305
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Pharmacogenomics of pediatric acute lymphoblastic leukemia

, & , MD
Pages 1621-1632 | Published online: 29 Apr 2010

Bibliography

  • Friedrich MJ. Childhood ALL researchers focus on high-risk patients. J Natl Cancer Inst 2009;11:702-4
  • Landier W, Bhatia S. Cancer survivorship: a pediatric perspective. Oncologist 2008;13:1181-92
  • Aplenc R, Lange B. Pharmacogenetic determinants of outcome in acute lymphoblastic leukaemia. Br J Haematol 2004;125:421-34
  • Cheok MH, Evans WE. Acute lymphoblastic leukaemia: a model for the pharmacogenomics of cancer therapy. Nat Rev Cancer 2006;6:117-29
  • Hjalgrim LL, Rostgaard K, Schmiegelow K, Age- and sex-specific incidence of childhood leukemia by immunophenotype in the Nordic countries. J Natl Cancer Inst 2003;95:1539-44
  • Ramakers-van Woerden NL, Pieters R, Loonen AH, TEL/AML1 gene fusion is related to in vitro drug sensitivity for L-asparaginase in childhood acute lymphoblastic leukemia. Blood 2000;96:1094-9
  • Kaspers GJ, Smets LA, Pieters R, Favorable prognosis of hyperdiploid common acute lymphoblastic leukemia may be explained by sensitivity to antimetabolites and other drugs: results of an in vitro study. Blood 1995;85:751-6
  • Ramakers-van Woerden NL, Pieters R, Hoelzer D, In vitro drug resistance profile of Philadelphia positive acute lymphoblastic leukemia is heterogeneous and related to age: a report of the Dutch and German Leukemia Study Groups. Med Pediatr Oncol 2002;38:379-86
  • Pieters R, den Boer ML, Durian M, Relation between age, immunophenotype and in vitro drug resistance in 395 children with acute lymphoblastic leukemia – implications for treatment of infants. Leukemia 1998;12:1344-8
  • Goldberg JM, Silverman LB, Levy DE, Childhood T-cell acute lymphoblastic leukemia: the Dana-Farber Cancer Institute acute lymphoblastic leukemia consortium experience. J Clin Oncol 2003;21:3616-22
  • Coustan-Smith E, Mullighan CG, Onciu M, Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol 2009;10:147-56
  • Ferrando AA, Neuberg DS, Dodge RK, Prognostic importance of TLX1 (HOX11) oncogene expression in adults with T-cell acute lymphoblastic leukaemia. Lancet 2004;363:535-6
  • Ferrando AA, Neuberg DS, Staunton J, Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002;1:75-87
  • Meijerink JP, den Boer ML, Pieters R. New genetic abnormalities and treatment response in acute lymphoblastic leukemia. Semin Hematol 2009;46:16-23
  • Yeoh EJ, Ross ME, Shurtleff SA, Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002;1:133-43
  • Flotho C, Coustan-Smith E, Pei D, A set of genes that regulate cell proliferation predicts treatment outcome in childhood acute lymphoblastic leukemia. Blood 2007;110:1271-7
  • Holleman A, Cheok MH, den Boer ML, Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med 2004;351:533-42
  • Lugthart S, Cheok MH, den Boer ML, Identification of genes associated with chemotherapy crossresistance and treatment response in childhood acute lymphoblastic leukemia. Cancer Cell 2005;7:375-86
  • Nyvold C, Madsen HO, Ryder LP, Precise quantification of minimal residual disease at day 29 allows identification of children with acute lymphoblastic leukemia and an excellent outcome. Blood 2002;99:1253-8
  • Zhou J, Goldwasser MA, Li A, Quantitative analysis of minimal residual disease predicts relapse in children with B-lineage acute lymphoblastic leukemia in DFCI ALL Consortium Protocol 95-01. Blood 2007;110:1607-11
