Srivastava A, et al. Fighting against Leishmaniasis: search of alkaloids as future true potential anti-Leishmanial agents. Mini Rev Med Chem 2009;9(1):107-23
  • Sahu NP, Pal C, Mandal NB, et al. Synthesis of a novel quinoline derivative, 2-(2-methylquinolin-4-ylamino)-N-phenylacetamide – a potential antileishmanial agent. Bioorg Med Chem 2002;10(6):1687-93
  • Fournet A, Barrios AA, Munoz V, et al. 2-substituted quinoline alkaloids as potential antileishmanial drugs. Antimicrob Agents Chemother 1993;37(4):859-63
  • Fournet A, Gantier JC, Gautheret A, et al. The activity of 2-substituted quinoline alkaloids in BALB/c mice infected with Leishmania donovani. J Antimicrob Chemother 1994;33(3):537-44
  • Vieira NC, Herrenknecht C, Vacus J, et al. Selection of the most promising 2-substituted quinoline as antileishmanial candidate for clinical trials. Biomed Pharmacother 2008;62(10):684-9
  • Campos Vieira N, Vacus J, Fournet A, et al. Antileishmanial activity of a formulation of 2-n-propylquinoline by oral route in mice model. Parasite 2011;18(4):333-6
  • Gopinath VS, Pinjari J, Dere RT, et al. Design, synthesis and biological evaluation of 2-substituted quinolines as potential antileishmanial agents. Eur J Med Chem 2013;69:527-36
  • Fakhfakh MA, Fournet A, Prina E, et al. Synthesis and biological evaluation of substituted quinolines: potential treatment of protozoal and retroviral co-infections. Bioorg Med Chem 2003;11(23):5013-23
  • Palit P, Hazra A, Maity A, et al. Discovery of safe and orally effective 4-aminoquinaldine analogues as apoptotic inducers with activity against experimental visceral leishmaniasis. Antimicrob Agents Chemother 2012;56(1):432-45
  • Beveridge E, Goodwin LG, Walls LP. A new series of leishmanicides. Nature 1958;182(4631):316-17
  • Kinnamon KE, Steck EA, Loizeaux PS, et al. The antileishmanial activity of lepidines. Am J Trop Med Hyg 1978;27(4):751-7
  • Theoharides AD, Ashmore RW, Shipley LA. Identification and quantification of human urinary metabolites of a candidate 8-aminoquinoline antileishmanial drug WR-6026. Fed Proc Fed Am Soc Exp Biol 1987;46:865
  • Theoharides AD, Chung H, Velazquez H. Metabolism of a potential 8-aminoquinoline antileishmanial drug in rat liver microsomes. Biochem Pharmacol 1985;34(2):181-8
  • Yeates C. Sitamaquine (GlaxoSmithKline/Walter Reed Army Institute). Curr Opin Investig Drugs 2002;3(10):1446-52
  • Sundar S, Sinha PK, Dixon SA, et al. Pharmacokinetics of oral sitamaquine taken with or without food and safety and efficacy for treatment of visceral leishmaniais: a randomized study in Bihar, India. Am J Trop Med Hyg 2011;84(6):892-900
  • Dietze R, Carvalho SF, Valli LC, et al. Phase 2 trial of WR6026, an orally administered 8-aminoquinoline, in the treatment of visceral leishmaniasis caused by Leishmania chagasi. Am J Trop Med Hyg 2001;65(6):685-9
  • Jha TK, Sundar S, Thakur CP, et al. A phase II dose-ranging study of sitamaquine for the treatment of visceral leishmaniasis in India. Am J Trop Med Hyg 2005;73(6):1005-11
  • Wasunna MK, Rashid JR, Mbui J, et al. A phase II dose-increasing study of sitamaquine for the treatment of visceral leishmaniasis in Kenya. Am J Trop Med Hyg 2005;73(5):871-6
  • Bories C, Cojean S, Huteau F, Loiseau PM. Selection and phenotype characterisation of sitamaquine-resistant promastigotes of Leishmania donovani. Biomed Pharmacother 2008;62(3):164-7
  • Loiseau PM, Cojean S, Schrevel J. Sitamaquine as a putative antileishmanial drug candidate: from the mechanism of action to the risk of drug resistance. Parasite 2011;18(2):115-19
  • Fournet A, Angelo A, Munoz V, et al. Biological and chemical studies of Pera benensis, a Bolivian plant used in folk medicine as a treatment of cutaneous leishmaniasis. J Ethnopharmacol 1992;37(2):159-64
