27
Views
14
CrossRef citations to date
0
Altmetric
Review

Apoptosis regulating proteins as targets of therapy for haematological malignancies

, &
Pages 2027-2057 | Published online: 23 Feb 2005

Bibliography

  • HENGARTNER MO, HORVITZ HR: Programmed celldeath in Caenorhabditis elegans. Curr. Opin. Genet. Dev. (1994) 4: 581–586.
  • VAUX DL, WEISSMAN IL, KIM SK: Prevention ofprogrammed cell death in Caenorhabditis elegans by human bc1-2. Science (1992) 258: 1955-1957.
  • FERRARI D, STEPCZYNSKA A, LOS M, WESSELBORG S, SCHULZE-OSTHOFF K: Differential regulation and ATP requirement for caspase-8 and caspase-3 activation during CD95- and anticancer drug-induced apoptosis. J.Exp.Med. (1998) 188:979–984.
  • GREEN DR, REED JC: Mitochondria and apoptosis. Science (1998) 281:1309–1312.
  • GREEN DR: Apoptotic pathways: the roads to ruin. Cell (1998) 94:695–698.
  • NICHOLSON DW, THORNBERRY NA: Caspases: Killer proteases. Trends Biochem. ScL (1997) 22:299–306.
  • TALANIAN RV, QUINLAN C, TRAUTZ S et al: Substrate specificities of caspase family proteases. J. Biol. Chem. (1997) 272:9677–9682 .
  • THORNBERRY NA, RANO TA, PETERSON EP et al: Acombinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis.j Biol. Chem. (1997) 272:17907–17911.
  • FERNANDES-ALNEMRI T, ARMSTRONG RC et al: In vitroactivation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains. Proc. Natl. Acad. ScL USA (1996) 93:7464–7469.
  • BOLDIN MP, GONCHAROV TM, GOLTSEV YV, WALLACH D: Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell (1996) 85:803–815.
  • MUZIO M, CHINNAIYAN AM, KISCHKEL FC et al: FLICE, a novel FADD1-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/AP0-1) death-inducing signaling complex. Cell (1996) 85:817–827.
  • STENNICKE HR, SALVESEN GS: Properties of the caspases. Biochim. Biophys. Acta (1998) 1387:17–31.
  • LI P, NIJHAWAN D, BUDIHARDJO I, SRINIVASULA SM, AHMAD M, ALNEMRI ES, WANG X: Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91: 479–489, 1997
  • LIU X, KIM CN, YANG J, JEMMERSON R, WANG X: Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell (1996) 86:147–157.
  • YANG J, LIU X, BHALLA K et al: Prevention of apoptosisby Bc1-2: release of cytochrome c from mitochondria blocked [see comments]. Science (1997) 275:1129–1132.
  • ZOU H, HENZEL WJ, LIU X, LUTSCHG A, WANG X: Apaf-1,a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3 [see comments]. Cell (1997) 90:405–413.
  • SRINIVASULA SM, FERNANDES-ALNEMRI T, ZANGRILLI Jet al.: The CED-3/interleukin-1 13 converting enzyme-like homolog Mch6 and the lamin-cleaving enzyme Mch2 a are substrates for the apoptotic mediator CPP32. J. Biol. Chem. (1996) 271:27099–27106.
  • FALEIRO L, KOBAYASHI R, FEARNHEAD H, LAZEBNIK Y:Multiple species of CPP32 and Mch2 are the major active caspases present in apoptotic cells. EMBO (1997) 16:2271–2281.
  • MARTINS LM, KOTTKE T, MESNER PW et al.: Activation ofmultiple interleukin-1 13 converting enzyme homologues in cytosol and nuclei of HL-60 cells during etoposide-induced apoptosis. J. Biol. Chem (1997) 272:7421–7430.
  • MACFARLANE M, CAIN K, SUN XM, ALNEMRI ES, COHENGM: Processing/activation of at least four interleukin-1 13 converting enzyme-like proteases occurs during the execution phase of apoptosis in human monocytic tumour cells. J. Cell. Biol. (1997) 37:469–479.
  • TAKAHASHI A, HIRATA H, YONEHARA S et al.: Affinity labeling displays the stepwise activation of ICE-related proteases by Fas, staurosporine, and Crm-A-sensitive caspase 8. Oncogene (1997) 14:2741–2752.
  • SAKAHIRA H, ENARI M, NAGATA S: Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis [see comments]. Nature 391: 96–99, 1998
  • ENARI M, SAKAHIRA H, YOKOYAMA H, OKAWA K, IWAMATSU A, NAGATA S: A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD [see comments] [published erratum appears in Nature 1998 May 28;393(6683):396]. Nature (1998) 391:43–50.
  • FUJITA N, NAGAHASHI A, NAGASHIMA K, ROKUDAI S,TSURUO T: Acceleration of apoptotic cell death after the cleavage of Bc1-XL protein by caspase-3-like proteases. Oncogene (1998) 17:1295–1304.
  • ZHANG Y, FUJITA N, TSURUO T: Caspase-mediated cleavage of p21Wafl/Cipl converts cancer cells from growth arrest to undergoing apoptosis. Oncogene (1999 18:1131–1138.
  • CHENG EH, KIRSCH DG, CLEM RJ et al: Conversion ofbc1-2 to a Bax-like death effector by caspases. Science (1997) 278: 1966-1968.
  • GRANDGIRARD D, STUDER E, MONNEY L et al.: aviruses induce apoptosis in Bc1-2-overexpressing cells: evidence for a caspase-mediated, proteolytic inactiva-tion of Bc1-2. EMBO J (1998) 17:1268–1278.
  • FATTMAN CL, AN B, DOU QP: Characterization of interior cleavage of retinoblastoma protein in apoptosis. J. Cell Biochem. (1997) 67:399–408.
  • KOSEKI T, INOHARA N, CHEN S, NUNEZ G: ARC, an inhibitor of apoptosis expressed in skeletal muscle and heart that interacts selectively with caspases. Proc. Natl. Acad. ScL USA (1998) 95:5156–5160.
  • MACCORKLE RA, FREEMAN KW, SPENCER DM: Synthetic activation of caspases: artificial death switches. Proc. Natl. Acad. ScL USA (1998) 95:3655–3660.
  • FADEEL B, HASSAN Z, HELLSTROM-LINDBERG E, HENTERJI, ORRENIUS S, ZHIVOTOVSKY B: Cleavage of Bc1-2 is an early event in chemotherapy-induced apoptosis of human myeloid leukemia cells. Leukemia (1999) 13:719–728.
  • DUCKETT CS, NAVA VE, GEDRICH et al.: A conservedfamily of cellular genes related to the baculovirus iap gene and encoding apoptosis inhibitors. EMBOJ (1996) 15:2685–2694.
  • CLEM RJ, MILLER LK: Control of programmed cell death by the baculovirus genes p35 and iap. Mol. Cell Biol. (1994) 14:5212–5222.
  • ROY N, MAHADEVAN MS, MCLEAN M et al: The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell (1995) 80:167–178.
  • ROTHE M, PAN MG, HENZEL WJ, AYRES TM, GOEDDEL DV: The TNE-R2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell (1995) 83:1243–1252.
  • UREN AG, PAKUSCH M, HAWKINS CJ, PULS KL, VAUX DL: Cloning and expression of apoptosis inhibitory protein homologs that function to inhibit apoptosis and/or bind tumour necrosis factor receptor-associated factors. Proc. Natl. Acad. ScL USA (1996) 93:4974–4978.
  • HAY BA, WASSARMAN DA, RUBIN GM: Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell 83:1253–1262, 1995
  • STENNICKE HR, DEVERAUX QL, HUMKE EW, REED JC,DIXIT VM, SALVESEN GS: Caspase-9 can be activated without proteolytic processing. J. Biol. Chem. (1999) 274:8359–8362.
  • DEVERAUX QL, ROY N, STENNICKE HR et al.: IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J (1998) 17:2215–2223.
  • REED JC: Cytochrome c: can't live with it-can't live without it [comment]. Cell (1997) 91:559–562.
  • DIERLAMM J, BAENS M, WLODARSKA I et al.: Theapoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21)p6ssociated with mucosa- associated lymphoid tissue lymphomas. Blood (19 9 9) 93:3601-3609.
  • GREINER A, SEEBERGER H, KNORR C, STAROSTIK P, MULLER-HERMELINCK HK: MALT-type B-cell lymphomas escape the sensoring FAS-mediated apoptosis. Blood (1998) 92:484a (Abstract).
  • AMBROSINI G, ADIDA C, ALTIERI DC: A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nature Med. (1997) 3:917–921.