  • Davies SM, Borowitz MJ, Rosner GL, Pharmacogenetics of minimal residual disease response in children with B-precursor acute lymphoblastic leukemia: a report from the Children's Oncology Group. Blood 2008;111:2984-90
  • Iwamoto S, Mihara K, Downing JR, Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest 2007;117:1049-57
  • da Silva Silveira V, Canalle R, Scrideli CA, Polymorphisms of xenobiotic metabolizing enzymes and DNA repair genes and outcome in childhood acute lymphoblastic leukemia. Leuk Res 2009;33:898-901
  • Yang JJ, Cheng C, Yang W, Genome-wide interrogation of germline genetic variation associated with treatment response in childhood acute lymphoblastic leukemia. JAMA 2009;301:393-403
  • Tinhofer I, Marschitz I, Henn T, Expression of functional interleukin-15 receptor and autocrine production of interleukin-15 as mechanisms of tumor propagation in multiple myeloma. Blood 2000;95:610-18
  • Cario G, Izraeli S, Teichert A, High interleukin-15 expression characterizes childhood acute lymphoblastic leukemia with involvement of the CNS. J Clin Oncol 2007;25:4813-20
  • Fleury I, Primeau M, Doreau A, Polymorphisms in genes involved in the corticosteroid response and the outcome of childhood acute lymphoblastic leukemia. Am J Pharmacogenomics 2004;4:331-41
  • Aplenc R, Glatfelter W, Han P, CYP3A genotypes and treatment response in paediatric acute lymphoblastic leukaemia. Br J Haematol 2003;122:240-4
  • Rocha JC, Cheng C, Liu W, Pharmacogenetics of outcome in children with acute lymphoblastic leukemia. Blood 2005;105:4752-8
  • Kishi S, Yang W, Boureau B, Effects of prednisone and genetic polymorphisms on etoposide disposition in children with acute lymphoblastic leukemia. Blood 2004;103:67-72
  • Stanulla M, Schrappe M, Brechlin AM, Polymorphisms within glutathione S-transferase genes (GSTM1, GSTT1, GSTP1) and risk of relapse in childhood B-cell precursor acute lymphoblastic leukemia: a case-control study. Blood 2000;95:1222-8
  • Chen CL, Liu Q, Pui CH, Higher frequency of glutathione S-transferase deletions in black children with acute lymphoblastic leukemia. Blood 1997;89:1701-7
  • Davies SM, Bhatia S, Ross JA, Glutathione S-transferase genotypes, genetic susceptibility, and outcome of therapy in childhood acute lymphoblastic leukemia. Blood 2002;100:67-71
  • Krajinovic M, Labuda D, Mathonnet G, Polymorphisms in genes encoding drugs and xenobiotic metabolizing enzymes, DNA repair enzymes, and response to treatment of childhood acute lymphoblastic leukemia. Clin Cancer Res 2002;8:802-10
  • Anderer G, Schrappe M, Brechlin AM, Polymorphisms within glutathione S-transferase genes and initial response to glucocorticoids in childhood acute lymphoblastic leukaemia. Pharmacogenetics 2000;10:715-26
  • Stanulla M, Schaffeler E, Arens S, GSTP1 and MDR1 genotypes and central nervous system relapse in childhood acute lymphoblastic leukemia. Int J Hematol 2005;81:39-44
  • Kishi S, Cheng C, French D, Ancestry and pharmacogenetics of antileukemic drug toxicity. Blood 2007;109:4151-7
  • Jamroziak K, Mlynarski W, Balcerczak E, Functional C3435T polymorphism of MDR1 gene: an impact on genetic susceptibility and clinical outcome of childhood acute lymphoblastic leukemia. Eur J Haematol 2004;72:314-21
  • Ansari M, Sauty G, Labuda M, Polymorphisms in multidrug resistance-associated protein gene 4 is associated with outcome in childhood acute lymphoblastic leukemia. Blood 2009;114:1383-6
