566
Views
25
CrossRef citations to date
0
Altmetric
Review

Investigational drugs for fracture healing: preclinical & clinical data

, , , , , , & show all
Pages 585-596 | Received 06 Jan 2016, Accepted 01 Mar 2016, Published online: 28 Mar 2016

References

  • Van Staa TP, Dennison EM, Leufkens HGM, et al. Epidemiology of fractures in England and Wales. Bone. 2001;29:517–522.
  • Calori GM, Albisetti W, Agus A, et al. Risk factors contributing to fracture non-unions. Injury. 2007;38:S11–8.
  • Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011;42:551–555.
  • Kawaguchi H, Oka H, Jingushi S, et al. A local application of recombinant human fibroblast growth factor 2 for tibial shaft fractures: A randomized, placebo-controlled trial. J Bone Miner Res. 2010;25:2735–43.
  • Garrison KR, Shemilt I, Donell S, et al. Bone morphogenetic protein (BMP) for fracture healing in adults. Cochrane Database Syst Rev. 2010;16(6):CD006950.
  • Ishida K, Matsumoto T, Sasaki K, et al. Bone regeneration properties of granulocyte colony-stimulating factor via neovascularization and osteogenesis. Tissue Eng Part A. 2010;16:3271–3284.
  • Garcia P, Schwenzer S, Slotta JE, et al. Inhibition of angiotensin-converting enzyme stimulates fracture healing and periosteal callus formation – role of a local renin-angiotensin system. Br J Pharmacol. 2010;159:1672–1680.
  • Zhao X, Wang J-X, Feng Y-F, et al. Systemic treatment with telmisartan improves femur fracture healing in mice. PLoS ONE. 2014;9:e92085.
  • Histing T, Marciniak K, Scheuer C, et al. Sildenafil accelerates fracture healing in mice. J Orthop Res. 2011;29:867–873.
  • Brandi ML. Healing of the bone with anti-fracture drugs. Expert Opin Pharmacother. 2013;14:1441–1447.
  • Rogers MJ, Crockett JC, Coxon FP, et al. Biochemical and molecular mechanisms of action of bisphosphonates. Bone. 2011;49:34–41.
  • Goldhahn J, Féron JM, Kanis J, et al. Implications for fracture healing of current and new osteoporosis treatments: an ESCEO consensus paper. Calcif Tissue Int. 2012;90:343–353.
  • Li YF, Li XD, Bao CY, et al. Promotion of peri-implant bone healing by systemically administered parathyroid hormone (1-34) and zoledronic acid adsorbed onto the implant surface. Osteoporos Int. 2013;24:1063–1071.
  • Li YF, Zhou CC, Li JH, et al. The effects of combined human parathyroid hormone (1-34) and zoledronic acid treatment on fracture healing in osteoporotic rats. Osteoporos Int. 2012;23:1463–1474.
  • Colón-Emeric C, Nordsletten L, Olson S, et al. Association between timing of zoledronic acid infusion and hip fracture healing. Osteoporos Int. 2011;22:2329–36.
  • Toker H, Ozdemir H, Ozer H, et al. Alendronate enhances osseous healing in a rat calvarial defect model. Arch Oral Biol. 2012;57:1545–1550.
  • Mathijssen NM, Hannink G, Pilot P, et al. Impregnation of bone chips with alendronate and cefazolin, combined with demineralized bone matrix: a bone chamber study in goats. BMC Musculoskelet Disord. 2012;13:44.
  • Stuermer EK, Sehmisch S, Rack T, et al. Estrogen and raloxifene improve metaphyseal fracture healing in the early phase of osteoporosis. A new fracture-healing model at the tibia in rat. Langenbecks Arch Surg. 2010;395:163–172.
  • Spiro AS, Khadem S, Jeschke A, et al. The SERM raloxifene improves diaphyseal fracture healing in mice. J Bone Miner Metab. 2013;31:629–636.
  • Li YF, Luo E, Feng G, et al. Systemic treatment with strontium ranelate promotes tibial fracture healing in ovariectomized rats. Osteoporos Int. 2010;21:1889–1897.
  • Zacchetti G, Dayer R, Rizzoli R, et al. Systemic treatment with strontium ranelate accelerates the filling of a bone defect and improves the material level properties of the healing bone. Biomed Res Int. 2014;2014:549785.