  • LI F, AMBROSINI G, CHU EY, PLESCIA J, TOGNIN S,MARCHISIO PC, ALTIERI DC: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature (1998) 396:580–584.
  • TAMM I, WANG Y, SAUSVILLE E et al.: IAP-family proteinsurvivin inhibits caspase activity and apoptosis induced by Fas (CD95), Box, caspases, and anticancer drugs. Cancer Res. (1998) 58:5315–5320.
  • ADIDA C, BERREBI D, PEUCHMAUR M, REYES-MUGICA M,ALTIERI DC: Anti-apoptosis gene, survivin, and prognosis of neuroblastoma [letter]. Lancet (1998) 351:882–883.
  • LU CD, ALTIERI DC, TANIGAWA N: Expression of a novel anti-apoptosis gene, survivin, correlated with tumour cell apoptosis and p53 accumulation in gastric carcinomas. Cancer Res. (1998) 58:1808–1812.
  • KAWASAKI H, ALTIERI DC, LU CD, TOYODA M, TENJO T, TANIGAWA N: Inhibition of apoptosis by survivin predicts shorter survival rates in colorectal cancer. Cancer Res. (1998) 58:5071–5074.
  • ALTIERI DC: Xa receptor EPR-1. FASEB J. (1995)9:860–865.
  • AMBROSINI G, ADIDA C, SIRUGO G, ALTIERI DC: Induction of apoptosis and inhibition of cell prolifera-tion by survivin gene targeting. J. Biol. Chem. (1998) 273:11177–11182.
  • ADIDA C, CROTTY PL, MCGRATH J, BERREBI D, DIEBOLDJ, ALTIERI DC: Developmentally regulated expression of the novel cancer anti-apoptosis gene survivin in human and mouse differentiation. Am. J. Pathol. (1998) 152:43–49.
  • SMITH CA, FARRAH T, GOODWIN RG: The TNF receptorsuperfamily of cellular and viral proteins: activation, costimulation, and death. Cell (1994) 76:959–962.
  • NAGATA S: Apoptosis by death factor. Cell (1997) 88:355-365. CONSOLI U, EL-TOUNSI I, SANDOVAL A et al. Differen-tial induction of apoptosis by fludarabine monophos-phate in leukemic B and normal T-cells in chronic lymphocytic leukemia. Blood (1998) 91:1742–1748.
  • CONSOLI U, EL-TOUNSI I, SANDOVAL A et al.: Differential induction of apoptosis by fludarabine monophos-phate in leukemic B and normal T-cells in chronic lymphocytic leukemia. Blood (1998) 91:1742–1748.
  • TANAKA M, ITAI T, ADACHI M, NAGATA S: Downregula-tion of Fas ligand by shedding [see comments]. Nature Med. (1998) 4:31–36.
  • STRAND S, HOFMANN WJ, HUG H et al.: Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumour cells-a mechanism of immune evasion? Nature Med. (1996) 2:1361-1366.
  • HAHNE M, RIMOLDI D, SCHROTER M et al.: Melanomacell expression of Fas(Apo-1/CD95) ligand: Implica-tions for tumour immune escape. Science (1996) 274:1363–1366.
  • O'CONNELL J, O'SULLIVAN GC, COLLINS JK, SHANAHANF: The Fas counterattack: Fas-mediated T-cell killing by colon cancer cells expressing Fas ligand. J. Exp. Med. (1996) 184:1075–1082.
  • NAGATA S, GOLSTEIN P: The Fas death factor. Science(1997) 267:1449–1456.
  • BOLDIN MP, VARFOLOMEEV EE, PANCER Z, METT IL, CAMONIS JH, WALLACH D: A novel protein that interacts with the death domain of Fas/AP01 contains a sequence motif related to the death domain. J. Biol. Chem. (1995) 270:7795–7798.
  • CHINNAIYAN AM, O'ROURKE K, TEWARI M, DIXIT VM:FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell (1995) 81:505–512.
  • CHINNAIYAN AM, TEPPER CG, SELDIN MF et al.: FADD/MORT1 is a common mediator of CD95 (Fas/AP01) and tumour necrosis factor recreptor-induced apoptosis. J. Biol. Chem. (1996) 271:4961–4965.
  • DUAN H, DIXIT VM: RAIDD is a new 'death' adaptor molecule. Nature (1997) 385:86–89.
  • BOLDIN MP, GONCHAROV TM, GOLTSEV YV, WALLACH D: Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell (1996) 85:803–815.
  • MUZIO M, CHINNAIYAN AM, KISCHKEL FC et al: FLICE, anovel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell (1996) 85:817–827.
  • YANG X, KHOSRAVI-FAR R, CHANG HY, BALTIMORE D: Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell (1997) 89:1067–1076.
  • MULLER M, WILDER S, BANNASCH D et al.: p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J. Exp. Med. (1998) 188:2033–2045.
  • FUKAZAWA T, FUJIWARA T, MORIMOTO Y et al: Differ-ential involvement of the CD95 (Fas/APO-1) receptor/ligand system on apoptosis induced by the wild type p53 gene transfer in human cancer cells. Oncogene (1999) 18:2189–2199.
  • OWEN-SCHAUB LB, ZHANG W, CUSACK JC et al. Wild type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol. Cell Biol. (1995) 15:3032–3040.
  • OWEN-SCHAUB LB, RADINSKY R, KRUZEL E, BERRY K, YONEHARA S: AntiFas on nonhematopoietic tumours: levels of Fas/APO-1 and bcl- 2 are not predictive of biological responsiveness. Cancer Res. (1994) 54:1580-1586. GOLSTEIN P: Cell death: TRAIL and its receptors. Curr. Biol. (1997) 7:R750-R753. GRIFFITH TS, CHIN WA, JACKSON GC, LYNCH DH, KUBIN MZ : Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J. Immunol. (1998) 161:2833–2840.
  • SENKEVICH TG, BUGERT JJ, SISLER JR, KOONIN EV, DARAI G, MOSS B: Genome sequence of a human tumourigenic poxvirus: Predication of specific host response-evasion genes. Science (1996) 273:813–816.
  • BODMER JL, BURNS K, SCHNEIDER P et al.: TRAMP, a novel apoptosis-mediating receptor with sequence homology to tumour necrosis factor receptor 1 and Fas (Apo-1/CD95). Immunity (1996) 6: 79–88.
  • KITSON J, RAVEN T, JIANG YP et al: A death-domain- containing receptor that mediates apoptosis. Nature (1996) 384:372–375.
  • CHINNAIYAN AM, O'ROURKE K, YU GL et al.: Signal transduction by DR3, a death domain-containing receptor related to TNF-R-1 and CD95. Science (1996) 274:990–992.
  • IRMLER M, THOME M, HAHNE M et al.: Inhibition of death receptor signals by cellular FLIP. Nature (1997) 388:190–195.
  • HITOSHI Y, LORENS J, KITADA SI et al.: Toso, a cell surface, specific regulator of Fas-induced apoptosis in T-cells. Immunity (1998) 8:461–471.
  • SCHNEIDER TJ, FISCHER GM, DONOHOE TJ, COLARUSSO TP, ROTHSTEIN TL: A novel gene coding for a Fas apoptosis inhibitory molecule (FAIM) isolated from inducibly Fas-resistant B-lymphocytes. J. Exp. Med. (1999) 189:949–956.
  • JOHNSTONE RW, CRETNEY E, SMYTH MJ: P-glycoprotein protects leukemia cells against caspase-dependent, but not caspase-independent, cell death. Blood (1999) 93:1075–1085.
  • SHIMIZU M, YOSHIMOTO T, NAGATA S, MATSUZAWA A: A trial to kill tumour cells through Fas (CD95)-mediated apoptosis in vivo. Biochem. Biophys. Res. Commun. (1996) 228:375–379.
  • SHIMIZU M, TAKEDA Y, YAGITA H, YOSHIMOTO T, MATSUZAWA A: Antitumour activity exhibited by Fas ligand (CD95L) overexpressed on lymphoid cells against Fas+ tumour cells. Cancer Immunol. Immuno-ther. (1998) 47:148.
  • SHINOURA N, YOSHIDA Y, SADATA A et al: Apoptosis byretrovirus- and adenovirus-mediated gene transfer of Fas ligand to glioma cells: implications for gene therapy. Hum. Gene Ther. (1998) 9:1983–1993.
  • FRIESEN C, HERR I, KRAMMER PH, DEBATIN KM: Involve-ment of the CD95 (APO-1/FAS) receptor/ligand system in drug- induced apoptosis in leukemia cells. Nature Med. (1996) 2:574–577.