  • de Jonge R, Hooijberg JH, van Zelst BD, Effect of polymorphisms in folate-related genes on in vitro methotrexate sensitivity in pediatric acute lymphoblastic leukemia. Blood 2005;106:717-20
  • Krajinovic M, Costea I, Chiasson S. Polymorphism of the thymidylate synthase gene and outcome of acute lymphoblastic leukaemia. Lancet 2002;359:1033-4
  • Krajinovic M, Costea I, Primeau M, Combining several polymorphisms of thymidylate synthase gene for pharmacogenetic analysis. Pharmacogenomics J 2005;5:374-80
  • Dulucq S, St-Onge G, Gagne V, DNA variants in the dihydrofolate reductase gene and outcome in childhood ALL. Blood 2008;111:3692-700
  • Ongaro A, De Mattei M, Della Porta MG, Gene polymorphisms in folate metabolizing enzymes in adult acute lymphoblastic leukemia: effects on methotrexate-related toxicity and survival. Haematologica 2009;94:1391-8
  • Lauten M, Asgedom G, Welte K, Thymidylate synthase gene polymorphism and its association with relapse in childhood B-cell precursor acute lymphoblastic leukemia. Haematologica 2003;88:353-4
  • Aplenc R, Thompson J, Han P, Methylenetetrahydrofolate reductase polymorphisms and therapy response in pediatric acute lymphoblastic leukemia. Cancer Res 2005;65:2482-7
  • Krajinovic M, Lemieux-Blanchard E, Chiasson S, Role of polymorphisms in MTHFR and MTHFD1 genes in the outcome of childhood acute lymphoblastic leukemia. Pharmacogenomics J 2004;4:66-72
  • Pietrzyk JJ, Bik-Multanowski M, Balwierz W, Additional genetic risk factor for death in children with acute lymphoblastic leukemia: a common polymorphism of the MTHFR gene. Pediatr Blood Cancer 2009;52:364-8
  • Chiusolo P, Reddiconto G, Farina G, MTHFR polymorphisms' influence on outcome and toxicity in acute lymphoblastic leukemia patients. Leuk Res 2007;31:1669-74
  • Krynetski EY, Evans WE. Pharmacogenetics of cancer therapy: getting personal. Am J Hum Genet 1998;63:11-6
  • Evans WE, McLeod HL. Pharmacogenomics – drug disposition, drug targets, and side effects. N Engl J Med 2003;348:538-49
  • Weinshilboum RM, Sladek SL. Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet 1980;32:651-62
  • Lennard L, Van Loon JA, Weinshilboum RM. Pharmacogenetics of acute azathioprine toxicity: relationship to thiopurine methyltransferase genetic polymorphism. Clin Pharmacol Ther 1989;46:149-54
  • McBride KL, Gilchrist GS, Smithson WA, Severe 6-thioguanine-induced marrow aplasia in a child with acute lymphoblastic leukemia and inhibited thiopurine methyltransferase deficiency. J Pediatr Hematol Oncol 2000;22:441-5
  • Remy CN. Metabolism of thiopyrimidines and thiopurines. J Biol Chem 1963;238:1078-84
  • Woodson LC, Weinshilboum RM. Human kidney thiopurine methyltransferase. Purification and biochemical properties. Biochem Pharmacol 1983;32:819-26
  • Stanulla M, Schaeffeler E, Flohr T, Thiopurine methyltransferase (TPMT) genotype and early treatment response to mercaptopurine in childhood acute lymphoblastic leukemia. JAMA 2005;293:1485-9
  • Relling MV, Hancock ML, Boyett JM, Prognostic importance of 6-mercaptopurine dose intensity in acute lymphoblastic leukemia. Blood 1999;93:2817-23
  • Schmiegelow K, Forestier E, Kristinsson J, Thiopurine methyltransferase activity is related to the risk of relapse of childhood acute lymphoblastic leukemia: results from the NOPHO ALL-92 study. Leukemia 2009;23:557-64
  • Krynetski E, Evans WE. Drug methylation in cancer therapy: lessons from the TPMT polymorphism. Oncogene 2003;22:7403-13
  • Yates CR, Krynetski EY, Loennechen T, Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann Intern Med 1997;126:608-14