  • Brüel A, Olsen J, Birkedal H, et al. Strontium is incorporated into the fracture callus but does not influence the mechanical strength of healing rat fractures. Calcif Tissue Int. 2011;88:142–152.
  • Scaglione M, Fabbri L, Casella F, et al. Strontium ranelate as an adjuvant for fracture healing: clinical, radiological, and ultrasound findings in a randomized controlled study on wrist fractures. Osteoporos Int. 2016;27(1):211–218.
  • Mognetti B, Marino S, Barberis A, et al. Experimental stimulation of bone healing with teriparatide: histomorphometric and microhardness analysis in a mouse model of closed fracture. Calcif Tissue Int. 2011;89:163–171.
  • Komrakova M, Stuermer EK, Werner C, et al. Effect of human parathyroid hormone hPTH (1-34) applied at different regimes on fracture healing and muscle in ovariectomized and healthy rats. Bone. 2010;47:480–492.
  • Ellegaard M, Kringelbach T, Syberg S, et al. The effect of PTH(1-34) on fracture healing during different loading conditions. J Bone Miner Res. 2013;28:2145–2155.
  • Tägil M, McDonald MM, Morse A, et al. Intermittent PTH(1-34) does not increase union rates in open rat femoral fractures and exhibits attenuated anabolic effects compared to closed fractures. Bone. 2010;46:852–859.
  • Aspenberg P, Genant HK, Johansson T, et al. Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double-blind study of 102 postmenopausal women with distal radial fractures. J Bone Miner Res. 2010;25:404–4.
  • Aspenberg P, Johansson T. Teriparatide improves early callus formation in distal radial fractures. Acta Orthop. 2010;81:234–236.
  • Peichl P, Holzer LA, Maier R, et al. Parathyroid hormone 1-84 accelerates fracture-healing in pubic bones of elderly osteoporotic women. J Bone Joint Surg Am. 2011;93:1583–1587.
  • Feng G, Chang-Qing Z, Yi-Min C, et al. Systemic administration of sclerostin monoclonal antibody accelerates fracture healing in the femoral osteotomy model of young rats. Int Immunopharmacol. 2015;24:7–13.
  • Suen PK, He Y-X, Chow DHK, et al. Sclerostin monoclonal antibody enhanced bone fracture healing in an open osteotomy model in rats. J Orthop Res. 2014;32:997–1005.
  • Padhi D, Jang G, Stouch B, et al. Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res. 2011;26:19–26.
  • Gamie Z, Korres N, Leonidou A, et al. Sclerostin monoclonal antibodies on bone metabolism and fracture healing. Expert Opin Investig Drugs. 2012;21:1523–1534.
  • Jin H, Wang B, Li J, et al. Anti-DKK1 antibody promotes bone fracture healing through activation of β-catenin signaling. Bone. 2015;71:63–75.
  • Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors. 2004;22:233–241.
  • Lieberman JR, Daluiski A, Einhorn TA. The role of growth factors in the repair of bone. Biology and clinical applications. J Bone Joint Surg Am. 2002;84-A:1032–1044.
  • Bragdon B, Moseychuk O, Saldanha S, et al. Bone morphogenetic proteins: a critical review. Cell Signal. 2011;23:609–620.
  • Canalis E, Economides AN, Gazzerro E. Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev. 2003;24:218–235.
  • Ryoo H-M, Lee M-H, Kim Y-J. Critical molecular switches involved in BMP-2-induced osteogenic differentiation of mesenchymal cells. Gene. 2006;366:51–57.
  • Govender S, Csimma C, Genant HK, et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am. 2002;84-A:2123–34.
  • Jones AL, Bucholz RW, Bosse MJ, et al. Recombinant human BMP-2 and allograft compared with autogenous bone graft for reconstruction of diaphyseal tibial fractures with cortical defects. A randomized, controlled trial. J Bone Joint Surg Am. 2006;88:1431–41.
  • Friedlaender GE, Perry CR, Cole JD, et al. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am. 2001;83-A(Suppl 1):S151–8.
  • Axelrad TW, Steen B, Lowenberg DW, et al. Heterotopic ossification after the use of commercially available recombinant human bone morphogenetic proteins in four patients. J Bone Joint Surg Br. 2008;90:1617–1622.
  • Carofino BC, Lieberman JR. Gene therapy applications for fracture-healing. J Bone Joint Surg Am. 2008;90(Suppl 1):99–110.