  • FRIESEN C, HERR I, KRAMMER PH, DEBATIN KM: Involve-ment of the CD95 (Apo-1/Fas) receptor/ligand system in drug-induced apoptosis in leukemia cells. Nature Merl. (1996) 2:574–577.
  • EISCHEN CM, KOTTKE TJ, MARTINS LM et al.:Comparison of apoptosis in wild type and Fas-resistant cells: chemotherapy-induced apoptosis is not dependent on Fas/Fas ligand interactions. Blood (1997) 90:935–943.
  • WESSELBORG S, ENGELS IH, ROSSMANN E, LOS M, SCHULZE-OSTHOFF K: Anticancer drugs induce caspase-8/FLICE activation and apoptosis in the absence of CD95 receptor/ligand interaction. Blood (1999) 93:3053–3063.
  • LANDOWSKI TH, SHAIN KH, OSHIRO MM, BUYUKSAL I,PAINTER JS, DALTON WS: Myeloma cells selected for resistance to CD95-mediated apoptosis are not cross-resistant to cytotoxic drugs: evidence for independent mechanisms of caspase activation. Blood (1999) 94:265–274.
  • FRIESEN C, FULDA S, DEBATIN KM: Deficient activationof the CD95 (APO-1/Fas) system in drug-resistant cells. Leukemia (1997) 11: 1833-1841.
  • MARTINEZ-LORENZO MJ, GAMEN S, ETXEBERRIA J et al.:Resistance to apoptosis correlates with a highly proliferative phenotype and loss of Fas and CPP32 (caspase-3) expression in human leukemia cells. Int. J. Cancer (1998) 75:473–481.
  • ZHOU M, GU L, YEAGER AM, FINDLEY HW: Sensitivity toFas-mediated apoptosis in pediatric acute lympho-blastic leukemia is associated with a mutant p53 phenotype and absence of Bc1-2 expression. Leukemia (1998) 12: 1756-1763.
  • MAEDA T, YAMADA Y, MORIUCHI R et al.: Fas gene mutation in the progression of adult T-cell leukemia. J. Exp. Merl. (1999) 189:1063–1071.
  • NIHO Y, ASANO Y: Fas/Fas ligand and hematopoietic progenitor cells. Curr. Opin. Hematol. (1998) 5:163–165.
  • DIRKS W, SCHONE S, UPHOFF C, QUENTMEIER H, PRADELLA S, DREXLER HG: Expression and function of CD95 (FAS/APO-1) in leukaemia-lymphoma tumour lines. Br. J. Haematol (1997) 96:584–593.
  • TSURUDA K, YAMADA Y, HIRAKATA Y et al.: Qualitativeand quantitative characterization of Fas (APO-1/CD95) on leukemic cells derived from patients with B-cell neoplasms. Leuk. Res. (1999) 23:159–166.
  • NGUYEN PL, HARRIS NL, RITZ J, ROBERTSON MJ: Expres-sion of CD95 antigen and Bc1-2 protein in non-Hodgkin's lymphomas and Hodgkin's disease [published erratum appears in Am. J. PathoL 1996 Juk149(1):346]. Am. J. Pathol (1996) 148:847–853.
  • XERRI L, BOUABDALLAH R, DEVILARD E, HASSOUN J, STOPPA AM, BIRG F: Sensitivity to Fas-mediated apoptosis is null or weak in B-cell non- Hodgkin's lymphomas and is moderately increased by CD40 ligation. Br. J. Cancer (1998) 78:225–232.
  • WANG D, FREEMAN GJ, LEVINE H, RITZ J, ROBERTSON MJ: Role of the CD40 and CD95 (APO-1/Fas) antigens in the apoptosis of human B-cell malignancies. Br. J. Haematol. (1997) 97:409–417.
  • GUTIERREZ MI, CHERNEY B, HUSSAIN A et al.: Bax isfrequently compromised in Burkitt's lymphomas with irreversible resistance to Fas-induced apoptosis. Cancer Res. (1999) 59:696–703.
  • DANIEL PT, OETTINGER U, MAPARA MY, BOMMERT K, BARGOU R, DORKEN B: Activation and activation-induced death of human tonsillar B-cells and Burkitt lymphoma cells: lack of CD95 (Fas/APO-1) ligand expression and function. Eur. J. Immunol. (1997) 27:1029–1034.
  • DURANDY A, LE DEIST F, EMILE JF, DEBATIN K, FISCHER A: Sensitivity of Epstein-Barr virus-induced B-cell tumour to apoptosis mediated by antiCD95/Apo-1/fas antibody. Eur. J. Immunol. (1997) 27:538–543.
  • MUNKER R, ANDREEFF M: Induction of death (DC95/FAS), activation and adhesion (CD54) molecules on blast cells of acute myelogenous leukemias by TNF-and IFN. Cytokines Moi Ther. (1996) 2:147–160.
  • MUNKER R, MIDIS G, OWEN-SCHAUB L, ANDREEFF M: Leukemia. Leukemia (1996) 10:1531–1533.
  • NAKAMURA S, TAKESHIMA M, NAKAMURA Y, OHTAKE S, MATSUDA T: AntiFas IgM monoclonal antibody enhances apoptosis induced by low-dose cytosine arabinoside. Anticancer Res. (1999) 19:197–204.
  • OGASAWARA J, WATANABE-FUKUNAGA R, ADACHI M et al.: Lethal effect of the antifas antibody in mice. Nature (1993) 364:806–809.
  • RENSING-EHL A, FREI K, FLURY R et al.: Local Fas/APO-1 (CD95) ligand-mediated tumour cell killing in vivo. Eur. j Immunol. (1995) 25:2253–2258.
  • SCHNEIDER P, HOLLER N, BODMER JL, HAHNE M, FREI K, FONTANA A, TSCHOPP J: Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associ-ated with downregulation of its proapoptotic activity and loss of liver toxicity. J. Exp. Merl. (1998) 187:1205–1213.
  • THOMAS WD, HERSEY P TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in Fas ligand-resistant melanoma cells and mediates CD4
  • GRIFFITH TS, CHIN WA, JACKSON GC, LYNCH DH, KUBIN MZ: Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J. Immunol. (1998) 161:2833–2840.
  • SNELL V, CLODI K, ZHAO S et al.: Activity of TNF-related apoptosis-inducing ligand (TRAIL) in haematological malignancies. Br. J. Cancer (1997) 99:624.
  • RIEGER J, NAUMANN U, GLASER T, ASHKENAZI A, WELLER M: AP02 ligand: a novel lethal weapon against malignant glioma? FEBS Lett. (1998) 427:124-128.
  • KEANE MM, ETTENBERG SA, NAU MM, RUSSELL EK, LIPKOWITZ S: Chemotherapy augments TRAIL-induced apoptosis in breast cell lines. Cancer Res. (1999) 59:734–741.
  • GOLSTEIN P: Cell death: Trail and its receptors. Curr. Biol. (1997) 7:R750–R753.
  • RIBEIRO P, RENARD N, WARZOCHA K et al.: CD40 regula-tion of death domains containing receptors and their ligands on lymphoma B-cells. Br. J. Haematol (1998) 103:684–689.
  • WALCZAK H, MILLER RE, ARIAIL K et al.: Tumouricidal activity of tumour necrosis factor-related apoptosis-inducing ligand in vivo [see comments]. Nature Med. (1999) 5:157–163.
  • CHEN Z, FILLMORE H, LIU Y, FURQUERON P, PRABH S, BROADDUS W: Increased chemosensitivity of human malignant glioma cells by antisense-mediated reduction of bc1-2 gene expression. AACR (1999) 40:632–633.
  • KEANE MM, ETTENBERG SA, NAU MM, RUSSELL EK, LIPKOWITZ S: Chemotherapy augments TRAIL-induced apoptosis in breast cell lines. Cancer Res. (1999) 59:734–741.
  • YIN XM, OLTVAI ZN, KORSMEYER SJ: Bill and BH2 domains of Bc1-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature (1994) 369:321–323.
  • CHITTENDEN T, FLEMINGTON C, HOUGHTON AB et al: A conserved domain in Bak, distinct from Bill and BH2, mediates cell death and protein binding functions. EMBO J (1995) 14:5589–5596.
  • ZHA H, AIME-SEMPE C, SATO T, REED JC: Proapoptotic protein Bax heterodimerizes with Bc1-2 and homodi-merizes with Bax via a novel domain (BH3) distinct from BH1 and BH2. J. Biol. Chem. (1996) 271:7440–7444.
  • GIBSON L, HOLMGREEN SP, HUANG DC et al.: Bcl-w, a novel member of the bc1-2 family, promotes cell survival. Oncogene (1996) 13:665–675.