  • Tai HL, Krynetski EY, Yates CR, Thiopurine S-methyltransferase deficiency: two nucleotide transitions define the most prevalent mutant allele associated with loss of catalytic activity in Caucasians. Am J Hum Genet 1996;58:694-702
  • Wang L, Nguyen TV, McLaughlin RW, Human thiopurine S-methyltransferase pharmacogenetics: variant allozyme misfolding and aggresome formation. Proc Natl Acad Sci USA 2005;102:9394-9
  • Evans WE, Horner M, Chu YQ, Altered mercaptopurine metabolism, toxic effects, and dosage requirement in a thiopurine methyltransferase-deficient child with acute lymphocytic leukemia. J Pediatr 1991;119:985-9
  • Lennard L, Lilleyman JS, Van Loon J, Weinshilboum RM. Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukaemia. Lancet 1990;336:225-9
  • Evans WE, Hon YY, Bomgaars L, Preponderance of thiopurine S-methyltransferase deficiency and heterozygosity among patients intolerant to mercaptopurine or azathioprine. J Clin Oncol 2001;19:2293-301
  • Schmiegelow K, Al-Modhwahi I, Andersen MK, Methotrexate/ 6-mercaptopurine maintenance therapy influences the risk of a second malignant neoplasm after childhood acute lymphoblastic leukemia: results from the NOPHO ALL-92 study. Blood 2009;113:6077-84
  • Relling MV, Rubnitz JE, Rivera GK, High incidence of secondary brain tumours after radiotherapy and antimetabolites. Lancet 1999;354:34-9
  • Relling MV, Yanishevski Y, Nemec J, Etoposide and antimetabolite pharmacology in patients who develop secondary acute myeloid leukemia. Leukemia 1998;12:346-52
  • Thompsen J, Schroder H, Kristinsson J, Possible carcinogenic effect of 6-mercaptopurine on bone marrow stem cells: relation to thiopurine metabolism. Cancer 1999;86:1080-6
  • Pui CH, Campana D, Pei D, Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med 2009;360:2730-41
  • Relling MV, Pui CH, Cheng C, Evans WE. Thiopurine methyltransferase in acute lymphoblastic leukemia. Blood 2006;107:843-4
  • Weinshilboum R. Richard weinshilboum: pharmacogenetics: the future is here! Mol Interv 2003;3:118-22
  • Maitland ML, Vasisht K, Ratain MJ. TPMT, UGT1A1 and DPYD: genotyping to ensure safer cancer therapy? Trends Pharmacol Sci 2006;27:432-7
  • Stocco G, Crews KR, Evans WE. Genetic polymorphism of inosine-triphosphate-pyrophosphatase influences mercaptopurine metabolism and toxicity during treatment of acute lymphoblastic leukemia individualized for thiopurine-S-methyl-transferase status. Expert Opin Drug Saf 2010;9:23-37
  • Robien K, Schubert MM, Bruemmer B, Predictors of oral mucositis in patients receiving hematopoietic cell transplants for chronic myelogenous leukemia. J Clin Oncol 2004;22:1268-75
  • Ulrich CM, Yasui Y, Storb R, Pharmacogenetics of methotrexate: toxicity among marrow transplantation patients varies with the methylenetetrahydrofolate reductase C677T polymorphism. Blood 2001;98:231-4
  • Kishi S, Cheng C, French D, Ancestry and pharmacogenetics of antileukemic drug toxicity. Blood 2007;109:4151-7
  • Relling MV, Yang W, Das S, Pharmacogenetic risk factors for osteonecrosis of the hip among children with leukemia. J Clin Oncol 2004;22:3930-6
  • van de Steeg E, van der Kruijssen CM, Wagenaar E, Methotrexate pharmacokinetics in transgenic mice with liver-specific expression of human organic anion-transporting polypeptide 1B1 (SLCO1B1). Drug Metab Dispos 2009;37(2):277-81
  • Trevino LR, Shimasaki N, Yang W, Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. J Clin Oncol 2009;27:5972-8
