187
Views
22
CrossRef citations to date
0
Altmetric
Review

Pharmacogenomics of multiple sclerosis: in search for a personalized therapy

, MD, , PhD & , MD
Pages 3053-3067 | Published online: 12 Nov 2008

Bibliography

  • Hauser SL, Oksenberg JR. The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration. Neuron 2006;52(1):61-76
  • Miller D. Multiple sclerosis: new insights and therapeutic progress. Lancet Neurol 2007;6(1):5-6
  • Greenberg BM, Calabresi PA. Future research directions in multiple sclerosis therapies. Semin Neurol 2008;28(1):121-7
  • Orton SM, Herrera BM, Yee IM, et al. Sex ratio of multiple sclerosis in Canada: a longitudinal study. Lancet Neurol 2006;5(11):932-6
  • Villoslada P, Oksenberg JR, Rio J, Montalban X. Clinical characteristics of responders to interferon therapy for relapsing MS. Neurology 2004;62(9):1653
  • Waubant E, Vukusic S, Gignoux L, et al. Clinical characteristics of responders to interferon therapy for relapsing MS. Neurology 2003;61(2):184-9
  • Trusheim MR, Berndt ER, Douglas FL. Stratified medicine: strategic and economic implications of combining drugs and clinical biomarkers. Nat Rev Drug Discov 2007;6(4):287-93
  • Bielekova B, Martin R. Development of biomarkers in multiple sclerosis. Brain 2004;127(Pt 7):1463-78
  • Danna EA, Nolan GP. Transcending the biomarker mindset: deciphering disease mechanisms at the single cell level. Curr Opin Chem Biol 2006;10(1):20-7
  • Miller DH. Biomarkers and surrogate outcomes in neurodegenerative disease: lessons from multiple sclerosis. NeuroRx 2004;1(2):284-94
  • Gudiksen M, Fleming E, Furstenthal L, Ma P. What drives success for specialty pharmaceuticals? Nat Rev Drug Discov 2008;7(7):563-7
  • Trojano M, Pellegrini F, Fuiani A, et al. New natural history of interferon-beta-treated relapsing multiple sclerosis. Ann Neurol 2007;61(4):300-6
  • Platanias LC. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 2005;5(5):375-86
  • He XS, Ji X, Hale MB, et al. Global transcriptional response to interferon is a determinant of HCV treatment outcome and is modified by race. Hepatology 2006;44(2):352-9
  • Goldstein DB, Tate SK, Sisodiya SM. Pharmacogenetics goes genomic. Nat Rev Genet 2003;4(12):937-47
  • Axtell RC, Steinman L. Type 1 interferons cool the inflamed brain. Immunity 2008;28(5):600-2
  • Benveniste EN, Qin H. Type I interferons as anti-inflammatory mediators. Sci STKE 2007;2007(416):e70
  • Waubant E, Goodkin D, Bostrom A, et al. IFNbeta lowers MMP-9/TIMP-1 ratio, which predicts new enhancing lesions in patients with SPMS. Neurology 2003;60(1):52-7
  • Prinz M, Schmidt H, Mildner A, et al. Distinct and nonredundant in vivo functions of IFNAR on myeloid cells limit autoimmunity in the central nervous system. Immunity 2008;28(5):675-86
  • Guo B, Chang EY, Cheng G. The type I IFN induction pathway constrains Th17-mediated autoimmune inflammation in mice. J Clin Invest 2008;118(5):1680-90
  • Cunningham S, Graham C, Hutchinson M, et al. Pharmacogenomics of responsiveness to interferon IFN-beta treatment in multiple sclerosis: a genetic screen of 100 type I interferon-inducible genes. Clin Pharmacol Ther 2005;78(6):635-46
  • Villoslada P, Barcellos LF, Rio J, et al. The HLA locus and multiple sclerosis in Spain. Role in disease susceptibility, clinical course and response to interferon-beta. J Neuroimmunol 2002;130(1-2):194-201
  • Sriram U, Barcellos LF, Villoslada P, et al. Pharmacogenomic analysis of interferon receptor polymorphisms in multiple sclerosis. Genes Immun 2003;4(2):147-52
