873
Views
51
CrossRef citations to date
0
Altmetric
Reviews

Investigational drugs to treat methicillin-resistant Staphylococcus aureus

, , &

Bibliography

  • Papers of special note have been highlighted as either of interest () or of considerable interest (••) to readers.
  • WHO. Antimicrobial resistance global report on surveillance. Geneva: World Health Organization; 2014.
  • CDC. Antibiotic resistance threats in the United States, 2013. Atlanta (GA): Centers for Disease Control and Prevention; 2013.
  • Otto M. MRSA virulence and spread. Cell Microbiol. 2012;14(10):1513–1521.
  • Hiramatsu K, Cui L, Kuroda M, et al. The emergence and evolution of methicillin-resistant Staphylococcus aureus. Trends Microbiol. 2001;9(10):486–493.
  • Chambers HF. Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin Microb Rev. 1997;10(4):781–791.
  • Davies TA, Page MG, Shang W, et al. Binding of ceftobiprole and comparators to the penicillin-binding proteins of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae. Antimicrob Agents Chemother. 2007;51(7):2621–2624.
  • Moisan H, Pruneau M, Malouin F. Binding of ceftaroline to penicillin-binding proteins of Staphylococcus aureus and Streptococcus pneumoniae. J Antimicrob Chemother. 2010;65(4):713–716.
  • Mendes RE, Deshpande LM, Jones RN. Linezolid update: stable in vitro activity following more than a decade of clinical use and summary of associated resistance mechanisms. Drug Resist Updat. 2014;17(1–2):1–12.
  • Niveditha N, Sujatha S. Worrisome trends in rising minimum inhibitory concentration values of antibiotics against methicillin resistant Staphylococcus aureus - insights from a tertiary care center, South India. Braz J Infect Dis. 2015. doi:10.1016/j.bjid.2015.08.005. [Epub ahead of print]
  • Cafiso V, Bertuccio T, Purrello S, et al. dltA overexpression: a strain-independent keystone of daptomycin resistance in methicillin-resistant Staphylococcus aureus. Int J Antimicrob Agents. 2014;43(1):26–31.
  • Gasch O, Camoez M, Dominguez MA, et al. Emergence of resistance to daptomycin in a cohort of patients with methicillin-resistant Staphylococcus aureus persistent bacteraemia treated with daptomycin. J Antimicrob Chemother. 2014;69(2):568–571.
  • Gardete S, Tomasz A. Mechanisms of vancomycin resistance in Staphylococcus aureus. J Clin Invest. 2014;124(7):2836–2840.
  • van Hal SJ, Fowler VG Jr. Is it time to replace vancomycin in the treatment of methicillin-resistant Staphylococcus aureus infections? Clin Infect Dis. 2013;56(12):1779–1788.
  • GlaxoSmithKline. Dose-ranging study of GSK2140944 in the treatment of subjects with suspected or confirmed gram-positive acute bacterial skin and skin structure infections. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2015. Available from: http://clinicaltrials.gov/show/NCT02045797. NLM Identifier: NCT02045797.
  • Wockhardt. Phase I, open label, crossover food-effect and absolute bioavailability study of WCK2349 and WCK771 in healthy adult human volunteers. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2013. Available from: http://clinicaltrials.gov/show/NCT01875939. NLM Identifier: NCT01875939.
  • Wockhardt Clinartis. Study to determine and compare plasma and intrapulmonary pharmacokinetics of WCK 2349 in healthy adult human subjects. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2014. Available from: http://clinicaltrials.gov/show/NCT02253342. NLM Identifier: NCT02253342.
  • Wockhardt. Study to evaluate the effect of WCK 2349 on the QT/QTc interval in health volunteers. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2014. Available from: http://clinicaltrials.gov/show/NCT02217930. NLM Identifier: NCT02217930.
  • Wockhardt. Pharmacokinetics of WCK 2349 in patients with hepatic impairment. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2015. Available from: http://clinicaltrials.gov/show/NCT02244827. NLM Identifier: NCT02244827.
  • Kyorin Pharmaceutical Co. L. KRP-AM1977Y. Phase II clinical study _ to assess efficacy, safety and pharmacokinetics of KRP-AM1977Y in the patients with community acquired pneumonia. In: Clinicaltrials.jp [Internet]. Tokyo: JAPIC Clinical Trials Information (Japan); 2014. Available from: http://www.clinicaltrials.jp/user/cteDetail.jsp?clinicalTrialId=127872014.
  • Melinta Therapeutics I. Safety and efficacy study of oxazolidinone to treat pneumonia. In: ClinicalTrials. gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2008. Available from: https://ClinicalTrials.gov/show/NCT00640926. NLM Identifier: NCT00640926.
  • Melinta Therapeutics. [cited 2015 Oct 10]. Available from: http://www.melinta.com.
  • Melinta Therapeutics I. Safety and efficacy study of oxazolidinones to treat uncomplicated skin infections. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2008. Available from: http://clinicaltrials.gov/show/NCT00646958. NLM Identifier: NCT00646958.