  • SATO T, IRIE S, KRAJEWSKI S, REED JC: Cloning and sequencing of a cDNA encoding the rat Bc1-2 protein. Gene (1994) 140:291–292.
  • SEDLAK TW, OLTVAI ZN, YANG E et al.: Multiple Bc1-2 family members demonstrate selective dimerizations with Bax. Proc. Natl. Acad. ScL USA (1995) 92:7834–7838.
  • OLTVAI ZN, MILLIMAN CL, KORSMEYER SJ: Bc1-2 hetero-dimerizes in vivo with a conserved homolog, Box, that accelerates programmed cell death. Cell (1993) 74:609–619.
  • YANG E, ZHA J, JOCKEL J, BOISE LH, THOMPSON CB, KORSMEYER SJ: Bad, a heterodimeric partner for Bc1-XL and Bc1-2, displaces Box and promotes cell death. Cell (1995) 80:285–291.
  • HSU YT, WOLTER KG, YOULE RJ: Cytosol-to-membrane redistribution of Bax and Bc1-X(L) during apoptosis. Proc. Natl. Acad. ScL USA (1997) 94:3668–3672.
  • HSU YT, YOULE RJ: Box in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. J. Biol. Chem. (1998) 273:10777–10783.
  • WANG K, GROSS A, WAKSMAN G, KORSMEYER SJ: Mutagenesis of the BH3 domain of BAX identifies residues critical for dimerization and killing. Mol. Biol. (1998) 18:6083–6089.
  • OTTER I, CONUS S, RAVN U et al.: The binding proper-ties and biological activities of Bc1-2 and Bax in cells exposed to apoptotic stimuli. J. Biol. Chem. (1998) 273:6110–6120.
  • HANADA M, AIME-SEMPE C, SATO T, REED JC: Structure-function analysis of Bc1-2 protein. Identification of conserved domains important for homodimerization with Bc1-2 and heterodimerization with Bax. J. Biol. Chem. (1995) 270:11962–11969.
  • HUNTER JJ, BOND BL, PARSLOW TG: Functional dissec-tion of the human Bc12 protein: Sequence require-ments for inhibition of apoptosis. Mol. Cell Biol. (1996) 16:877–883.
  • BORNER C, MARTINOU I, MATTMANN C et al.: The protein bc1-2 a does not require membrane attach-ment, but two conserved domains to suppress apoptosis. J. Cell. Biol. (1994) 126:1059–1068.
  • DEL PESO L, GONZALEZ-GARCIA M, PAGE C, HERRERA R, NUNEZ G: Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science (1997) 278:687–689.
  • ZHA J, HARADA H, YANG E, JOCKEL J, KORSMEYER SJ: Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not Bc1-X. Cell (1996) 87:619–628.
  • ALNEMRI ES, ROBERTSON NM, FERNANDES TF, CROCE CM, LITWACK G: Overexpressed full-length human BCL2 extends the survival of baculovirus-infected Sf9 insect cells. Proc. Natl. Acad. ScL USA (1992) 89:7295–7299.
  • ITO T, DENG X, CARR B, MAY WS: Bc1-2 phosphoryla-tion required for anti-apoptosis function. J. Biol. Chem. (1997) 272:11671–11673.
  • MAY WS, TYLER PG, ITO T, ARMSTRONG DK, QATSHA KA, DAVIDSON NE: Interleukin-3 and bryostatin-1 mediate hyperphosphorylation of BCL2 a in associa-tion with suppression of apoptosis. J. Biol. Chem. (1994) 269:26865–26870.
  • RUVOLO PP, DENG X, CARR BK, MAY WS: A functional role for mitochondrial protein kinase Ca in Bc12 phosphorylation and suppression of apoptosis. J. Biol. Chem. (1998) 273:25436–25442.
  • POOMMIPANIT PB, CHEN B, OLTVAI ZN: Interleukin-3 induces the phosphorylation of a distinct fraction of bcl- 2.1 Biol. Chem. (1999) 274:1033–1039.
  • HALDAR S, JENA N, CROCE CM: Inactivation of Bc1-2 by phosphorylation. Proc. Natl. Acad. ScL USA (1995) 92:4507–4511.
  • HALDAR S, CHINTAPALLI J, CROCE CM: Taxol induces bc1-2 phosphorylation and death of prostate cancer cells. Cancer Res. (1996) 56:1253–1255.
  • HALDAR S, BASU A, CROCE CM: Bc12 is the guardian of microtubule integrity. Cancer Res. (1997) 57:229–233.
  • BLAGOSKLONNY MV, SCHULTE T, NGUYEN P, TREPEL J, NECKERS LM: Taxol-induced apoptosis and phospho-rylation of Bc1-2 protein involves c- Raf-1 and represents a novel c-Raf-1 signal transduction pathway. Cancer Res. (1996) 56:1851–1854.
  • WANG S, VRANA JA, BARTIMOLE TM et al: Agents that downregulate or inhibit protein kinase C circumvent resistance to 1-13-D-arabinofuranosylcytosine-induced apoptosis in human leukemia cells that overexpress Bc1-2. Mol. Pharmacol (1997) 52:1000–1009.
  • MAUNDRELL K, ANTONSSON B, MAGNENAT E etal.: Bc1-2 undergoes phosphorylation by c-Jun N-terminal kinase/stress- activated protein kinases in the presence of the constitutively active GTP-binding protein Racl. J. Biol. Chem. (1997) 272:25238–25242.
  • CHEN YR, WANG X, TEMPLETON D, DAVIS RJ, TAN TH: The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C and y radiation. Duration of JNK activation may determine cell death and prolifera-tion. J. Biol Chem. (1996) 271:31929–31936.
  • GRAVES JD, DRAVES KE, CRAXTON A, SAKLATVALA J, KREBS EG, CLARK EA: Involvement of stress-activated protein kinase and p38 mitogen- activated protein kinase in mIgM-induced apoptosis of human B-lymphocytes. Proc. NatI Acad. Sci. USA (1996) 93:13814–13818.
  • ICHIJO H, NISHIDA E, IRIE K et al: Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science (1997) 275:90–94.
  • MAY WS, TYLER PG, ITO T, ARMSTRONG DK, QATSHA KA, DAVIDSON NE: Interleukin-3 and bryostatin-1 mediate hyperphosphorylation of BCL2 a in associa-tion with suppression of apoptosis. J. Biol. Chem. (1994) 269:26865–26870.
  • HALDAR S, JENA N, CROCE CM: Inactivation of Bc1-2 by phosphorylation. Proc. Natl. Acad. Sci. USA (1995) 92:4507–4511.
  • CHANG BS, MINN AJ, MUCHMORE SW, FESIK SW, THOMPSON CB: Identification of a novel regulatory domain in Bc1-XL and Bc1-2. EMBOJ (1997) 16:968–977.
  • CLEM RJ, CHENG EH, KARP CL et al: Modulation of cell death by Bc1-XL through caspase interaction. Proc. Natl. Acad. ScL USA (1998) 95:554–559.
  • DIMMELER S, BREITSCHOPF K, HAENDELER J, ZEIHER AM: Dephosphorylation targets Bc1-2 for ubiquitin-dependent degradation: a link between the apopto-some and the proteasome pathway. J. Exp. Med. (1999) 189:1815–1822.
  • ZAMZAMI N, SUSIN SA, MARCHETTI P et al.: Mitochon-drial control of nuclear apoptosis (see comments). J. Exp. Med. (1996) 183:1533–1544.
  • LIU X, KIM CN, YANG J, JEMMERSON R, WANG X: Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c. Cell (1996) 86:147–157.
  • SUSIN SA, ZAMZAMI N, CASTEDO M et al.: Bc1-2 inhibits the mitochondrial relapse of an apoptogenic protease. J. Exp. Med. (1996) 184:1331–1341.
  • KLUCK RM, BOSSY-WETZEL E, GREEN DR, NEWMEYER DD: The release of cytochrome c from mitochondria: A primary site for bc1-2 regulation of apoptosis. Science (1997) 275:1132–1136.
  • YANG J, LIU X, BHALLA K et al.: Prevention of apoptosis by bc1-2: Release of cytochrome c from mitochondria blocked. Science (1997) 275:1129–1132.
  • MARZO I, BRENNER C, ZAMZAMI N et al.: The permeability transition pore complex: A target for apoptosis regulation by caspases and bc1-2-related proteins. J. Exp. Med. (1998) 187:1261–1271.
  • MARZO I, SUSIN SA, PETIT PX et al.: Caspases disrupt mitochondrial membrane barrier function. FEBS Lett. (1998) 427:198–202.
  • PAN G, O'ROURKE K, DIXIT VM: Caspase-9, Bc1-XL, and Apaf-1 form a ternary complex. J. Biol. Chem. (1998) 273:5841–5845.