  • Croft SL, Hogg J, Gutteridge WE, et al. The activity of hydroxynaphthoquinones against Leishmania donovani. J Antimicrob Chemother 1992;30(6):827-32
  • Mantyla A, Rautio J, Nevalainen T, et al. Synthesis and antileishmanial activity of novel buparvaquone oxime derivatives. Bioorg Med Chem 2004;12(13):3497-502
  • Garnier T, Mantyla A, Jarvinen T, et al. In vivo studies on the antileishmanial activity of buparvaquone and its prodrugs. J Antimicrob Chemother 2007;60(4):802-10
  • Reimao JQ, Colombo FA, Pereira-Chioccola VL, Tempone AG. Effectiveness of liposomal buparvaquone in an experimental hamster model of Leishmania (L.) infantum chagasi. Exp Parasitol 2012;130(3):195-9
  • Mishra BB, Gour JK, Kishore N, et al. An antileishmanial prenyloxy-naphthoquinone from roots of Plumbago zeylanica. Nat Prod Res 2012;27(4-5):480-5
  • Lezama-Davila CM, Isaac-Marquez AP, Kapadia G, et al. Leishmanicidal activity of two naphthoquinones against Leishmania donovani. Biol Pharm Bull 2012;35(10):1761-4
  • Hazra S, Ghosh S, Das Sarma M, et al. Evaluation of a diospyrin derivative as antileishmanial agent and potential modulator of ornithine decarboxylase of Leishmania donovani. Exp Parasitol 2013;135(2):407-13
  • Sett R, Basu N, Ghosh AK, Das PK. Potential of doxorubicin as an antileishmanial agent. J Parasitol 1992;78(2):350-4
  • Sett R, Sarkar K, Das PK. Macrophage-directed delivery of doxorubicin conjugated to neoglycoprotein using leishmaniasis as the model disease. J Infect Dis 1993;168(4):994-9
  • Basu N, Kole L, Ghosh A, Das PK. Expression and characterization of a parasite-specific antigen on macrophages after infection with Leishmania donovani. Mol Cell Biochem 1994;132(1):1-6
  • Mukherjee S, Das L, Kole L, et al. Targeting of parasite-specific immunoliposome-encapsulated doxorubicin in the treatment of experimental visceral leishmaniasis. J Infect Dis 2004;189(6):1024-34
  • Gupta GK, Kansal S, Misra P, et al. Uptake of biodegradable gel-assisted LBL nanomatrix by Leishmania donovani-infected macrophages. AAPS PharmSciTech 2009;10(4):1343-7
  • Kunjachan S, Gupta S, Dwivedi AK, et al. Chitosan-based macrophage-mediated drug targeting for the treatment of experimental visceral leishmaniasis. J Microencapsul 2011;28(4):301-10
  • Kansal S, Tandon R, Dwivedi P, et al. Development of nanocapsules bearing doxorubicin for macrophage targeting through the phosphatidylserine ligand: a system for intervention in visceral leishmaniasis. J Antimicrob Chemother 2012;67(11):2650-60
  • Kansal S, Tandon R, Verma PR, et al. Development of doxorubicin loaded novel core shell structured nanocapsules for the intervention of visceral leishmaniasis. J Microencapsul 2013;30(5):441-50
  • Chapman WLJr, Hanson WL, Alving CR, Hendricks LD. Antileishmanial activity of liposome-encapsulated meglumine antimonate in the dog. Am J Vet Res 1984;45(5):1028-30
  • Banerjee G, Nandi G, Mahato SB, et al. Drug delivery system: targeting of pentamidines to specific sites using sugar grafted liposomes. J Antimicrob Chemother 1996;38(1):145-50
  • Nieto J, Alvar J, Mullen AB, et al. Pharmacokinetics, toxicities, and efficacies of sodium stibogluconate formulations after intravenous administration in animals. Antimicrob Agents Chemother 2003;47(9):2781-7
  • Paul M, Durand R, Boulard Y, et al. Physicochemical characteristics of pentamidine-loaded polymethacrylate nanoparticles: implication in the intracellular drug release in Leishmania major infected mice. J Drug Target 1998;5(6):481-90
  • Menez C, Legrand P, Rosilio V, et al. Physicochemical characterization of molecular assemblies of miltefosine and amphotericin B. Mol Pharm 2007;4(2):281-8