  • MicuRx. MRX-I versus linezolid for the treatment of acute bacterial skin and skin structure infection. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2015. Available from: http://clinicaltrials.gov/show/NCT02269319. NLM Identifier: NCT02269319.
  • LegoChem Biosciences I. Multiple ascending dose study for LCB01-0371. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2013. Available from: http://clinicaltrials.gov/show/NCT01842516. NLM Identifier: NCT01842516.
  • LegoChem Biosciences I. A clinical study, randomized, double-blind, placebo-controlled, single dose study. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2012. Available from: http://clinicaltrials.gov/show/NCT01554995. NLM Identifier: NCT01554995.
  • Cellceutix C. Efficacy and safety study of brilacidin to treat serious skin infections. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2014. Available from: http://clinicaltrials.gov/show/NCT02052388. NLM Identifier: NCT02052388.
  • Jorgensen D, Scott RW, O’Riordan WA, et al. A randomized, double-blind study comparing single-dose and short-course brilacidin to daptomycin in the treatment of acute bacterial skin & skin structure infections (ABSSSI). In: 25th European congress of clinical microbiology and infectious diseases. Copenhagen (Denmark): European Society of Clinical Microbiology and Infectious Diseases;2015.
  • Debiopharm International SA. Study of Debio 1450 for bacterial skin infections. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2016. Available from: http://clinicaltrials.gov/show/NCT02426918. NLM Identifier: NCT02426918.
  • CrystalGenomics I. Phase IIa study of CG400549 for the treatment of cABSSSI caused by methicillin-resistant Staphylococcus aureus. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2012. Available from: http://clinicaltrials.gov/show/NCT01593761. NLM Identifier: NCT01593761.
  • GangaGen I. Safety & efficacy of an antibacterial protein molecule applied topically to the nostrils of volunteers and patients. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2014. Available from: http://clinicaltrials.gov/show/NCT01746654. NLM Identifier: NCT01746654.
  • ContraFect. A placebo-controlled, dose-escalating study to examine the safety and tolerability of single intravenous doses of CF-301 in healthy subjects. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2015. Available from: http://clinicaltrials.gov/show/NCT02439359. NLM Identifier: NCT02439359.
  • Hooper DC. Fluoroquinolone resistance among gram-positive cocci. Lancet Infect Dis. 2002;2(9):530–538.
  • Aldred KJ, Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance. Biochemistry. 2014;53(10):1565–1574.
  • Gootz TD, Brighty KE. Fluoroquinolone antibacterials: SAR mechanism of action, resistance, and clinical aspects. Med Res Rev. 1996;16(5):433–486.
  • Mitscher LA. Bacterial topoisomerase inhibitors: quinolone and pyridone antibacterial agents. Chem Rev. 2005;105(2):559–592.
  • Ross JE, Scangarella-Oman NE, Flamm RK, et al. Determination of disk diffusion and MIC quality control guidelines for GSK2140944, a novel bacterial type II topoisomerase inhibitor antimicrobial agent. J Clin Microbiol. 2014;52(7):2629–2632.
  • So W, Crandon JL, Nicolau DP. Pharmacodynamic profile of GSK2140944 against methicillin-resistant Staphylococcus aureus in a murine lung infection model. Antimicrob Agents Chemother. 2015;59(8):4956–4961.
  • Patel MV, De Souza NJ, Gupte SV, et al. Antistaphylococcal activity of WCK 771, a tricyclic fluoroquinolone, in animal infection models. Antimicrob Agents Chemother. 2004;48(12):4754–4761.
  • Bhagwat SS, Mundkur LA, Gupte SV, et al. The anti-methicillin-resistant Staphylococcus aureus quinolone WCK 771 has potent activity against sequentially selected mutants, has a narrow mutant selection window against quinolone-resistant Staphylococcus aureus, and preferentially targets DNA gyrase. Antimicrob Agents Chemother. 2006;50(11):3568–3579.
  • Diekema DI, Jones RN. Oxazolidinones: a review. Drugs. 2000;59(1):7–16.
  • Moellering RC Jr. Tedizolid: a novel oxazolidinone for gram-positive infections. Clin Infect Dis. 2014;58(Suppl 1):S1–3.
  • Kanafani ZA, Corey GR. Tedizolid (TR-701): a new oxazolidinone with enhanced potency. Expert Opin Investig Drugs. 2012;21(4):515–522.
  • Huang V, Gortney JS. Risk of serotonin syndrome with concomitant administration of linezolid and serotonin agonists. Pharmacotherapy. 2006;26(12):1784–1793.
  • Lawrence L, Danese P, DeVito J, et al. In vitro activities of the Rx-01 oxazolidinones against hospital and community pathogens. Antimicrob Agents Chemother. 2008;52(5):1653–1662.
  • Morales G, Picazo JJ, Baos E, et al. Resistance to linezolid is mediated by the cfr gene in the first report of an outbreak of linezolid-resistant Staphylococcus aureus. Clin Infect Dis. 2010;1550(6):821–825.