  • YANG JC, CORTOPASSI GA: dATP causes specific release of cytochrome c from mitochondria. Biochem. Biophys. Res. Commun. (1998) 250:454–457.
  • XIANG J, CHAO DT, KORSMEYER SJ: BAX-induced cell death may not require interleukin-1 6-converting enzyme-like proteases. Proc. Natl. Acad. Sci. USA (1996) 93:14559–14563.
  • LI H, ZHU H, XU CJ, YUAN J: Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell (1998) 94:491–501.
  • HOFMANN K, BUCHER P, TSCHOPP J: The CARD domain: A new apoptotic signaling motif. Trends Biochem. Sci. (1997) 22:155-156. CHINNAIYAN AM, O'ROURKE K, LANE BR, DIXIT VM: Interaction of CED-4 with CED-3 and CED-9: A molecular framework for cell death. Science (1997) 275:1122–1126.
  • SHAHAM S, HORVITZ HR: Developing Caenorhabditis elegans neurons may contain both cell-death protec-tive and killer activities. Genes Dev (1996) 10:578–591.
  • SHAHAM S, HORVITZ HR: An alternatively spliced C. elegans ced-4 RNA encodes a novel cell death inhibitor. Cell (1996) 86:201–208.
  • IRMLER M, HOFMANN K, VAUX D, TSCHOPP J: Direct physical interaction between the Caenorhabditis elegans 'death proteins' CED-3 and CED-4. FEBS Lett. (1997) 406:189–190.
  • SPECTOR MS, DESNOYERS S, HOEPPNER DJ, HENGARTNER MO: Interaction between the C. elegans cell-death regulators CED-9 and CED-4. Nature (1997) 385:653–656.
  • WU D, WALLEN HD, NUNEZ G: Interaction and regula-tion of subcellular localization of CED-4 by CED-9. Science (1997) 275:1126–1129.
  • HU Y, BENEDICT MA, WU D, INOHARA N, NUNEZ G: Bc1-XL interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation. Proc. Natl. Acad. Sci. USA (1998) 95:4391.
  • ZOU H, HENZEL WJ, LIU X, LUTSCHG A, WANG X: Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell (1997) 90:405–413.
  • YOSHIDA H, KONG YY, YOSHIDA R et al.: Apafl is required for mitochondrial pathways of apoptosis and brain development. Cell (1998) 94:739–750.
  • CECCONI F, ALVAREZ-BOLADO G, MEYER BI, ROTH KA, GRUSS P: Apafl (CED-4 homolog) regulates programmed cell death in mammalian development. Cell (1998) 94:727–737.
  • HUANG DC, ADAMS JM, CORY S: The conserved N-terminal BH4 domain of Bc1-2 homologues is essential for inhibition of apoptosis and interaction with CED-4. EMBO J. (1998) 17:1029–1039.
  • VAUX DL: CED-4-the third horseman of apoptosis. Cell (1997) 90:389–390.
  • JURGENSMEIER JM, XIE Z, DEVERAUX Q, ELLERBY L, BREDESEN D, REED JC: Box directly induces release of cytochrome c from isolated mitochondria. Proc. NatI Acad. ScI USA (1998) 95:4997–5002.
  • MORIISHI K, HUANG DC, CORY S, ADAMS JM: Bc1-2 family members do not inhibit apoptosis by binding the caspase activator apaf-1. Proc. Natl. Acad. Sci. USA (1999) 96:9683–9688.
  • CORY S, HARRIS AW, STRASSER A: Insights from transgenic mice regarding the role of bc1-2 in normal and neoplastic lymphoid cells. Philos. Trans. R. Soc. Lond. B. Biol. Sci. (1994) 345:289–295.
  • VAUX DL, CORY S, ADAMS JM: Bc1-2 gene promotes haemopoietic cell survival and co-operates with c- myc to immortalize pre-B cells. Nature (1988) 335:440–442.
  • TRAVER D, AKASHI K, WEISSMAN IL, LAGASSE E: Mice defective in two apoptosis pathways in the myeloid lineage develop acute myeloblastic leukemia. Immunity (1998) 9:47–57.
  • MEIJERINK JPP, MENSINK EJBM, WANG K et al.: Hemato-poietic malignancies demonstrate loss-of-function mutations of bax. Blood (1998) 91:2991–2997.
  • RAMPINO N, YAMAMOTO H, IONOV Y et al.: Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science (1997) 275:967–969.
  • WINTER JN, ANDERSEN J, REED JC et al.: BCL-2 expres-sion correlates with lower proliferative activity in the intermediate- and high-grade non-Hodgkin's lymphomas: an Eastern Co-operative Oncology Group and Southwest Oncology Group co-operative labora-tory study. Blood (1998) 91:1391–1398.
  • SINICROPE FA, HART J, MICHELASSI F, LEE JJ: Prognostic value of bc1-2 oncoprotein expression in stage II colon carcinoma. Clin. Cancer Res.(1995) 1:1103–1110.
  • VAN SH, VAN DE VIJVER MJ, VAN DE VELDE CJ, VAN DJ: Loss of Bc1-2 in invasive breast cancer is associated with high rates of cell death, but also with increased proliferative activity. Br. J. Cancer (1998) 77:789–796.
  • CLEARY M, ROSENBERG SA: The bc1-2 gene, follicular lymphoma, and Hodgkin's disease [editorial; comment]. J. Nati Cancer Inst. (1990) 82:808–809.
  • LIPPONEN P, PIETILAINEN T, KOSMA VM, AALTOMAA S, ESKELINEN M, SYRJANEN K: Apoptosis suppressing protein bc1-2 is expressed in well-differentiated breast carcinomas with favourable prognosis. J. Pathol. (1995) 177:49–55.
  • Apoptosis: molecules and mechanisms. In: Drug Resistance in Leukemia and Lymphoma HI. Andreeff M, Konopleva M (Eds.) (1999):217–236.
  • KORNBLAU SM, THALL PF, ESTROV Z et al.: The prognostic impact of BCL2 protein expression in acute myelogenous leukemia varies with cytogenetics. Clin.Cancer Res. (1999) 5:1758–1766.
  • KONOPLEVA M, ZHAO S, JIANG S et al.: The anti-apoptotic genes Bc1-XL and Bc1-2 are overex-pressed in quiescent leukemic progenitor cells. Blood (1997) 90:2484 Abstract.
  • TANAKA S, LOUIE DC, KANT JA, REED JC: Frequent incidence of somatic mutations in translocated BCL2 oncogenes of non-Hodgkin's lymphomas. Blood (1992) 79:229–237.
  • MATOLCSY A, CASALI P, WARNKE RA, KNOWLES DM: Morphologic transformation of follicular lymphoma is associated with somatic mutation of the translocated Bc1-2 gene. Blood (1996) 88:3937–3944.
  • KITADA S, ANDERSEN J, AKAR S et al.: Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with In vitro and In vivo chemoresponses. Blood (1998) 91:3379–3389.
  • PEPPER C, HOY T, BENTLEY P: Elevated Bc1-2/Bax are a consistent feature of apoptosis resistance in B-cell chronic lymphocytic leukaemia and are correlated with in vivo chemoresistance. Leuk. Lymphoma. (1998) 28:355–361.
  • KAUFMANN SH, KARP JE, SVINGEN et al.: Elevated expression of the apoptotic regulator Mel-1 at the time of leukemic relapse. Blood (1998) 91:991–1000.
  • ESTROV Z, THALL PF, TALPAZ M et al.: Caspase 2 and caspase 3 protein levels as predictors of survival in acute myelogenous leukemia. Blood (19 9 8) 92:3090-3097.
  • LIU R, TAKAYAMA S, ZHENG Y et al.: Interaction of BAG-1 with retinoic acid receptor and its inhibition of retinoic acid-induced apoptosis in cancer cells. J. Biol. Chem. (1998) 273:16985–16992.
  • YANG X, CHERNENKO G, HAO Y et al.: Human BAG-1/RAP46 protein is generated as four isoforms by alternative translation initiation and overexpressed in cancer cells. Oncogene (1998) 17:981–989.
  • AMARANTE-MENDES GP, NAEKYUNG KC, LIU L et al.: Bcr-Abl exerts its anti-apoptotic effect against diverse apoptotic stimuli through blockage of mitochondrial release of cytochrome c and activation of caspase-3. Blood (1998) 91: 1700-1705.
  • SKORSKI T, BELLACOSA A, NIEBOROWSKA-SKORSKA M et al.: Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J (1997) 16:6151–6161.
  • SELLERI C, MACIEJEWSKI JP, PANE F et al.: Fas-mediated modulation of Bcr/Abl in chronic myelogenous leukemia results in differential effects on apoptosis. Blood (1998) 92:981–989.