  • Menez C, Buyse M, Besnard M, et al. Interaction between miltefosine and amphotericin B: consequences for their activities towards intestinal epithelial cells and Leishmania donovani promastigotes in vitro. Antimicrob Agents Chemother 2006;50(11):3793-800
  • Menez C, Buyse M, Chacun H, et al. Modulation of intestinal barrier properties by miltefosine. Biochem Pharmacol 2006;71(4):486-96
  • Nwaka S, Ramirez B, Brun R, et al. Advancing drug innovation for neglected diseases-criteria for lead progression. PLoS Negl Trop Dis 2009;3(8):e440
  • Singh N, Mishra BB, Bajpai S, et al. Natural product based leads to fight against leishmaniasis. Bioorg Med Chem 2014;22(1):18-45
  • Mishra BB, Kale RR, Singh RK, Tiwari VK. Alkaloids: future prospective to combat leishmaniasis. Fitoterapia 2009;80(2):81-90
  • Salem MM, Werbovetz KA. Natural products from plants as drug candidates and lead compounds against leishmaniasis and trypanosomiasis. Curr Med Chem 2006;13(21):2571-98
  • Mukherjee S, Mukherjee B, Mukhopadhyay R, et al. Imipramine is an orally active drug against both antimony sensitive and resistant Leishmania donovani clinical isolates in experimental infection. PLoS Negl Trop Dis 2012;6(12):e1987
  • Palit P, Ali N. Oral therapy with sertraline, a selective serotonin reuptake inhibitor, shows activity against Leishmania donovani. J Antimicrob Chemother 2008;61(5):1120-4
  • Suryawanshi SN, Tiwari A, Kumar S, et al. Chemotherapy of leishmaniasis. Part XII: design, synthesis and bioevaluation of novel triazole integrated phenyl heteroterpenoids as antileishmanial agents. Bioorg Med Chem Lett 2013;23(10):2925-8
  • Sharma M, Chauhan K, Shivahare R, et al. Discovery of a new class of natural product-inspired quinazolinone hybrid as potent antileishmanial agents. J Med Chem 2013;56(11):4374-92
  • Kyriazis JD, Aligiannis N, Polychronopoulos P, et al. Leishmanicidal activity assessment of olive tree extracts. Phytomedicine 2012;20(3-4):275-81
  • Bhattacharya S, Ghosh P, De T, et al. In vivo and in vitro antileishmanial activity of Bungarus caeruleus snake venom through alteration of immunomodulatory activity. Exp Parasitol 2013;135(1):126-33
  • Khaliq T, Misra P, Gupta S, et al. Peganine hydrochloride dihydrate an orally active antileishmanial agent. Bioorg Med Chem Lett 2009;19(9):2585-6
  • Maes L, Germonprez N, Quirijnen L, et al. Comparative activities of the triterpene saponin maesabalide III and liposomal amphotericin B (AmBisome) against Leishmania donovani in hamsters. Antimicrob Agents Chemother 2004;48(6):2056-60
  • Germonprez N, Maes L, Van Puyvelde L, et al. In vitro and in vivo anti-leishmanial activity of triterpenoid saponins isolated from Maesa balansae and some chemical derivatives. J Med Chem 2005;48(1):32-7
  • Mittra B, Saha A, Chowdhury AR, et al. Luteolin, an abundant dietary component is a potent anti-leishmanial agent that acts by inducing topoisomerase II-mediated kinetoplast DNA cleavage leading to apoptosis. Mol Med 2000;6(6):527-41
  • Zhai L, Chen M, Blom J, et al. The antileishmanial activity of novel oxygenated chalcones and their mechanism of action. J Antimicrob Chemother 1999;43(6):793-803
  • Chen M, Christensen SB, Theander TG, Kharazmi A. Antileishmanial activity of licochalcone A in mice infected with Leishmania major and in hamsters infected with Leishmania donovani. Antimicrob Agents Chemother 1994;38(6):1339-44
  • Medda S, Mukhopadhyay S, Basu MK. Evaluation of the in-vivo activity and toxicity of amarogentin, an antileishmanial agent, in both liposomal and niosomal forms. J Antimicrob Chemother 1999;44(6):791-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.