  • Meng J, Zhong D, Li L, et al. Metabolism of MRX-I, a novel antibacterial oxazolidinone, in humans: the oxidative ring opening of 2,3-dihydropyridin-4-one catalyzed by non-P450 enzymes. Drug Metab Dispos. 2015;43(5):646–659.
  • Li CR, Zhai QQ, Wang XK, et al. In vivo antibacterial activity of MRX-I, a new oxazolidinone. Antimicrob Agents Chemother. 2014;58(4):2418–2421.
  • Zhu DM, Wang W, Huang YQ, et al. Antibacterial spectrum of oxazolidinone MRX-I: potent activity against multidrug-resistant gram-positive pathogens. In: International conference on antimicrobial agents and chemotherapy. San Francisco (CA): American Society for Microbiology; 2012.
  • Gordeev MF, Yuan ZY. New potent antibacterial oxazolidinone (MRX-I) with an improved class safety profile. J Med Chem. 2014;57(11):4487–4497.
  • Jeong JW, Jung SJ, Lee HH, et al. In vitro and in vivo activities of LCB01-0371, a new oxazolidinone. Antimicrob Agents Chemother. 2010;54(12):5359–5362.
  • Vagner J, Qu H, Hruby VJ. Peptidomimetics, a synthetic tool of drug discovery. Curr Opin Chem Biol. 2008;12(3):292–296.
  • Scorciapino MA, Rinaldi AC. Antimicrobial peptidomimetics: reinterpreting nature to deliver innovative therapeutics. Front Immunol. 2012;3:171.
  • Scott R, Korczak B, Jorgensen D, et al. Activity of PMX-30063 against drug resistant Staphylococci. In: International conference on antimicrobial agents and chemotherapy. San Francisco (CA): American Society for Microbiology;2012.
  • Lu H, Tonge PJ. Inhibitors of FabI, an enzyme drug target in the bacterial fatty acid biosynthesis pathway. Acc Chem Res. 2008;41(1):11–20.
  • Schiebel J, Chang A, Shah S, et al. Rational design of broad spectrum antibacterial activity based on a clinically relevant enoyl-acyl carrier protein (ACP) reductase inhibitor. J Biol Chem. 2014;289(23):15987–16005.
  • Karlowsky JA, Kaplan N, Hafkin B, et al. AFN-1252, a FabI inhibitor, demonstrates a Staphylococcus-specific spectrum of activity. Antimicrob Agents Chemother. 2009;53(8):3544–3548.
  • Karlowsky JA, Laing NM, Baudry T, et al. In vitro activity of API-1252, a novel FabI inhibitor, against clinical isolates of Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob Agents Chemother. 2007;51(4):1580–1581.
  • Pucci MJ, Bush K. Investigational antimicrobial agents of 2013. Clin Microbiol Rev. 2013;26(4):792–821.
  • Yum JH, Kim CK, Yong D, et al. In vitro activities of CG400549, a novel FabI inhibitor, against recently isolated clinical staphylococcal strains in Korea. Antimicrob Agents Chemother. 2007;51(7):2591–2593.
  • Park HS, Yoon YM, Jung SJ, et al. Antistaphylococcal activities of CG400549, a new bacterial enoyl-acyl carrier protein reductase (FabI) inhibitor. J Antimicrob Chemother. 2007;60(3):568–574.
  • Sulakvelidze A, Alavidze Z, Morris JG Jr. Bacteriophage therapy. Antimicrob Agents Chemother. 2001;45(3):649–659.
  • Reardon S. Phage therapy gets revitalized. Nature. 2014;510(7503):15–16.
  • Loc-Carrillo C, Abedon ST. Pros and cons of phage therapy. Bacteriophage. 2011;1(2):111–114.
  • Kingwell K. Bacteriophage therapies re-enter clinical trials. Nat Rev Drug Discov. 2015;14(8):515–516.
  • von Eiff C, Becker K, Machka K, et al. Nasal carriage as a source of Staphylococcus aureus bacteremia. Study group. N Engl J Med. 2001;344(1):11–16.
  • Paul VD, Rajagopalan SS, Sundarrajan S, et al. A novel bacteriophage tail-associated muralytic enzyme (TAME) from phage K and its development into a potent antistaphylococcal protein. BMC Microbiol. 2011;11:226.
  • Schuch R, Lee HM, Schneider BC, et al. Combination therapy with lysin CF-301 and antibiotic is superior to antibiotic alone for treating methicillin-resistant Staphylococcus aureus-induced murine bacteremia. J Infect Dis 2014;209(9):1469–1478
  • Novick RP, Geisinger E. Quorum sensing in staphylococci. Annu Rev Genet. 2008;42:541–564.
  • Otto M, Echner H, Voelter W, et al. Pheromone cross-inhibition between Staphylococcus aureus and Staphylococcus epidermidis. Infect Immun. 2001;69(3):1957–1960.
  • Lyon GJ, Wright JS, Muir TW, et al. Key determinants of receptor activation in the agr autoinducing peptides of Staphylococcus aureus. Biochemistry. 2002;41(31):10095–10104.
  • Mayville P, Ji G, Beavis R, et al. Structure-activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence. Proc Natl Acad Sci USA. 1999;96(4):1218–1223
  • Wright JS 3rd, Jin R, Novick RP. Transient interference with staphylococcal quorum sensing blocks abscess formation. Proc Natl Acad Sci USA. 2005;102(5):1691–1696.
  • Sully EK, Malachowa N, Elmore BO, et al. Selective chemical inhibition of agr quorum sensing in Staphylococcus aureus promotes host defense with minimal impact on resistance. PLoS Pathog. 2014;10(6):e1004174.