  • Byun E, Caillier SJ, Montalban X, et al. Genome-wide pharmacogenomic analysis of the response to interferon beta therapy in multiple sclerosis. Arch Neurol 2008;65(3):337-44
  • Wandinger KP, Lunemann JD, Wengert O, et al. TNF-related apoptosis inducing ligand (TRAIL) as a potential response marker for interferon-beta treatment in multiple sclerosis. Lancet 2003;361(9374):2036-43
  • Petzold A, Brassat D, Mas P, et al. Treatment response in relation to inflammatory and axonal surrogate marker in multiple sclerosis. Mult Scler 2004;10(3):281-3
  • Fernandez O, Fernandez V, Mayorga C, et al. HLA class II and response to interferon-beta in multiple sclerosis. Acta Neurol Scand 2005;112(6):391-4
  • Leyva L, Fernandez O, Fedetz M, et al. IFNAR1 and IFNAR2 polymorphisms confer susceptibility to multiple sclerosis but not to interferon-beta treatment response. J Neuroimmunol 2005;163(1-2):165-71
  • Weinstock-Guttman B, Tamano-Blanco M, Bhasi K, et al. Pharmacogenetics of MXA SNPs in interferon-beta treated multiple sclerosis patients. J Neuroimmunol 2007;182(1-2):236-9
  • Rio J, Nos C, Tintore M, et al. Defining the response to interferon-beta in relapsing–remitting multiple sclerosis patients. Ann Neurol 2006;59(2):344-52
  • Rudick RA, Lee JC, Simon J, et al. Defining interferon beta response status in multiple sclerosis patients. Ann Neurol 2004;56(4):548-55
  • Sturzebecher S, Wandinger KP, Rosenwald A, et al. Expression profiling identifies responder and non-responder phenotypes to interferon-beta in multiple sclerosis. Brain 2003;126(Pt 6):1419-29
  • Katsoulidis E, Li Y, Mears H, Platanias LC. The p38 mitogen-activated protein kinase pathway in interferon signal transduction. J Interferon Cytokine Res 2005;25(12):749-56
  • Kaur S, Uddin S, Platanias LC. The PI3′ kinase pathway in interferon signaling. J Interferon Cytokine Res 2005;25(12):780-7
  • Mogensen KE, Lewerenz M, Reboul J, et al. The type I interferon receptor: structure, function, and evolution of a family business. J Interferon Cytokine Res 1999;19(10):1069-98
  • Pfeffer LM, Basu L, Pfeffer SR, et al. The short form of the interferon alpha/beta receptor chain 2 acts as a dominant negative for type I interferon action. J Biol Chem 1997;272(17):11002-5
  • Domanski P, Witte M, Kellum M, et al. Cloning and expression of a long form of the beta subunit of the interferon alpha beta receptor that is required for signaling. J Biol Chem 1995;270(37):21606-11
  • Darnell JE Jr, Kerr IM, Stark GR. Jak–STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994;264(5164):1415-21
  • Baranzini SE, Mousavi P, Rio J, et al. Transcription-based prediction of response to IFNbeta using supervised computational methods. PLoS Biol 2005;3(1):e2
  • Reich NC, Liu L. Tracking STAT nuclear traffic. Nat Rev Immunol 2006;6(8):602-12
  • Weinstock-Guttman B, Badgett D, Patrick K, et al. Genomic effects of IFN-beta in multiple sclerosis patients. J Immunol 2003;171(5):2694-702
  • Feng X, Petraglia AL, Chen M, et al. Low expression of interferon-stimulated genes in active multiple sclerosis is linked to subnormal phosphorylation of STAT1. J Neuroimmunol 2002;129(1-2):205-15
  • Uddin S, Sassano A, Deb DK, et al. Protein kinase C-delta (PKC-delta ) is activated by type I interferons and mediates phosphorylation of Stat1 on serine 727. J Biol Chem 2002;277(17):14408-16
  • Lekmine F, Uddin S, Sassano A, et al. Activation of the p70 S6 kinase and phosphorylation of the 4E-BP1 repressor of mRNA translation by type I interferons. J Biol Chem 2003;278(30):27772-80