  • Evans WE, Relling MV, Rodman JH, Conventional compared with individualized chemotherapy for childhood acute lymphoblastic leukemia. N Engl J Med 1998;338:499-505
  • Evans WE, Relling MV, Boyett JM, Pui CH. Does pharmacokinetic variability influence the efficacy of high-dose methotrexate for the treatment of children with acute lymphoblastic leukemia: what can we learn from small studies? Leuk Res 1997;21:435-7
  • Schrappe M, Reiter A, Ludwig WD, Improved outcome in childhood acute lymphoblastic leukemia despite reduced use of anthracyclines and cranial radiotherapy: results of trial ALL-BFM 90. German-Austrian-Swiss ALL-BFM Study Group. Blood 2000;95:3310-22
  • Townsend DM, Tew KD. The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 2003;22:7369-75
  • Gentile DM, Tomlinson ES, Maggs JL, Dexamethasone metabolism by human liver in vitro. Metabolite identification and inhibition of 6-hydroxylation. J Pharmacol Exp Ther 1996;277(1):105-12
  • Meissner B, Stanulla M, Ludwig WD, The GSTT1 deletion polymorphism is associated with initial response to glucocorticoids in childhood acute lymphoblastic leukemia. Leukemia 2004;18:1920-3
  • Schmidt S, Rainer J, Ploner C, Glucocorticoid-induced apoptosis and glucocorticoid resistance: molecular mechanisms and clinical relevance. Cell Death Differ 2004;11(Suppl 1):S45-55
  • Kamdem LK, Hamilton L, Cheng C, Genetic predictors of glucocorticoid-induced hypertension in children with acute lymphoblastic leukemia. Pharmacogenet Genomics 2008;18:507-14
  • Jones TS, Kaste SC, Liu W, CRHR1 polymorphisms predict bone density in survivors of acute lymphoblastic leukemia. J Clin Oncol 2008;26:3031-7
  • Marino S, Verzegnassi F, Tamaro P, Response to glucocorticoids and toxicity in childhood acute lymphoblastic leukemia: role of polymorphisms of genes involved in glucocorticoid response. Pediatr Blood Cancer 2009;53:984-91
  • Mattano LA Jr, Sather HN, Trigg ME, Nachman JB. Osteonecrosis as a complication of treating acute lymphoblastic leukemia in children: a report from the Children's Cancer Group. J Clin Oncol 2000;18:3262-72
  • Ribeiro RC, Fletcher BD, Kennedy W, Magnetic resonance imaging detection of avascular necrosis of the bone in children receiving intensive prednisone therapy for acute lymphoblastic leukemia or non-Hodgkin lymphoma. Leukemia 2001;15:891-7
  • French D, Hamilton LH, Mattano LA Jr, A PAI-1 (SERPINE1) polymorphism predicts osteonecrosis in children with acute lymphoblastic leukemia: a report from the Children's Oncology Group. Blood 2008;111:4496-9
  • Gidding CE, Meeuwsen-de Boer GJ, Koopmans P, Vincristine pharmacokinetics after repetitive dosing in children. Cancer Chemother Pharmacol 1999;44:203-9
  • Hartman A, van den Bos C, Stijnen T, Pieters R. Decrease in motor performance in children with cancer is independent of the cumulative dose of vincristine. Cancer 2006;106:1395-401
  • Chauvenet AR, Shashi V, Selsky C, Vincristine-induced neuropathy as the initial presentation of charcot-marie-tooth disease in acute lymphoblastic leukemia: a Pediatric Oncology Group study. J Pediatr Hematol Oncol 2003;25:316-20
  • Renbarger JL, McCammack KC, Rouse CE, Hall SD. Effect of race on vincristine-associated neurotoxicity in pediatric acute lymphoblastic leukemia patients. Pediatr Blood Cancer 2008;50:769-71
  • Dennison JB, Kulanthaivel P, Barbuch RJ, Selective metabolism of vincristine in vitro by CYP3A5. Drug Metab Dispos 2006;34:1317-27