• Describes a Staphylococcus aureus-specific quorum sensing inhibitor with in vivo activity

  • Khan BA, Yeh AJ, Cheung GY, et al. Investigational therapies targeting quorum-sensing for the treatment of Staphylococcus aureus infections. Expert Opin Investig Drugs. 2015;24(5):689–704.
  • Otto M. Staphylococcus aureus toxins. Curr Opin Microbiol. 2014;17:32–37.
  • Anderson AS, Scully IL, Timofeyeva Y, et al. Staphylococcus aureus manganese transport protein C is a highly conserved cell surface protein that elicits protective immunity against S. aureus and Staphylococcus epidermidis. J Infect Dis. 2012;205(11):1688–1696.
  • Kennedy AD, Bubeck Wardenburg J, Gardner DJ, et al. Targeting of alpha-hemolysin by active or passive immunization decreases severity of USA300 skin infection in a mouse model. J Infect Dis 2010;202(7):1050–1058
  • Mishra RP, Mariotti P, Fiaschi L, et al. Staphylococcus aureus FhuD2 is involved in the early phase of staphylococcal dissemination and generates protective immunity in mice. J Infect Dis 2012;206(7):1041–1049
  • Mocca CP, Brady RA, Burns DL. Role of antibodies in protection elicited by active vaccination with genetically inactivated alpha hemolysin in a mouse model of Staphylococcus aureus skin and soft tissue infections. Clin Vaccine Immunol. 2014;21(5):622–627.
  • Joshi A, Pancari G, Cope L, et al. Immunization with Staphylococcus aureus iron regulated surface determinant B (IsdB) confers protection via Th17/IL17 pathway in a murine sepsis model. Hum Vaccin Immunother. 2012;8(3):336–346.
  • Bagnoli F, Fontana MR, Soldaini E, et al. Vaccine composition formulated with a novel TLR7-dependent adjuvant induces high and broad protection against Staphylococcus aureus. Proc Natl Acad Sci USA. 2015;112(12):3680–3685.

•• Describes the protective efficacy of a vaccine comprised of four staphylococcal antigens. Antibodies from vaccinated animals provided protection against S. aureus infection

  • Delfani S, Mohabati Mobarez A, Imani Fooladi AA, et al. Protection of mice against Staphylococcus aureus infection by a recombinant protein ClfA-IsdB-Hlg as a vaccine candidate. Med Microbiol Immunol. 2015. [Epub ahead of print]
  • Nissen M, Marshall H, Richmond P, et al. A randomized phase I study of the safety and immunogenicity of three ascending dose levels of a 3-antigen Staphylococcus aureus vaccine (SA3Ag) in healthy adults. Vaccine 2015;33(15):1846–1854
  • Anderson AS, Miller AA, Donald RG, et al. Development of a multicomponent Staphylococcus aureus vaccine designed to counter multiple bacterial virulence factors. Hum Vaccin Immunother 2012;8(11):1585–1594
  • Cheung GY, Otto M. The potential use of toxin antibodies as a strategy for controlling acute Staphylococcus aureus infections. Expert Opin Ther Targets. 2012;16(6):601–612.
  • Colque-Navarro P, Jacobsson G, Andersson R, et al. Levels of antibody against 11 Staphylococcus aureus antigens in a healthy population. Clin Vaccine Immunol. 2010;17(7):1117–1123.
  • Holtfreter S, Kolata J, Broker BM. Towards the immune proteome of Staphylococcus aureus - the anti-S. aureus antibody response. Int J Med Microbiol. 2010;300(2–3):176–192.
  • Jacobsson G, Colque-Navarro P, Gustafsson E, et al. Antibody responses in patients with invasive Staphylococcus aureus infections. Eur J Clin Microbiol Infect Dis. 2010;29(6):715–725.
  • Verkaik NJ, de Vogel CP, Boelens HA, et al. Anti-staphylococcal humoral immune response in persistent nasal carriers and noncarriers of Staphylococcus aureus. J Infect Dis 2009Mar1;199(5):625–632
  • den Reijer PM, Lemmens-den Toom N, Kant S, et al. Characterization of the humoral immune response during Staphylococcus aureus bacteremia and global gene expression by Staphylococcus aureus in human blood. PLoS One. 2013;8(1):e53391.
  • Sharma-Kuinkel BK, Wu Y, Tabor DE, et al. Characterization of alpha-toxin hla gene variants, alpha-toxin expression levels, and levels of antibody to alpha-toxin in hemodialysis and postsurgical patients with Staphylococcus aureus bacteremia. J Clin Microbiol. 2015;53(1):227–236.
  • Calderwood MS, Desjardins CA, Sakoulas G, et al. Staphylococcal enterotoxin P predicts bacteremia in hospitalized patients colonized with methicillin-resistant Staphylococcus aureus. J Infect Dis 2014;209(4):571–577
  • Fritz SA, Tiemann KM, Hogan PG, et al. A serologic correlate of protective immunity against community-onset Staphylococcus aureus infection. Clin Infect Dis. 2013;56(11):1554–1561.
  • Adhikari RP, Ajao AO, Aman MJ, et al. Lower antibody levels to Staphylococcus aureus exotoxins are associated with sepsis in hospitalized adults with invasive S. aureus infections. J Infect Dis 2012;206(6):915–923
  • Berube BJ, Bubeck Wardenburg J. Staphylococcus aureus alpha-toxin: nearly a century of intrigue. Toxins (Basel). 2013;5(6):1140–1166.
  • Oganesyan V, Peng L, Damschroder MM, et al. Mechanisms of neutralization of a human anti-alpha-toxin antibody. J Biol Chem. 2014 Oct 24;289(43):29874–29880.