  • RUVOLO PP, DENG X, CARR BK, MAY WS: A functional role for mitochondrial protein kinase ca in bc12 phosphorylation and suppression of apoptosis. J. Biol. Chem. (1998) 273:25436–25442.
  • TAKAHASHI I, KOBAYASHI E, ASANO K, YOSHIDA M, NAKANO H: UCN-01, a selective inhibitor of protein kinase C from Streptomyces. Jpn. Antibiot. (1987) 40:1782–1784.
  • SAUSVILLE EA, LUSH RD, HEADLEE D et al.: Clinical pharmacology of UCN-01: initial observations and comparison to preclinical models. Cancer Chemother. Pharmacol. (1998) 42Suppl:554-9, 554–S59.
  • AKIYAMA T, YOSHIDA T, TSUJITA T et al. G1 phase accumulation induced by UCN-01 is associated with dephosphorylation of Rb and CDK2 proteins as well as induction of CDK inhibitor p21/Cipl/WAF1/Sdil in p53-mutated human epidermoid carcinoma A431 cells. Cancer Res. (1997) 57:1495–1501.
  • WANG Q, FAN S, EASTMAN A, WORLAND PJ, SAUSVILLE EA, O'CONNOR PM: UCN-01: a potent abrogator of G2 checkpoint function in cancer cells with disrupted p53. J. Natl. Cancer Inst. (1996) 88:956–965.
  • KURATA N, KUWABARA T, TANII H et al.: Pharmacoki-netics and pharmacodynamics of a novel protein kinase inhibitor, UCN-01. Cancer Chemother. Pharmacol. (1999) 44:12–18.
  • FUSE E, TANII H, KURATA N et al.: Unpredicted Clinical Pharmacology of UCN-01 Caused by Specific Binding to Human al-Acid Glycoprotein. Cancer Res. (1998) 58: 3248–3253.
  • SHAO RG, SHIMIZU T, POMMIER Y: 7-Hydroxys-taurosporine (UCN-01) Induces Apoptosis in Human Colon Carcioma and Leukemia Cells Independently of p53. Exp. Cell Res. (1999) 234:388–397.
  • MAUNDRELL L, ANTONSSON B, MAGNENAT E et al: Bc1-2 undergoes phosphorylation by c-Jun N-terminal kinase/stress-activated protein kinases in presence of the constitutively active GTP-binding protein racl. J. Biol. Chem. (1997) 272:25238–25242.
  • BUNCH RT, EASTMAN A: 7-Hydroxystaurosporine (UCN-01) Causes Redistribution of Proliferating Cell Nuclear Antigen and Abrogates Cisplatin-Induced S-Phase Arrest in Chinese Hamster Ovary Cells. Cell Growth Differ. (1997) 8:779–788.
  • AKIYAMA T, SHIMIZU M, OKABE M, TAMAOKI T, AKINAGA S: Differential effects of UCN-01, stauro-sporine and CGP 41 251 on cell cycle progression and CDC2/cyclin B1 regulation in A431 cells synchronized at M phase by nocodazole. Anticancer Drugs (1999) 10:67–78.
  • BUDWORTH J, DAVIES R, MALKHANDI J, GANT TW, FERRY DR, GESCHER A: Comparison of staurosporine
  • HUSAIN A, YAN XJ, ROSALES N, AGHAJANIAN C, SCHWARTZ GK, SPRIGGS DR: UCN-01 in ovary cancer cells: effective as a single agent and in combination with cis-diamminedichloroplatinum(Mindependent of p53 status. Clin.Cancer Res. (1997) 3:2089–2097.
  • MONKS A, VAIGRO-WOLFF, HOSE C, SAUSVILLE E, O'CONNOR PM: Synergistic interactions between UCN-01 and various anticancer agents in vitro: Relationship to p53 function. AACR (1997) 38:322–322.
  • GANDARADR,GUMERLOCKPH:7-hydroxystaurosporine (UCN-01) plus cisplatin (CDDI): molecular mechanisms of dose-, time- and sequence-dependent potentiation in non-small cell lung carcinoma. Proc. Natl. Acad. ScL USA (1999) 16:212a–212a.
  • JARVIS WD, FORNARI FA, SCHWARTZ GK, GRANTS: Dual potentiation of 9-(B-d-arabinofuranosyl)cytosine (ara-C) action by 7-hydroxystaurosporine (UCN-01) and _-threo-sphinganine (safingok SPC-100270). AACR (1997) 38:233–233.
  • SHAO RG, CAO CX, POMMIER Y: Potentiaiton of the cytotoxicity of S-phase specific chemotherapeutic agents by UCN-01 (7-hydroxystaurosporine). AACR (1998) 39:245–245.
  • TAMURA K, SASAKI Y, MINAMI H et al.: Phase I Study of UCN-01 By 3-Hour Infusion. Proc. Amer. Soc. Clin. Oncol. (1999) 18:159a–159a.
  • SENDEROWICZ AM, HEADLEE D, LUSH RD et al: Phase I trial of infusion UCN-01, a novel protein kinase inhibitor in patients with refactory neoplasms. Proc. Amer. Soc. Clin. Oncol. (1999) 18:159a–159a.
  • PETTIT GR, HERALD CL, DOUBEK DL, HERALD DL, ARNOLD E, CLARDY J: Isolation and structure of bryostatin. J. Am. Chem. Soc. (1982) 10:6846–6847.
  • LEVINE BL, MAY WS, TYLER PG, HESS AD: Response of Jurkat T-cells to phorbol ester and bryostatin. Development of sublines with distinct functional responses and changes in protein kinase C activity. J. Immunol. (1991) 147:3474–3481.
  • SCHUCHTER LM, ESA AH, MAY S, LAULIS MK, PETTIT GR, HESS AD: Successful treatment of murine melanoma with bryostatin 1. Cancer Res. (1991) 51:682–687.
  • BASU A, LAZO JS: Sensitization of human cervical carcinoma cells to cis- diamminedichloroplatinum(I0 by bryostatin 1. Cancer Res. (1992) 52:3119–3124.
  • KENNEDY MJ, PRESTIGIACOMO LJ, TYLER G, MAY WS, DAVIDSON NE: Differential effects of bryostatin 1 and phorbol ester on human breast cancer cell lines. Cancer Res. (1992) 52:1278–1283.
  • SMITH JB, SMITH L, PETTIT GR: Bryostatins: potent, new mitogens that mimic phorbol ester tumour promoters. Biochem. Biophys. Res. Commun. (1985) 132:939–945.
  • LILLY M, TOMPKINS C, BROWN C, PETTIT G, KRAFT A: Differentiation and growth modulation of chronic myelogenous leukemia cells by bryostatin. Cancer Res. (1990) 50:5520–5525.
  • GRABAREK J, WARE JA: Protein kinase C activation without membrane contact in platelets stimulated by bryostatin. J. Biol. Chem. (1993) 268:5543–5549.
  • STONE RM, SARIBAN E, PETTIT GR, KUFE DW: Bryostatin 1 activates protein kinase C and induces monocytic differentiation of HL-60 cells. Blood (1988) 72:208–213.
  • MAY WS, SHARKIS SJ, ESA AH et al.: Antineoplastic bryostatins are multipotential stimulators of human hematopoietic progenitor cells. Proc. Natl. Acad. ScL USA (1987) 84:8483–8487.
  • SHARKIS SJ, JONES RJ, BELLIS ML et al: The action of bryostatin on normal human hematopoietic progeni-tors is mediated by accessory cell release of growth factors. Blood (1990) 76:716–720.
  • McCrady CW, Staniswalis J, Pettit GR, Howe C, Grant S: Effect of pharmacologic manipulation of protein kinase C by phorbol dibutyrate and bryostatin ion the clonogenic response of human granulocyte-macrophage progenitors to recombinant GM-CSF. Br. Haematol. (1991) 77:5–15.
  • LI F, GRANT S, PETTIT GR, MCCRADY CW: Bryostatin 1 modulates the proliferation and lineage commitment of human myeloid progenitor cells exposed to recombinant interleukin-3 and recombinant granulocyte-macrophage colony-stimulating factor. Blood (1992) 80:2495–2502.
  • MCCRADY CW, LI F, PETTIT GR, GRANTS: Modulation of the activity of a human granulocyte-macrophage colony- stimulating factor /interleukin-3 fusion protein (pIXY 321) by the macrocyclic lactone protein kinase C activator bryostatin 1. Exp. Hematol. (1993) 21:893–900.