  • Hartman A, van Schaik RH, van der Heiden IP, Polymorphisms in genes involved in vincristine pharmacokinetics or pharmacodynamics are not related to impaired motor performance in children with leukemia. Leuk Res 2009;34:154-9
  • Plasschaert SL, Groninger E, Boezen M, Influence of functional polymorphisms of the MDR1 gene on vincristine pharmacokinetics in childhood acute lymphoblastic leukemia. Clin Pharmacol Ther 2004;76:220-9
  • Sorich MJ, Pottier N, Pei D, In vivo response to methotrexate forecasts outcome of acute lymphoblastic leukemia and has a distinct gene expression profile. PLoSMed 2008;5:e83
  • French D, Yang W, Cheng C, Acquired variation outweighs inherited variation in whole genome analysis of methotrexate polyglutamate accumulation in leukemia. Blood 2009;113:4512-20
  • Hongo T, Yamada S, Yajima S, Biological characteristics and prognostic value of in vitro three-drug resistance to prednisolone, L-asparaginase, and vincristine in childhood acute lymphoblastic leukemia. Int J Hematol 1999;70:268-77
  • Kaspers GJ, Veerman AJ, Pieters R, In vitro cellular drug resistance and prognosis in newly diagnosed childhood acute lymphoblastic leukemia. Blood 1997;90:2723-9
  • Holleman A, Cheok MH, den Boer ML, Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med 2004;351:533-42
  • Pottier N, Cheok MH, Yang W, Expression of SMARCB1 modulates steroid sensitivity in human lymphoblastoid cells: identification of a promoter SNP that alters PARP1 binding and SMARCB1 expression. Hum Mol Genet 2007;16:2261-71
  • Cheok MH, Pottier N, Kager L, Evans WE. Pharmacogenetics in acute lymphoblastic leukemia. Semin Hematol 2009;46:39-51
  • Wei G, Twomey D, Lamb J, Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell 2006;10:331-42
  • Pottier N, Yang W, Assem M, The SWI/SNF chromatin-remodeling complex and glucocorticoid resistance in acute lymphoblastic leukemia. J Natl Cancer Inst 2008;100:1792-803
  • Real PJ, Tosello V, Palomero T, Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat Med 2009;15:50-8
  • Tissing WJ, den Boer ML, Meijerink JP, Genomewide identification of prednisolone-responsive genes in acute lymphoblastic leukemia cells. Blood 2007;109:3929-35
  • Hulleman E, Kazemier KM, Holleman A, Inhibition of glycolysis modulates prednisolone resistance in acute lymphoblastic leukemia cells. Blood 2009;113:2014-21
  • Cheok MH, Yang W, Pui CH, Treatment-specific changes in gene expression discriminate in vivo drug response in human leukemia cells. Nat Genet 2003;34:85-90
  • Sonneveld P, Pieters R. Immunophenotyping as a guide for targeted therapy. Best Pract Res Clin Haematol 2003;16:629-44
  • Stam RW, den Boer ML, Schneider P, Targeting FLT3 in primary MLL-gene-rearranged infant acute lymphoblastic leukemia. Blood 2005;106:2484-90
  • Stam RW, Schneider P, de Lorenzo P, Prognostic significance of high-level FLT3 expression in MLL-rearranged infant acute lymphoblastic leukemia. Blood 2007;110:2774-5
  • Klumper E, Pieters R, Veerman AJ, In vitro cellular drug resistance in children with relapsed/refractory acute lymphoblastic leukemia. Blood 1995;86:3861-8
  • Bhojwani D, Kang H, Moskowitz NP, Biologic pathways associated with relapse in childhood acute lymphoblastic leukemia: a Children's Oncology Group study. Blood 2006;108:711-17
  • Yang JJ, Bhojwani D, Yang W, Genome-wide copy number profiling reveals molecular evolution from diagnosis to relapse in childhood acute lymphoblastic leukemia. Blood 2008;112:4178-83

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.