  • Fujimoto M, Naka T. Regulation of cytokine signaling by SOCS family molecules. Trends Immunol 2003;24(12):659-66
  • Liu B, Liao J, Rao X, et al. Inhibition of Stat1-mediated gene activation by PIAS1. Proc Natl Acad Sci USA 1998;95(18):10626-31
  • Gniadek P, Aktas O, Wandinger KP, et al. Systemic IFN-beta treatment induces apoptosis of peripheral immune cells in MS patients. J Neuroimmunol 2003;137(1-2):187-96
  • Sharief MK, Noori MA, Zoukos Y. Reduced expression of the inhibitor of apoptosis proteins in T cells from patients with multiple sclerosis following interferon-beta therapy. J Neuroimmunol 2002;129(1-2):224-31
  • Sharief MK, Semra YK. Down-regulation of survivin expression in T lymphocytes after interferon beta-1a treatment in patients with multiple sclerosis. Arch Neurol 2002;59(7):1115-21
  • Fernald GH, Knott S, Pachner A, et al. Genome-wide network analysis reveals the global properties of IFN-beta immediate transcriptional effects in humans. J Immunol 2007;178(8):5076-85
  • Hong J, Zang YC, Hutton G, et al. Gene expression profiling of relevant biomarkers for treatment evaluation in multiple sclerosis. J Neuroimmunol 2004;152(1-2):126-39
  • Malucchi S, Gilli F, Caldano M, et al. Predictive markers for response to interferon therapy in patients with multiple sclerosis. Neurology 2008;70(13 Pt 2):1119-27
  • Millonig A, Dressel A, Bahner D, et al. MxA protein–an interferon beta biomarker in primary progressive multiple sclerosis patients. Eur J Neurol 2008;15(8):822-6
  • Moreland LW, Baumgartner SW, Schiff MH, et al. Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)-Fc fusion protein. N Engl J Med 1997;337(3):141-7
  • Koike F, Satoh J, Miyake S, et al. Microarray analysis identifies interferon beta-regulated genes in multiple sclerosis. J Neuroimmunol 2003;139(1-2):109-18
  • Huang YM, Adikari S, Bave U, et al. Multiple sclerosis: interferon-beta induces CD123(+)BDCA2- dendritic cells that produce IL-6 and IL-10 and have no enhanced type I interferon production. J Neuroimmunol 2005;158(1-2):204-12
  • Nicoletti F, Di Marco R, Patti F, et al. Short-term treatment of relapsing remitting multiple sclerosis patients with interferon (IFN)-beta1B transiently increases the blood levels of interleukin (IL)-6, IL-10 and IFN-gamma without significantly modifying those of IL-1beta, IL-2, IL-4 and tumour necrosis factor-alpha. Cytokine 2000;12(6):682-7
  • Espejo C, Brieva L, Ruggiero G, et al. IFN-beta treatment modulates the CD28/CTLA-4-mediated pathway for IL-2 production in patients with relapsing–remitting multiple sclerosis. Mult Scler 2004;10(6):630-5
  • Schreiner B, Mitsdoerffer M, Kieseier BC, et al. Interferon-beta enhances monocyte and dendritic cell expression of B7-H1 (PD-L1), a strong inhibitor of autologous T-cell activation: relevance for the immune modulatory effect in multiple sclerosis. J Neuroimmunol 2004;155(1-2):172-82
  • Jensen J, Krakauer M, Sellebjerg F. Cytokines and adhesion molecules in multiple sclerosis patients treated with interferon-beta1b. Cytokine 2005;29(1):24-30
  • O'Garra A, Vieira P. T(H)1 cells control themselves by producing interleukin-10. Nat Rev Immunol 2007;7(6):425-8
  • Martinez-Forero I, Garcia-Munoz R, Martinez-Pasamar S, et al. IL-10 suppressor activity and ex vivo Tr1 cell function are impaired in multiple sclerosis. Eur J Immunol 2008;38(2):576-86
  • Cho JH. The genetics and immunopathogenesis of inflammatory bowel disease. Nat Rev Immunol 2008;8(6):458-66