  • JONES RJ, SHARKIS SJ, MILLER CB, ROWINSKY EK, BURKE PJ, MAY WS: Bryostatin 1, a unique biologic response modifier: antileukemic activity in vitro. Blood (1990) 75:1319–1323.
  • KRAFT AS, WILLIAM F, PETTIT GR, LILLY MB: Varied differentiation responses of human leukemias to bryostatin 1. Cancer Res. (1989) 49:1287–1293.
  • HORNUNG RL, PEARSON JW, BECKWITH M, LONGO DL: Preclinical evaluation of bryostatin as an anticancer agent against several murine tumour cell lines: in vitro versus in vivo activity. Cancer Res. (1992) 52:101–107.
  • NISHIZUKA Y: Studies and perspectives of protein kinase C. Science (1986) 233:305–312.
  • NISHIZUKA Y: Studies and prospectives of the protein kinase c family for cellular regulation. Cancer (1989) 63:1892–1903.
  • HOMMA Y, HENNING-CHUBB CB, HUBERMAN E: Translocation of protein kinase C in human leukemia cells susceptible or resistant to differentiation induced by phorbol 12-myristate 13- acetate. Proc. Natl.Acad. Sci. USA (1986) 83:7316–7319.
  • ISAKOV N, GALRON D, MUSTELIN T, PETTIT GR, ALTMAN A: Inhibition of phorbol ester-induced T-cell prolifera-tion by bryostatin is associated with rapid degradation of protein kinase C. J. Immunol (1993) 150:1195–1204.
  • HOCEVAR BA, FIELDS AP: Selective translocation of II-protein kinase C to the nucleus of human promyelo-cytic (11L60) leukemia cells. J. Biol. Chem. (1991) 266:28–33.
  • LEVINE BL, MAY WS, TYLER PG, HESS AD: Response of Jurkat T-cells to phorbol ester and bryostatin. Development of sublines with distinct functional responses and changes in protein kinase C activity. J. Immunol. (1991) 147:3474–3481.
  • BERKOW RL, SCHLABACH L, DODSON R et al: In vivo administration of the anticancer agent bryostatin 1 activates platelets and neutrophils and modulates protein kinase C activity. Cancer Res. (1993) 53:2810–2815.
  • PHILIP PA, REA D, THAVASU P et al: Phase I study of bryostatin 1: assessment of interleukin-6 and tumour necrosis factor a induction in vivo. The Cancer Research Campaign Phase I Committee [see comments]. J. Natl. Cancer Inst. (1993) 85:1812–1818.
  • JAYSON GC, PRENDIVILLE JA, CROWTHER D et al: A Phase I trial of bryostatin 1 in advanced cancer. Proc 8th NCI-EORTC Symposium on New Drugs in Cancer Therapy (1994): Abstract.
  • PRENDIVILLE J, CROWTHER D, THATCHER N et al. A Phase I study of iv. bryostatin 1 in patients with advanced cancer. Br. J. Cancer (1993) 68:418–424.
  • PLUDA J, CTEP. 1999. Ref Type: Personal Communication
  • CARR ME, JR., CARR SL, GRANT S: A sensitive platelet activation-based functional assay for the antileukemic agent bryostatin 1. AntiCancer Drugs (1995) 6:384–391.
  • ZHANG X, ZHANG R, ZHAO H et al.: Preclinical pharma-cology of the natural product anticancer agent bryostatin 1, an activator of protein kinase C. Cancer Res. (1996) 56:802–808.
  • GRANT S, TRAYLOR R, BHALLA K, MCCRADY C, PETTIT GR: Effect of a combined exposure to ara-C, bryostatin 1 and rGM-CSF on the in vitro clonogenic growth of normal and leukemic human hematopoietic progenitor cells. Leukemia (1992) 5:432–439.
  • NARA N, CURTIS JE, SENN JS, TRITCHLER DL, MCCULLOCH EA: The sensitivity to cytosine arabino-side of the blast progenitors of acute myeloblastic leukemia. Blood (1986) 67:762–769.
  • CURTIS JE, MESSNER HA, HASSELBACK R, ELHAKIM TM, MCCULLOCH EA: Contributions of host- and disease-related attributes to the outcome of patients with acute myelogenous leukemia. J. Clin. Oncol. (1984) 2:253–259.
  • GRANT S, TRAYLOR R, BHALLA K, MCCRADY C, PETTIT GR: Effect of a combined exposure to cytosine arabino-side, bryostatin 1, and recombinant granulocyte-macrophage colony-stimulating factor on the clonogenic growth in vitro of normal and leukemic human hematopoietic progenitor cells. Leukemia (1992) 6:432–439.
  • GRANT S, BOISE L, WESTIN E, HOWE C, PETTIT GR, TURNER A, MCCRADY C: In vitro effects of bryostatin 1 on the metabolism and cytotoxicity of 1-13-D-arabinofuranosylcytosine in human leukemia cells. Biochem. Pharmacol. (1991) 42:853–867.
  • GRANT S, JARVIS WD, TURNER AJ, WALLACE HJ, PETTIT GR: Effects of bryostatin 1 and rGM-CSF on the metabo-lism of 1-13-D- arabinofuranosylcytosine in human leukaemic myeloblasts. Br. J. Haematol. (1992) 82:522–528.
  • GRANTS, JARVIS WD, SWERDLOW PS et al: Potentiation of the activity of 1-13-D-arabinofuranosylcytosine by the protein kinase C activator bryostatin 1 in HL-60 cells: association with enhanced fragmentation of mature DNA. Cancer Res. (1992) 52:6270–6278.
  • JARVIS WD, POVIRK LF, TURNER AJ et al: Effects of bryostatin 1 and other pharmacological activators of protein kinase C on 1413-D-arabinofuranosylIcytosine -induced apoptosis in HL- 60 human promyelocytic leukemia cells. Biochem. Pharmacol (1994) 47:839–852.
  • JARVIS WD, FORNARI FA, JR, BROWNING JL, GEWIRTZ DA, KOLESNICK RN, GRANTS: Attenuation of ceramide-induced apoptosis by diglyceride in human myeloid leukemia cells. J. Biol. Chem. (1994) 269:31685–31692.
  • JARVIS WD, TURNER AJ, POVIRK LF, TRAYLOR RS, GRANT S: Induction of apoptotic DNA fragmentation and cell death in HL-60 human promyelocytic leukemia cells by pharmacological inhibitors of protein kinase C. Cancer Res. (1994) 54:1707–1714.
  • GRANT S, TURNER AJ, BARTIMOLE TM, NELMS PA, JOE VC, JARVIS WD: Modulation of 14-D-arabinofuranosyl] cytosine-induced apoptosis in human myeloid leukemia cells by staurosporine and other pharmacol-ogical inhibitors of protein kinase C. OncolRes (1994) 6:87–99.
  • ASIEDU C, BIGGS J, LILLY M, KRAFT AS: Inhibition of leukemic cell growth by the protein kinase C activator bryostatin 1 correlates with the dephosphorylation of cyclin-dependent kinase 2. Cancer Res. (1995) 55:3716–3720.
  • GRANT S, TURNER AJ, FREEMERMAN AJ, WANG Z, KRAMER L, JARVIS WD: Modulation of protein kinase C activity and calcium-sensitive isoform expression in human myeloid leukemia cells by bryostatin 1: relationship to differentiation and ara-C-induced apoptosis. Exp. Cell Res. (1996) 228:65–75.
  • BHATIA U, TRAGANOS F, DARZYNKIEWICZ Z: Induction of cell differentiation potentiates apoptosis triggered
  • HUANG Y, WAXMAN S: Enhanced apoptosis in leukemia cells following treatment with combination fluoropyrimidines and differentiation inducers. Mol. Cell Differ. (1994) 2:83–100.
  • GRANT S, ROBERTS J, POPLIN E et al.: Phase lb trial of bryostatin 1 in patients with refractory malignancies. Clin. Cancer Res. (1998) 4:611–618.
  • WEITMAN S, LANGEVIN AM, BERKOW RL et al.: A Phase I trial of bryostatin-1 in children with refractory solid tumours: a pediatric oncology group study. Clin. Cancer Res. (1999) 5:2344–2348.
  • JAYSON GC, CROWTHER D, PRENDIVILLE J et al.: A Phase I trial of bryostatin 1 in patients with advanced malignancy using a 24 h iv. infusion. Br. J. Cancer (1995) 72:461–468.
  • VARTERASIAN ML, MOHAMMAD RM, EILENDER DS et al.: Phase I study of bryostatin 1 in patients with relapsed non-Hodgkin's lymphoma and chronic lymphocytic leukemia. J. Clin. Oncol. (1998) 16:56–62.