• Discusses the dual mechanism of α-hemolysin interference by mAb MEDI4893

  • Tkaczyk C, Hua L, Varkey R, et al. Identification of anti-alpha toxin monoclonal antibodies that reduce the severity of Staphylococcus aureus dermonecrosis and exhibit a correlation between affinity and potency. Clin Vaccine Immunol. 2012;19(3):377–385.
  • Ragle BE, Bubeck Wardenburg J. Anti-alpha-hemolysin monoclonal antibodies mediate protection against Staphylococcus aureus pneumonia. Infect Immun. 2009;77(7):2712–2718.
  • Foletti D, Strop P, Shaughnessy L, et al. Mechanism of action and in vivo efficacy of a human-derived antibody against Staphylococcus aureus alpha-hemolysin. J Mol Biol 2013;425(10):1641–1654
  • Dall’Acqua WF, Kiener PA, Wu H. Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). J Biol Chem. 2006;281(33):23514–23524.
  • MedImmune LLC. A phase I study to evaluate the safety, tolerability, and pharmacokinetics of MEDI4893 in healthy adult subjects. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2014. Available from: http://clinicaltrials.gov/show/NCT01769417. NLM Identifier: NCT01769417.
  • MedImmune LLC. Study of the efficacy and safety of MEDI4893. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2017. Available from: http://clinicaltrials.gov/show/NCT02296320. NLM Identifier: NCT02296320.
  • Aridis Pharmaceuticals I. Safety, pharmacokinetics and efficacy of KBSA301 in severe pneumonia (S. aureus). In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2015. Available from: http://clinicaltrials.gov/show/NCT01589185. NLM Identifier: NCT01589185.
  • Stach CS, Herrera A, Schlievert PM. Staphylococcal superantigens interact with multiple host receptors to cause serious diseases. Immunol Res. 2014;59(1–3):177–181.
  • Karauzum H, Chen G, Abaandou L, et al. Synthetic human monoclonal antibodies toward staphylococcal enterotoxin B (SEB) protective against toxic shock syndrome. J Biol Chem 2012;287(30):25203–25215
  • Larkin EA, Stiles BG, Ulrich RG. Inhibition of toxic shock by human monoclonal antibodies against staphylococcal enterotoxin B. PLoS One. 2010;5(10):e13253.
  • Dutta K, Varshney AK, Franklin MC, et al. Mechanisms mediating enhanced neutralization efficacy of staphylococcal enterotoxin B by combinations of monoclonal antibodies. J Biol Chem. 2015;290(11):6715–6730.
  • Caballero A, Foletti D, Bierdeman M, et al. Effectiveness of alpha-toxin fab monoclonal antibody therapy in limiting the pathology of Staphylococcus aureus keratitis. Ocul Immunol Inflamm. 2014;9:1–7.
  • Tkaczyk C, Hamilton MM, Datta V, et al. Staphylococcus aureus alpha toxin suppresses effective innate and adaptive immune responses in a murine dermonecrosis model. PLoS One. 2013;8(10):e75103.
  • Hua L, Hilliard JJ, Shi Y, et al. Assessment of an anti-alpha-toxin monoclonal antibody for prevention and treatment of Staphylococcus aureus-induced pneumonia. Antimicrob Agents Chemother. 2014;58(2):1108–1117.
  • Hilliard JJ, Datta V, Tkaczyk C, et al. Anti-alpha-toxin monoclonal antibody and antibiotic combination therapy improves disease outcome and accelerates healing in a Staphylococcus aureus dermonecrosis model. Antimicrob Agents Chemother. 2015;59(1):299–309.
  • Hua L, Cohen TS, Shi Y, et al. MEDI4893* promotes survival and extends the antibiotic treatment window in a Staphylococcus aureus immunocompromised pneumonia model. Antimicrob Agents Chemother. 2015;59(8):4526–4532.
  • Varshney AK, Wang X, Cook E, et al. Generation, characterization, and epitope mapping of neutralizing and protective monoclonal antibodies against staphylococcal enterotoxin B-induced lethal shock. J Biol Chem 2011;286(11):9737–9747
  • Varshney AK, Wang X, Scharff MD, et al. Staphylococcal enterotoxin B-specific monoclonal antibody 20B1 successfully treats diverse Staphylococcus aureus infections. J Infect Dis 2013;208(12):2058–2066
  • Varshney AK, Wang X, Aguilar JL, et al. Isotype switching increases efficacy of antibody protection against staphylococcal enterotoxin B-induced lethal shock and Staphylococcus aureus sepsis in mice. MBio. 2014;5(3):e01007–14.

• Isotype switching of mAbs directed towards staphylococcal enterotoxin B can alter protective potency

  • Tilahun ME, Kwan A, Natarajan K, et al. Chimeric anti-staphylococcal enterotoxin B antibodies and lovastatin act synergistically to provide in vivo protection against lethal doses of SEB. PLoS One. 2011;6(11):e27203.
  • Laventie BJ, Rademaker HJ, Saleh M, et al. Heavy chain-only antibodies and tetravalent bispecific antibody neutralizing Staphylococcus aureus leukotoxins. Proc Natl Acad Sci USA. 2011;108(39):16404–16409
  • Kim HK, Emolo C, DeDent AC, et al. Protein A-specific monoclonal antibodies and prevention of Staphylococcus aureus disease in mice. Infect Immun. 2012;80(10):3460–3470.
  • Kim HK, Emolo C, Missiakas D, et al. A monoclonal antibody that recognizes the E domain of staphylococcal protein A. Vaccine. 2014;32(4):464–469.
  • Thammavongsa V, Rauch S, Kim HK, et al. Protein A-neutralizing monoclonal antibody protects neonatal mice against Staphylococcus aureus. Vaccine. 2015;33(4):523–526.
  • Brown M, Kowalski R, Zorman J, et al. Selection and characterization of murine monoclonal antibodies to Staphylococcus aureus iron-regulated surface determinant B with functional activity in vitro and in vivo. Clin Vaccine Immunol. 2009;16(8):1095–1104.
  • Ebert T, Smith S, Pancari G, et al. A fully human monoclonal antibody to Staphylococcus aureus iron regulated surface determinant B (IsdB) with functional activity in vitro and in vivo. Hum Antibodies. 2010;19(4):113–128.
  • Pancari G, Fan H, Smith S, et al. Characterization of the mechanism of protection mediated by CS-D7, a monoclonal antibody to Staphylococcus aureus iron regulated surface determinant B (IsdB). Front Cell Infect Microbiol. 2012;2:36.