  • Lieberman JR, Daluiski A, Stevenson S, et al. The effect of regional gene therapy with bone morphogenetic protein-2-producing bone-marrow cells on the repair of segmental femoral defects in rats. J Bone Joint Surg Am. 1999;81:905–917.
  • Grgurevic L, Macek B, Mercep M, et al. Bone morphogenetic protein (BMP)1-3 enhances bone repair. Biochem Biophys Res Commun. 2011;408:25–31.
  • Lee SS, Huang BJ, Kaltz SR, et al. Bone regeneration with low dose BMP-2 amplified by biomimetic supramolecular nanofibers within collagen scaffolds. Biomaterials. 2013;34:452–459.
  • Kim RY, Oh JH, Lee BS, et al. The effect of dose on rhBMP-2 signaling, delivered via collagen sponge, on osteoclast activation and in vivo bone resorption. Biomaterials. 2014;35:1869–1881.
  • Li L, Zhou G, Wang Y, et al. Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect. Biomaterials. 2015;37:218–229.
  • Hou J, Wang J, Cao L, et al. Segmental bone regeneration using rhBMP-2-loaded collagen/chitosan microspheres composite scaffold in a rabbit model. Biomed Mater. 2012;7:035002.
  • Shekaran A, García JR, Clark AY, et al. Bone regeneration using an alpha 2 beta 1 integrin-specific hydrogel as a BMP-2 delivery vehicle. Biomaterials. 2014;35:5453–5461.
  • Wang H, Zou Q, Boerman OC, et al. Combined delivery of BMP-2 and bFGF from nanostructured colloidal gelatin gels and its effect on bone regeneration in vivo. J Control Rel. 2013;166:172–181.
  • Chatzinikolaidou M, Lichtinger TK, Müller RT, et al. Peri-implant reactivity and osteoinductive potential of immobilized rhBMP-2 on titanium carriers. Acta Biomaterialia. 2010;6:4405–4421.
  • Sebald H-J, Klenke FM, Siegrist M, et al. Inhibition of endogenous antagonists with an engineered BMP-2 variant increases BMP-2 efficacy in rat femoral defect healing. Acta Biomaterialia. 2012;8:3816–3820.
  • Doi Y, Miyazaki M, Yoshiiwa T, et al. Manipulation of the anabolic and catabolic responses with BMP-2 and zoledronic acid in a rat femoral fracture model. Bone. 2011;49:777–782.
  • Liu T, Wu G, Wismeijer D, et al. Deproteinized bovine bone functionalized with the slow delivery of BMP-2 for the repair of critical-sized bone defects in sheep. Bone. 2013;56:110–118.
  • Mathavan N, Bosemark P, Isaksson H, et al. Investigating the synergistic efficacy of BMP-7 and zoledronate on bone allografts using an open rat osteotomy model. Bone. 2013;56:440–448.
  • Seeherman HJ, Li XJ, Smith E, et al. rhBMP-2/Calcium phosphate matrix induces bone formation while limiting transient bone resorption in a nonhuman primate core defect model. J Bone Joint Surg Am. 2012;94:1765–1776.
  • Krishnan L, Priddy LB, Esancy C, et al. Hydrogel-based Delivery of rhBMP-2 improves healing of large bone defects compared with autograft. Clin Orthop Relat Res. 2015;473:2885–2897.
  • Li M, Liu X, Liu X, et al. Calcium phosphate cement with BMP-2-loaded gelatin microspheres enhances bone healing in osteoporosis: A pilot study. Clin Orthop Relat Res. 2010;468:1978–1985.
  • Liao JC, Tzeng ST, Keorochana G, et al. Enhancement of recombinant human BMP‐7 bone formation with bmp binding peptide in a rodent femoral defect model. J Orthop Res. 2011;29:753–759.
  • Mariner PD, Wudel JM, Miller DE, et al. Synthetic hydrogel scaffold is an effective vehicle for delivery of INFUSE (rhBMP2) to critical‐sized calvaria bone defects in rats. J Orthop Res. 2013;31:401–406.
  • Faßbender M, Minkwitz S, Strobel C, et al. Stimulation of bone healing by sustained bone morphogenetic protein 2 (BMP-2) delivery. Int J Mol Sci. 2014;15:8539–8552. doi:10.3390/ijms15058539.
  • Li X, Yi W, Jin A, et al. Effects of sequentially released BMP-2 and BMP-7 from PELA microcapsule-based scaffolds on the bone regeneration. Am J Transl Res. 2015;7:1417.