  • PETTIT GR, KAMANO Y, HERALD CL et al.: The isolation and structure of a remarkable marine animal antineo-plastic constituent: Dolastatin 10. J. Am. Chem. Soc. (1987) 109:6883–6885.
  • BAT R, PETTIT GR, HAMEL E: Dolastatin 10, a powerful cytostatic peptide derived from a marine animal. Inhibition of tubulin polymerization mediated through the vinca alkaloid binding domain. Biochem. Pharmacol. (1990) 39:1941–1949.
  • BAT RL, PETTIT GR, HAMEL E: Binding of dolastatin 10 to tubulin at a distinct site for peptide antimitotic agents near the exchangeable nucleotide and vinca alkaloid sites. J Bic)/ Chem. (1990) 265:17141–17149.
  • BAT R, ROACH MC, JAYARAM SK et al.: Differential effects of active isomers, segments, and analogs of dolastatin 10 on ligand interactions with tubulin. Correlation with cytotoxicity. Biochem. Pharmacol. (1993) 45:1503–1515.
  • BAT RL, PETTIT GR, HAMEL E: Structure-activity studies with chiral isomers and with segments of the antimi-totic marine peptide dolastatin 10. Biochem. Pharmacol. (1990) 40:1859–1864.
  • KALEMKERIAN G, OU X, ADIL M, ROSATI R: Dolastatin 10 induces Bc1-2 phosphorylation and apoptosis in small cell lung cancer cells. Proc. Am. Assoc. Cancer Res. (1997) 38: Abstract.
  • HU ZB, GIGNAC SM, QUENTMEIER H, PETTIT GR, DREXLER HG: Effects of dolastatins on human B-lymphocytic leukemia cell lines. Leuk. Res (1993) 17:333–339.
  • MAKI A, MOHAMMAD R, RAZA S, SALEH M, GOVINDA-RAJU KD, PETTIT GR, AL KATIB A: Effect of dolastatin 10 on human non-Hodgkin's lymphoma cell lines. AntiCancer Drugs (1996) 7:344–350.
  • MAKI A, DIWAKARAN H, REDMAN B et al: The bc1-2 and p53 oncoproteins can be modulated by bryostatin 1 and dolastatins in human diffuse large cell lymphoma. AntiCancer Drugs (1995) 6:392–397.
  • TOPPMEYER DL, SLAPAK CA, CROOP J, KUFE DW: Role of P-glycoprotein in dolastatin 10 resistance. Biochem. Pharmacol. (1994) 48:609–612.
  • ESTEY E: Treatment of refractory AML. Leukemia (1996) 10:932–936.
  • STEUBE KG, GRUNICKE D, PIETSCH T, GIGNAC SM, PETTIT GR, DREXLER HG: Dolastatin 10 and dolastatin 15: effects of two natural peptides on growth and differentiation of leukemia cells. Leukemia (1992) 6:1048–1053.
  • QUENTMEIER H, BRAUER S, PETTIT GR et al.: Cytotoxic effects of dolastatin 10 and dolastatin 15 on human leukemia cell lines. Leuk. Lymphoma (1992) 6:245–250.
  • CORTES JE, WRIGHT J, GILES FJ et al.: Phase I study of dolastatin-10 in refractory or relapsed acute leukemia. ASH (1999):Abstract.
  • XIE Z, KONOPLEVA M, CORTES J, ANDREEFF M: Dolastatin 10 affects CD95/Fas, XIAP and Bc1-2 family proteins and is dependent on baseline MDR-1 levels in primary AML. ASH (1999):Abstract.
  • KOTY PP, ZHANG H, LEVITT ML: Antisense bc1-2 treatment increases programmed cell death in non-small cell lung cancer cell lines. Lung Cancer (1999) 23:115–127.
  • ZANGEMEISTER-WITTKE U, SCHENKER T, LUEDKE GH, STAHEL RA: Synergistic cytotoxicity of bc1-2 antisense oligodeoxynucleotides and etoposide, doxorubicin and cisplatin on small-cell lung cancer cell lines. Br. J. Cancer (1998) 78:1035–1042.
  • MORRIS MJ, TONG W, OSMAN I et al.: A Phase UHA dose-escalating trial of Bc1-2 antisense (G3139) treatment by 14-day continuous iv. infusion (CO for patients with androgen-independent prostate cancer or other advanced solid tumour malignancies. ASCO (1999) 18:323a Abstract.
  • CAMPBELL MJ, DAWSON M, KOEFFLER HP: Growth inhibition of DU-145 prostate cancer cells by a Bc1-2 antisense oligonucleotide is enhanced by N-(2-hydroxyphenyflall-trans retinamide. Br. J. Cancer (1998) 77:739–744.
  • MIYAKE H, TOLCHER A, GLEAVE ME: Antisense Bc1-2 oligodeoxynucleotides inhibit progression to androgen- independence after castration in the Shionogi tumour model. Cancer Res. (1 9 9 9) 59:4030-4034.
  • JANSEN B, SCHLAGBAUER-WADL H, BROWN BD et al.: Bc1-2 antisense therapy chemosensitizes human melanoma in SCID mice. Nature Med. (1998) 4:232–234.
  • YANG D, LING Y, ALMAZAN M eta].: Tumour regression of human breast carcinomas by combination therapy of antiBc1-2 antisense oligonucleotide and chemotherapy drugs. AACR (1999) 40:729 (Abstract).
  • KITADA S, TAKAYAMA S, DE RIEL K, TANAKA S, REED JC: Reversal of chemoresistance of lymphoma cells by antisense-mediated reduction of bc1-2 gene expres-sion. Antisense Res. Dev. (1994) 4:71–79.
  • WONG F, BALLY MB, KLASA R: Low dose antisense oligonucleotides to Bc1-2 with cyclophosphamide cures SCID/Rag-2 mice with a human B-cell lymphoma. AA CR (1999) 40:131, (Abstract).
  • KONOPLEVA M, TART A, LOPEZ-BERESTEIN A, ANDREEFF M: Inhibition of Bc1-2 with liposomal-delivered antisense oligonucleotides (AS-ODN) induces apoptosis and increases the sensitivity of primary acute myeloid leukemia (AML) cells and cell lines to cytosine arabinoside and doxorubicin. Blood (1997) 90:494a.
  • KEITH FJ, BRADBURY DA, ZHU YM, RUSSELL NH: Inhibi-tion of bc1-2 with antisense oligonucleotides induces apoptosis and increases the sensitivity of AML blasts to Ara-C. Leukemia (1995) 9:131–138.
  • CAMPOS L, SABIDO 0, ROUAULT JP, GUYOTAT D: Effects of BCL-2 antisense oligodeoxynucleotides on in vitro proliferation and survival of normal marrow progeni-tors and leukemic cells. Blood (1994) 84:595–600.
  • BLOEM A, LOCKHORST H: Bc1-2 antisense therapy in multiple myeloma. Pathol. Biol. (1999 )47:216–220.
  • KONOPLEVA M, TART A, ESTROV Z eta].: Liposomal Bc1-2 antisense oligonucleotides enhance proliferation, sensitize AML to cytosine-arabinoside, and induce apoptosis independent of other anti-apoptotic proteins. Blood (1999) (Submitted).
  • WEBB A, CUNNINGHAM D, COTTER F et al.: BCL-2 antisense therapy in patients with non-Hodgkin lymphoma. Lancet (1997) 349:1137–1141.
  • WATERS JS, WEBB A, CUNNINGHAM D et al: Results of a Phase I clinical trial of bc1-2 antisense molecule G3139 (Genta) in patients with non-Hodgkin's lymphoma (NHL). ASCO (1999) 18:4a.
  • JANSEN B, WACHECK V, HEERE-RESS E et al. A Phase II study with dacarbazine and bc1-2 antisense oligonu-cleotide G3139 (Genta) as a chemosensitizer in patients with advanced malignant melanoma. ASCO (1999) 18:531.
  • FINGERT H, GENTA INCORPORATED: Clinical develop-ment of G3139 antisense drug (oligonucleotide) targeting Bc1-2. Eur. J. Cancer (1999) (In Press).
  • DORM T, GOLUBOFF ET, OLSSON CA, BUTTYAN R: Development of a hammerhead ribozyme against BCL-2. II. Ribozyme treatment sensitizes hormone-resistant prostate cancer cells to apoptotic agents. Anti Cancer Res. (1997) 17:3307–3312,
  • PICHE A, GRIM J, RANCOURT C, GOMEZ-NAVARRO J, REED JC, CURIEL DT: Modulation of Bc1-2 protein levels by an intracellular anti-Bc1-2 single-chain antibody increases drug-induced cytotoxicity in the breast cancer cell line MCF-7. Cancer Res. (1998) 58:2134–2140.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.