  • Laver T, Nozell SE, Benveniste EN. IFN-beta-mediated inhibition of IL-8 expression requires the ISGF3 components Stat1, Stat2, and IRF-9. J Interferon Cytokine Res 2008;28(1):13-23
  • Sospedra M, Martin R. Immunology of multiple sclerosis. Annu Rev Immunol 2005;23:683-747
  • Bugeon L, Dallman MJ. Costimulation of T cells. Am J Respir Crit Care Med 2000;162(4 Pt 2):S164-8
  • Liu Z, Pelfrey CM, Cotleur A, et al. Immunomodulatory effects of interferon beta-1a in multiple sclerosis. J Neuroimmunol 2001;112(1-2):153-62
  • Marckmann S, Wiesemann E, Hilse R, et al. Interferon-beta up-regulates the expression of co-stimulatory molecules CD80, CD86 and CD40 on monocytes: significance for treatment of multiple sclerosis. Clin Exp Immunol 2004;138(3):499-506
  • Shapiro S, Galboiz Y, Lahat N, et al. The ‘immunological-synapse’ at its APC side in relapsing and secondary-progressive multiple sclerosis: modulation by interferon-beta. J Neuroimmunol 2003;144(1-2):116-24
  • Iglesias AH, Camelo S, Hwang D, et al. Microarray detection of E2F pathway activation and other targets in multiple sclerosis peripheral blood mononuclear cells. J Neuroimmunol 2004;150(1-2):163-77
  • Wiesemann E, Deb M, Trebst C, et al. Effects of interferon-beta on co-signaling molecules: upregulation of CD40, CD86 and PD-L2 on monocytes in relation to clinical response to interferon-beta treatment in patients with multiple sclerosis. Mult Scler 2008;14(2):166-76
  • Rudd CE. The reverse stop-signal model for CTLA4 function. Nat Rev Immunol 2008;8(2):153-60
  • Bruce SP, Boyce EG. Update on abatacept: a selective costimulation modulator for rheumatoid arthritis. Ann Pharmacother 2007;41(7):1153-62
  • Suppiah V, Alloza I, Heggarty S, et al. The CTLA4+49 A/G*G-CT60*G haplotype is associated with susceptibility to multiple sclerosis in Flanders. J Neuroimmunol 2005;164(1-2):148-53
  • Ligers A, Xu C, Saarinen S, et al. The CTLA-4 gene is associated with multiple sclerosis. J Neuroimmunol 1999;97(1-2):182-90
  • Harbo HF, Celius EG, Vartdal F, Spurkland A. CTLA4 promoter and exon 1 dimorphisms in multiple sclerosis. Tissue Antigens 1999;53(1):106-10
  • Alizadeh M, Babron MC, Birebent B, et al. Genetic interaction of CTLA-4 with HLA-DR15 in multiple sclerosis patients. Ann Neurol 2003;54(1):119-22
  • Malferrari G, Stella A, Monferini E, et al. Ctla4 and multiple sclerosis in the Italian population. Exp Mol Pathol 2005;78(1):55-7
  • Hafler DA, Compston A, Sawcer S, et al. Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med 2007;357(9):851-62
  • Thio CL, Mosbruger TL, Kaslow RA, et al. Cytotoxic T-lymphocyte antigen 4 gene and recovery from hepatitis B virus infection. J Virol 2004;78(20):11258-62
  • Maier LM, Anderson DE, De Jager PL, et al. Allelic variant in CTLA4 alters T cell phosphorylation patterns. Proc Natl Acad Sci USA 2007;104(47):18607-12
  • Palacios R, Comas D, Villoslada P. Genomic regulation of CTLA4 and autoimmunity. J Neuroimmunol 2008; In press
  • Bechmann I, Galea I, Perry VH. What is the blood–brain barrier (not)? Trends Immunol 2007;28(1):5-11
  • Galea I, Bechmann I, Perry VH. What is immune privilege (not)? Trends Immunol 2007;28(1):12-18
  • Yednock TA, Cannon C, Fritz LC, et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 1992;356(6364):63-6
  • Soilu-Hanninen M, Laaksonen M, Hanninen A, et al. Downregulation of VLA-4 on T cells as a marker of long term treatment response to interferon beta-1a in MS. J Neuroimmunol 2005;167(1-2):175-82