  • Schützenberger S, Schultz A, Hausner T, et al. The optimal carrier for BMP-2: a comparison of collagen versus fibrin matrix. Arch Orthop Trauma Surg. 2012;132:1363–1370.
  • Abbah S-A, Lam WMR, Hu T, et al. Sequestration of rhBMP-2 into self-assembled polyelectrolyte complexes promotes anatomic localization of new bone in a porcine model of spinal reconstructive surgery. Tissue Eng Part A. 2014;20:1679–1688.
  • Behr B, Sorkin M, Lehnhardt M, et al. A comparative analysis of the osteogenic effects of BMP-2, FGF-2, and VEGFA in a calvarial defect model. Tissue Eng Part A. 2012;18:1079–1086.
  • Yoon BH, Esquivies L, Ahn C, et al. An activin A/BMP2 chimera, AB204, displays bone‐healing properties superior to those of BMP2. J Bone Miner Res. 2014;29:1950–1959.
  • Curtin CM, Tierney EG, McSorley K, et al. Combinatorial gene therapy accelerates bone regeneration: non‐viral dual delivery of VEGF and BMP2 in a collagen‐nanohydroxyapatite scaffold. Adv Healthc Mater. 2015;4:223–227.
  • Seeherman HJ, Li XJ, Bouxsein ML, et al. rhBMP-2 induces transient bone resorption followed by bone formation in a nonhuman primate core-defect model. J Bone Joint Surg Am. 2010;92:411.
  • Opie LH. Present status of statin therapy. Trends Cardiovasc Med. 2015;25:216–225.
  • Ruiz Gaspa S, Nogues X, Enjuanes A, et al. Simvastatin and atorvastatin enhance gene expression of collagen type 1 and osteocalcin in primary human osteoblasts and MG‐63 cultures. J Cell Biochem. 2007;101:1430–1438.
  • Maeda T, Matsunuma A, Kurahashi I, et al. Induction of osteoblast differentiation indices by statins in MC3T3‐E1 cells. J Cell Biochem. 2004;92:458–471.
  • Tai IC, Wang YH, Chen CH, et al. Simvastatin enhances Rho/actin/cell rigidity pathway contributing to mesenchymal stem cells’ osteogenic differentiation. Int J Nanomed. 2015; 10:5881–5894.
  • Yueyi C, Xiaoguang H, Jingying W, et al. Calvarial defect healing by recruitment of autogenous osteogenic stem cells using locally applied simvastatin. Biomaterials. 2013;34:9373–9380.
  • Kupcsik L, Meurya T, Flury M, et al. Statin‐induced calcification in human mesenchymal stem cells is cell death related. J Cell Mol Med. 2009;13:4465–4473.
  • Pagkalos J, Cha JM, Kang Y, et al. Simvastatin induces osteogenic differentiation of murine embryonic stem cells. J Bone Miner Res. 2010;25:2470–2478.
  • Jia Z, Zhang Y, Chen YH, et al. Simvastatin prodrug micelles target fracture and improve healing. J Control Rel. 2015;200:23–34.
  • Calixto JC, Lima CEV De C, Frederico L, et al. The influence of local administration of simvastatin in calvarial bone healing in rats. J Craniomaxillofac Surg. 2011;39:215–220.
  • Fukui T, Ii M, Shoji T, et al. Therapeutic effect of local administration of low-dose simvastatin-conjugated gelatin hydrogel for fracture healing. J Bone Miner Res. 2012;27:1118–1131.
  • Moriyama Y, Ayukawa Y, Ogino Y, et al. Local application of fluvastatin improves peri-implant bone quantity and mechanical properties: A rodent study. Acta Biomaterialia. 2010;6:1610–1618.
  • Pauly S, Back DA, Kaeppler K, et al. Influence of Statins locally applied from orthopedic implants on osseous integration. BMC Musculoskelet Disord. 2012;13:208.
  • Bleedorn JA, Sullivan R, Lu Y, et al. Percutaneous lovastatin accelerates bone healing but is associated with periosseous soft tissue inflammation in a canine tibial osteotomy model. J Orthop Res. 2014;32:210–216.
  • Ibrahim NI, Khamis MF, Yunoh MFM, et al. Targeted delivery of lovastatin and tocotrienol to fracture site promotes fracture healing in osteoporosis model: micro-computed tomography and biomechanical evaluation. PLoS ONE. 2014;9:e115595.