• Describes the unique mechanism of action of a mAb that is directed to iron regulated surface determinant B

  • Hall AE, Domanski PJ, Patel PR, et al. Characterization of a protective monoclonal antibody recognizing Staphylococcus aureus MSCRAMM protein clumping factor A. Infect Immun. 2003;71(12):6864–6870.
  • Domanski PJ, Patel PR, Bayer AS, et al. Characterization of a humanized monoclonal antibody recognizing clumping factor A expressed by Staphylococcus aureus. Infect Immun. 2005;73(8):5229–5232.
  • Lorenz U, Lorenz B, Schmitter T, et al. Functional antibodies targeting IsaA of Staphylococcus aureus augment host immune response and open new perspectives for antibacterial therapy. Antimicrob Agents Chemother. 2011;55(1):165–173.
  • van den Berg S, Bonarius HP, van Kessel KP, et al. A human monoclonal antibody targeting the conserved staphylococcal antigen IsaA protects mice against Staphylococcus aureus bacteremia. Int J Med Microbiol. 2015;305(1):55–64.
  • Kelly-Quintos C, Cavacini LA, Posner MR, et al. Characterization of the opsonic and protective activity against Staphylococcus aureus of fully human monoclonal antibodies specific for the bacterial surface polysaccharide poly-N-acetylglucosamine. Infect Immun. 2006;74(5):2742–2750.
  • Varrone JJ, de Mesy Bentley KL, Bello-Irizarry SN, et al. Passive immunization with anti-glucosaminidase monoclonal antibodies protects mice from implant-associated osteomyelitis by mediating opsonophagocytosis of Staphylococcus aureus megaclusters. J Orthop Res. 2014;32(10):1389–1396.
  • Ohsawa H, Baba T, Enami J, et al. Successful selection of an infection-protective anti-Staphylococcus aureus monoclonal antibody and its protective activity in murine infection models. Microbiol Immunol. 2015;59(4):183–192.
  • Park J, Jagasia R, Kaufmann GF, et al. Infection control by antibody disruption of bacterial quorum sensing signaling. Chem Biol. 2007;14(10):1119–1127.
  • Rouha H, Badarau A, Visram ZC, et al. Five birds, one stone: neutralization of alpha-hemolysin and 4 bi-component leukocidins of Staphylococcus aureus with a single human monoclonal antibody. MAbs. 2015;7(1):243–254.

•• Describes a mAb that cross-reacts with multiple leukotoxins

  • Graef RR, Anderson GP, Doyle KA, et al. Isolation of a highly thermal stable lama single domain antibody specific for Staphylococcus aureus enterotoxin B. BMC Biotechnol. 2011;11:86.
  • Morphotek [Internet]. [cited 2015 Oct 10]. Available from: http://www.morphotek.com/pipeline/MORAb-048.aspx.
  • National Institute of Allergy and Infectious Diseases. Phase I STEBVax in healthy adults. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2015. Available from: http://clinicaltrials.gov/show/NCT00974935. NLM Identifier: NCT00974935.
  • Otto M. A MRSA-terious enemy among us: end of the PVL controversy? Nat Med. 2011;17(2):169–170.
  • Hermos CR, Yoong P, Pier GB. High levels of antibody to Panton-Valentine leukocidin are not associated with resistance to Staphylococcus aureus-associated skin and soft-tissue infection. Clin Infect Dis. 2010;51(10):1138–1146.
  • Gauduchon V, Cozon G, Vandenesch F, et al. Neutralization of Staphylococcus aureus Panton Valentine leukocidin by intravenous immunoglobulin in vitro. J Infect Dis 2004;189(2):346–353
  • Karauzum H, Adhikari RP, Sarwar J, et al. Structurally designed attenuated subunit vaccines for S. aureus LukS-PV and LukF-PV confer protection in a mouse bacteremia model. PLoS One. 2013;8(6):e65384.
  • Yoong P, Pier GB. Antibody-mediated enhancement of community-acquired methicillin-resistant Staphylococcus aureus infection. Proc Natl Acad Sci USA. 2010;107(5):2241–2246.
  • Schneewind O, Model P, Fischetti VA. Sorting of protein A to the staphylococcal cell wall. Cell. 1992;70(2):267–281.
  • Mazmanian SK, Liu G, Jensen ER, et al. Staphylococcus aureus sortase mutants defective in the display of surface proteins and in the pathogenesis of animal infections. Proc Natl Acad Sci USA. 2000;97(10):5510–5515.
  • Otto M. Novel targeted immunotherapy approaches for staphylococcal infection. Expert Opin Biol Ther. 2010;10(7):1049–1059.
  • Falugi F, Kim HK, Missiakas DM, et al. Role of protein A in the evasion of host adaptive immune responses by Staphylococcus aureus. MBio. 2013;4(5):e00575–13.
  • Kim HK, Cheng AG, Kim HY, et al. Nontoxigenic protein a vaccine for methicillin-resistant Staphylococcus aureus infections in mice. J Exp Med. 2010;207(9):1863–1870.