  • Graber J, Zhan M, Ford D, et al. Interferon-beta-1a induces increases in vascular cell adhesion molecule: implications for its mode of action in multiple sclerosis. J Neuroimmunol 2005;161(1-2):169-76
  • Rice GP, Hartung HP, Calabresi PA. Anti-alpha4 integrin therapy for multiple sclerosis: mechanisms and rationale. Neurology 2005;64(8):1336-42
  • Sheremata WA, Vollmer TL, Stone LA, et al. A safety and pharmacokinetic study of intravenous natalizumab in patients with MS. Neurology 1999;52(5):1072-4
  • Lindberg RL, Achtnichts L, Hoffmann F, et al. Natalizumab alters transcriptional expression profiles of blood cell subpopulations of multiple sclerosis patients. J Neuroimmunol 2008;194(1-2):153-64
  • Ransohoff RM. Natalizumab for multiple sclerosis. N Engl J Med 2007;356(25):2622-9
  • Kleinschmidt-DeMasters BK, Tyler KL. Progressive multifocal leukoen cephalopathy complicating treatment with natalizumab and interferon beta-1a for multiple sclerosis. N Engl J Med 2005;353(4):369-74
  • Yousry TA, Major EO, Ryschkewitsch C, et al. Evaluation of patients treated with natalizumab for progressive multifocal leukoencephalopathy. N Engl J Med 2006;354(9):924-33
  • Gold R, Jawad A, Miller DH, et al. Expert opinion: guidelines for the use of natalizumab in multiple sclerosis patients previously treated with immunomodulating therapies. J Neuroimmunol 2007;187(1-2):156-8
  • Farina C, Weber MS, Meinl E, et al. Glatiramer acetate in multiple sclerosis: update on potential mechanisms of action. Lancet Neurol 2005;4(9):567-75
  • Allie R, Hu L, Mullen KM, et al. Bystander modulation of chemokine receptor expression on peripheral blood T lymphocytes mediated by glatiramer therapy. Arch Neurol 2005;62(6):889-94
  • Fusco C, Andreone V, Coppola G, et al. HLA-DRB1*1501 and response to copolymer-1 therapy in relapsing-remitting multiple sclerosis. Neurology 2001;57(11):1976-9
  • Grossman I, Avidan N, Singer C, et al. Pharmacogenetics of glatiramer acetate therapy for multiple sclerosis reveals drug-response markers. Pharmacogenet Genomics 2007;17(8):657-66
  • Kitano H. Systems biology: a brief overview. Science 2002;295(5560):1662-4
  • Kitano H. Computational systems biology. Nature 2002;420(6912):206-10
  • Butcher EC. Can cell systems biology rescue drug discovery? Nat Rev Drug Discov 2005;4(6):461-7
  • Goni J, Esteban FJ, Velez De Mendizabal N, et al. A computational analysis of the protein–protein interaction networks in neurodegenerative diseases. BMC Syst Biol 2008;2(1):52
  • Palacios R, Goni J, Martinez-Forero I, et al. A network analysis of the human T-cell activation gene network identifies JAGGED1 as a therapeutic target for autoimmune diseases. PLoS One 2007;2(11):e1222
  • Alon U. Network motifs: theory and experimental approaches. Nat Rev Genet 2007;8(6):450-61
  • Angeli D, Ferrell JE Jr, Sontag ED. Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc Natl Acad Sci USA 2004;101(7):1822-7
  • Craciun G, Tang Y, Feinberg M. Understanding biostability in complex enzyme-driven reaction networks. Proc Natl Acad Sci USA 2006;103(23):8697-702
  • Kholodenko BN. Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 2006;7(3):165-76
  • Feinerman O, Veiga J, Dorfman JR, et al. Variability and robustness in T cell activation from regulated heterogeneity in protein levels. Science 2008;321(5892):1081-4
  • Villoslada P, Oksenberg JR. Neuroinformatics in clinical practice: are computers going to help neurological patients and their physicians? Future Neurol 2006;1(2):1-12

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.