  • Zanette DL, Lorenzi JCC, Panepucci RA, et al. Simvastatin modulates mesenchymal stromal cell proliferation and gene expression. PLoS ONE. 2015;10:e0120137.
  • Issa JPM, Ingraci de Lucia C, Santos Kotake Dos BG, et al. The effect of simvastatin treatment on bone repair of femoral fracture in animal model. Growth Factors. 2015;33:139–148.
  • Tang L, Chen Y, Pei F, et al. Lithium chloride modulates adipogenesis and osteogenesis of human bone marrow-derived mesenchymal stem cells. Cell Physiol Biochem. 2015;37:143–152.
  • Zhu Z, Yin J, Guan J, et al. Lithium stimulates human bone marrow derived mesenchymal stem cell proliferation through GSK‐3β‐dependent β‐catenin/Wnt pathway activation. FEBS Journal. 2014;281:5371–5389.
  • Satija NK, Sharma D, Afrin F, et al. High throughput transcriptome profiling of lithium stimulated human mesenchymal stem cells reveals priming towards osteoblastic lineage. PLoS ONE. 2013;8:e55769.
  • Bernick J, Wang Y, Sigal IA, et al. Parameters for lithium treatment are critical in its enhancement of fracture-healing in rodents. J Bone Joint Surg Am. 2014;96:1990–1998.
  • Garrett IR, Chen D, Gutierrez G, et al. Selective inhibitors of the osteoblast proteasome stimulate bone formation in vivo and in vitro. J Clin Investig. 2003;111:1771–1782.
  • Ito Y, Fukushima H, Katagiri T, et al. Lactacystin, a proteasome inhibitor, enhances BMP-induced osteoblastic differentiation by increasing active Smads. Biochem Biophys Res Commun. 2011;407:225–229.
  • Khedgikar V, Kushwaha P, Gautam J, et al. Withaferin A: a proteasomal inhibitor promotes healing after injury and exerts anabolic effect on osteoporotic bone. Cell Death Dis. 2013;4:e778.
  • Yoshii T, Nyman JS, Yuasa M, et al. Local application of a proteasome inhibitor enhances fracture healing in rats. J Orthop Res. 2015;33:1197–1204.
  • Carpentieri A, Díaz de Barboza G, Areco V, et al. New perspectives in melatonin uses. Pharmacological Res. 2012;65:437–444.
  • Son J-H, Cho Y-C, Sung I-Y, et al. Melatonin promotes osteoblast differentiation and mineralization of MC3T3-E1 cells under hypoxic conditions through activation of PKD/p38 pathways. J Pineal Res. 2014;57:385–392.
  • Park K-H, Kang JW, Lee E-M, et al. Melatonin promotes osteoblastic differentiation through the BMP/ERK/Wnt signaling pathways. J Pineal Res. 2011;51:187–194.
  • Roth JA, Kim BG, Lin WL, et al. Melatonin promotes osteoblast differentiation and bone formation. J Biol Chem. 1999;274:22041–22047.
  • Nakade O, Koyama H, Ariji H, et al. Melatonin stimulates proliferation and type I collagen synthesis in human bone cells in vitro. J Pineal Res. 1999;27:106–110.
  • Sethi S, Radio NM, Kotlarczyk MP, et al. Determination of the minimal melatonin exposure required to induce osteoblast differentiation from human mesenchymal stem cells and these effects on downstream signaling pathways. J Pineal Res. 2010;49:222–238.
  • Calvo-Guirado JL, Ramírez-Fernández MP, Gómez-Moreno G, et al. Melatonin stimulates the growth of new bone around implants in the tibia of rabbits. J Pineal Res. 2010;49:356–363.
  • Calvo-Guirado JL, Gómez-Moreno G. Maté-Sánchez J-E et al. New bone formation in bone defects after melatonin and porcine bone grafts: experimental study in rabbits. Clin Oral Implants Res. 2015;26:399–406.
  • Ramírez-Fernández MP, Calvo-Guirado JL, de-Val JE-MS, et al. Melatonin promotes angiogenesis during repair of bone defects: a radiological and histomorphometric study in rabbit tibiae. Clin Oral Invest. 2013;17:147–158.
  • Erdem M. The effects of melatonin and caffeic acid phenethyl ester (CAPE) on fracture healing under ischemic conditions. Acta Orthop Traumatol Turc. 2014;48:339–345.