•• Description of a non-toxigenic variant of surface protein A that when used as an immunogen in mice allows the host to produce a humoral response to S. aureus

  • STROX Biopharmaceuticals [Internet]. [cited 2015 Oct 10]. Available from: http://www.stroxbio.com/technology.
  • Miajlovic H, Zapotoczna M, Geoghegan JA, et al. Direct interaction of iron-regulated surface determinant IsdB of Staphylococcus aureus with the GPIIb/IIIa receptor on platelets. Microbiology. 2010;156(Pt 3):920–928.
  • Zapotoczna M, Jevnikar Z, Miajlovic H, et al. Iron-regulated surface determinant B (IsdB) promotes Staphylococcus aureus adherence to and internalization by non-phagocytic human cells. Cell Microbiol. 2013;15(6):1026–1041.
  • Fowler VG, Allen KB, Moreira ED, et al. Effect of an investigational vaccine for preventing Staphylococcus aureus infections after cardiothoracic surgery: a randomized trial. JAMA 2013;309(13):1368–1378
  • Moreillon P, Entenza JM, Francioli P, et al. Role of Staphylococcus aureus coagulase and clumping factor in pathogenesis of experimental endocarditis. Infect Immun. 1995;63(12):4738–4743.
  • Hawkins J, Kodali S, Matsuka YV, et al. A recombinant clumping factor A-containing vaccine induces functional antibodies to Staphylococcus aureus that are not observed after natural exposure. Clin Vaccine Immunol. 2012;19(10):1641–1650.
  • Josefsson E, Hartford O, O’Brien L, et al. Protection against experimental Staphylococcus aureus arthritis by vaccination with clumping factor A, a novel virulence determinant. J Infect Dis. 2001;184(12):1572–1580.
  • Weems JJ Jr., Steinberg JP, Filler S, et al. Phase II, randomized, double-blind, multicenter study comparing the safety and pharmacokinetics of tefibazumab to placebo for treatment of Staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2006;50(8):2751–2755.
  • DeJonge M, Burchfield D, Bloom B, et al. Clinical trial of safety and efficacy of INH-A21 for the prevention of nosocomial staphylococcal bloodstream infection in premature infants. J Pediatr. 2007;151(3):260–5, 65 e1.
  • O’Riordan K, Lee JC. Staphylococcus aureus capsular polysaccharides. Clin Microbiol Rev. 2004;17(1):218–234.
  • Fattom AI, Sarwar J, Ortiz A, et al. A Staphylococcus aureus capsular polysaccharide (CP) vaccine and CP-specific antibodies protect mice against bacterial challenge. Infect Immun. 1996;64(5):1659–1665.
  • Lee JC, Park JS, Shepherd SE, et al. Protective efficacy of antibodies to the Staphylococcus aureus type 5 capsular polysaccharide in a modified model of endocarditis in rats. Infect Immun. 1997;65(10):4146–4151.
  • Park S, Gerber S, Lee JC. Antibodies to Staphylococcus aureus serotype 8 capsular polysaccharide react with and protect against serotype 5 and 8 isolates. Infect Immun. 2014;82(12):5049–5055.
  • Wacker M, Wang L, Kowarik M, et al. Prevention of Staphylococcus aureus infections by glycoprotein vaccines synthesized in Escherichia coli. J Infect Dis 2014;209(10):1551–1561
  • Shinefield H, Black S, Fattom A, et al. Use of a Staphylococcus aureus conjugate vaccine in patients receiving hemodialysis. N Engl J Med 2002;346(7):491–496
  • Fattom A, Matalon A, Buerkert J, et al. Efficacy profile of a bivalent Staphylococcus aureus glycoconjugated vaccine in adults on hemodialysis: Phase III randomized study. Hum Vaccin Immunother. 2015;11(3):632–641.
  • Bagnoli F, Bertholet S, Grandi G. Inferring reasons for the failure of Staphylococcus aureus vaccines in clinical trials. Front Cell Infect Microbiol. 2012;2:16.
  • Cook J, Hepler R, Pancari G, et al. Staphylococcus aureus capsule type 8 antibodies provide inconsistent efficacy in murine models of staphylococcal infection. Hum Vaccin. 2009;5(4):254–263.
  • Rupp ME, Holley HP Jr., Lutz J, et al. Phase II, randomized, multicenter, double-blind, placebo-controlled trial of a polyclonal anti-Staphylococcus aureus capsular polysaccharide immune globulin in treatment of Staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2007;51(12):4249–4254.
  • Boyle-Vavra S, Li X, Alam MT, et al. USA300 and USA500 clonal lineages of Staphylococcus aureus do not produce a capsular polysaccharide due to conserved mutations in the cap5 locus. MBio. 2015;6(2). pii: e02585-14. doi:10.1128/mBio.02585-14
  • Lattar SM, Noto Llana M, Denoel P, et al. Protein antigens increase the protective efficacy of a capsule-based vaccine against Staphylococcus aureus in a rat model of osteomyelitis. Infect Immun. 2014;82(1):83–91.
  • Tuchscherr LP, Buzzola FR, Alvarez LP, et al. Antibodies to capsular polysaccharide and clumping factor A prevent mastitis and the emergence of unencapsulated and small-colony variants of Staphylococcus aureus in mice. Infect Immun. 2008;76(12):5738–5744.
  • Heilmann C, Schweitzer O, Gerke C, et al. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol. 1996;20(5):1083–1091.
  • Otto M. Staphylococcus epidermidis–the ‘accidental’ pathogen. Nat Rev Microbiol. 2009;7(8):555–567.
  • Kropec A, Maira-Litran T, Jefferson KK, et al. Poly-N-acetylglucosamine production in Staphylococcus aureus is essential for virulence in murine models of systemic infection. Infect Immun. 2005;73(10):6868–6876.
  • Vuong C, Kocianova S, Voyich JM, et al. A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem 2004;279(52):54881–54886
  • Cerca N, Jefferson KK, Maira-Litran T, et al. Molecular basis for preferential protective efficacy of antibodies directed to the poorly acetylated form of staphylococcal poly-N-acetyl-beta-(1-6)-glucosamine. Infect Immun. 2007;75(7):3406–3413.
  • Maira-Litran T, Kropec A, Goldmann DA, et al. Comparative opsonic and protective activities of Staphylococcus aureus conjugate vaccines containing native or deacetylated staphylococcal poly-N-acetyl-beta-(1-6)-glucosamine. Infect Immun. 2005 Oct;73(10):6752–6762.
  • Sanofi. Pharmacokinetics, pharmacodynamics and safety evaluation of SAR279356 in intensive care unit mechanically ventilated patients. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2012. Available from: http://clinicaltrials.gov/show/NCT01389700. NLM Identifier: NCT01389700.
  • Xia G, Kohler T, Peschel A. The wall teichoic acid and lipoteichoic acid polymers of Staphylococcus aureus. Int J Med Microbiol. 2010;300(2–3):148–154.
  • Percy MG, Grundling A. Lipoteichoic acid synthesis and function in gram-positive bacteria. Annu Rev Microbiol. 2014;68:81–100.
  • Laverde D, Wobser D, Romero-Saavedra F, et al. Synthetic teichoic acid conjugate vaccine against nosocomial gram-positive bacteria. PLoS One. 2014;9(10):e110953.
  • Theilacker C, Kropec A, Hammer F, et al. Protection against Staphylococcus aureus by antibody to the polyglycerolphosphate backbone of heterologous lipoteichoic acid. J Infect Dis 2012;205(7):1076–1085
  • Weisman LE, Thackray HM, Garcia-Prats JA, et al. Phase 1/2 double-blind, placebo-controlled, dose escalation, safety, and pharmacokinetic study of pagibaximab (BSYX-A110), an antistaphylococcal monoclonal antibody for the prevention of staphylococcal bloodstream infections, in very-low-birth-weight neonates. Antimicrob Agents Chemother. 2009;53(7):2879–2886.
  • Weisman LE, Thackray HM, Steinhorn RH, et al. A randomized study of a monoclonal antibody (pagibaximab) to prevent staphylococcal sepsis. Pediatrics. 2011;128(2):271–279.
  • Biswas R, Voggu L, Simon UK, et al. Activity of the major staphylococcal autolysin Atl. FEMS Microbiol Lett. 2006;259(2):260–268.
  • Heilmann C, Hussain M, Peters G, et al. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol. 1997;24(5):1013–1024.
  • Oesterreich B, Lorenz B, Schmitter T, et al. Characterization of the biological anti-staphylococcal functionality of hUK-66 IgG1, a humanized monoclonal antibody as substantial component for an immunotherapeutic approach. Hum Vaccin Immunother. 2014;10(4):926–937.
  • Spaulding AR, Salgado-Pabon W, Merriman JA, et al. Vaccination against Staphylococcus aureus pneumonia. J Infect Dis. 2014;209(12):1955–1962.