  • Aydin A, Memisoglu K, Cengiz A, et al. Effects of botulinum toxin A on fracture healing in rats: an experimental study. J Orthop Sci. 2012;17:796–801.
  • Wu C, Giaccia AJ, Rankin EB. Osteoblasts: a novel source of erythropoietin. Curr Osteoporos Rep. 2014;12:428–432.
  • Kim J, Jung Y, Sun H, et al. Erythropoietin mediated bone formation is regulated by mTOR signaling. J Cell Biochem. 2012;113:220–228.
  • Li C, Shi C, Kim J, et al. Erythropoietin promotes bone formation through EphrinB2/EphB4 signaling. J Dent Res. 2015;94:455–463.
  • Nair AM, Tsai Y-T, Shah KM, et al. The effect of erythropoietin on autologous stem cell-mediated bone regeneration. Biomaterials. 2013;34:7364–7371.
  • Holstein JH, Orth M, Scheuer C, et al. Erythropoietin stimulates bone formation, cell proliferation, and angiogenesis in a femoral segmental defect model in mice. Bone. 2011;49:1037–1045.
  • Garcia P, Speidel V, Scheuer C, et al. Low dose erythropoietin stimulates bone healing in mice. J Orthop Res. 2011;29:165–172.
  • Wan L, Zhang F, He Q, et al. EPO promotes bone repair through enhanced cartilaginous callus formation and angiogenesis. PLoS ONE. 2014;9:e102010.
  • Petrie Aronin CE, Shin SJ, Naden KB, et al. The enhancement of bone allograft incorporation by the local delivery of the sphingosine 1-phosphate receptor targeted drug FTY720. Biomaterials. 2010;31:6417–6424.
  • Petrie Aronin CE, Sefcik LS, Tholpady SS, et al. FTY720 promotes local microvascular network formation and regeneration of cranial bone defects. Tissue Eng Part A. 2010;16:1801–1809.
  • Behr B, Tang C, Germann G, et al. Locally applied vascular endothelial growth factor A increases the osteogenic healing capacity of human adipose-derived stem cells by promoting osteogenic and endothelial differentiation. Stem Cells. 2011;29:286–296.
  • Gao C, Harvey EJ, Chua M, et al. MSC-seeded dense collagen scaffolds with a bolus dose of VEGF promote healing of large bone defects. Eur Cells Mater. 2013;26:195–207.
  • Yamada T, Kaneko H, Lizuka K, et al. Elevation of lymphocyte and hematopoietic stem cell numbers in mice transgenic for human granulocyte CSF. Lab Invest. 1996;74:384–394.
  • Kuethe F, Krack A, Fritzenwanger M, et al. Treatment with granulocyte-colony stimulating factor in patients with acute myocardial infarction. Evidence for a stimulation of neovascularization and improvement of myocardial perfusion. Pharmazie. 2006;61:957–961.
  • Du X, Xie Y, Xian CJ, et al. Role of FGFs/FGFRs in skeletal development and bone regeneration. J Cell Physiol. 2012;227:3731–3743.
  • Arias-Gallo J, Chamorro-Pons M, Avendaño C, et al. Influence of acidic fibroblast growth factor on bone regeneration in experimental cranial defects using spongostan and Bio-Oss as protein carriers. J Craniofac Surg. 2013;24:1507–1514.
  • Furuya H, Tabata Y, Kaneko K. Bone regeneration for murine femur fracture by gelatin hydrogels incorporating basic fibroblast growth factor with different release profiles. Tissue Eng Part A. 2014;20:1531–1541.
  • Marzban L, McNeill JH. Insulin‐like actions of vanadium: potential as a therapeutic agent. J Trace Elem Exp Med. 2003;16:253–267.
  • Schmidmaier G, Wildemann B, Gäbelein T, et al. Synergistic effect of IGF-I and TGF-beta1 on fracture healing in rats: single versus combined application of IGF-I and TGF-beta1. Acta Orthop Scand. 2003;74:604–610.
  • Paglia DN, Wey A, Park AG, et al. The effects of local vanadium treatment on angiogenesis and chondrogenesis during fracture healing. J Orthop Res. 2012;30:1971–1978.
  • Paglia DN, Wey A, Hreha J, et al. Local vanadium release from a calcium sulfate carrier accelerates fracture healing. J Orthop Res. 2014;32:727–734.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.