•• Describes the protective efficacies of different combinations of S. aureus toxoids against different S. aureus strains in rabbits

  • Pfizer. Evaluation of a single vaccination with a 4-antigen Staphylococcus aureus vaccine (SA4Ag) in healthy adults aged 18 to <65 years. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2015. Available from: http://clinicaltrials.gov/show/NCT02364596. NLM Identifier: NCT02364596.
  • Pfizer. SA4Ag safety, tolerability, and immunogenicity study in Japanese adults. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2016. Available from: http://clinicaltrials.gov/show/NCT02492958. NLM Identifier: NCT02492958.
  • Pfizer. Evaluation of a single vaccination with one of three ascending dose levels of a 4-antigen Staphylococcus aureus vaccine (SA4Ag) in healthy adults aged 18 to <65 years. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2012. Available from: http://clinicaltrials.gov/show/NCT01364571. NLM Identifier: NCT01364571.
  • Pfizer. Evaluation of a single vaccination of one of three ascending dose levels of a 4-antigen Staphylococcus aureus vaccine (SA4Ag) and a single dose level of a 3-antigen Staphylococcus aureus vaccine (SA3Ag) in healthy adults aged 65 to <86 years. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2013. Available from: http://clinicaltrials.gov/show/NCT01643941. NLM Identifier: NCT01643941.
  • Pfizer. Safety and efficacy of SA4Ag vaccine in adults having elective posterior instrumented lumbar spinal fusion procedure. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2017. Available from: http://clinicaltrials.gov/show/NCT02388165. NLM Identifier: NCT02388165.
  • Dantes R, Mu Y, Belflower R, et al. National burden of invasive methicillin-resistant Staphylococcus aureus infections, United States, 2011. JAMA Intern Med 2013;173(21):1970–1978

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.