126
Views
22
CrossRef citations to date
0
Altmetric
Review

Pharmacogenetics as a tool for optimising drug therapy in solid-organ transplantation

, BSc MBBS, , PhD FRCPath & , DPhil FRCP
Pages 2045-2058 | Published online: 23 Aug 2007

Bibliography

  • MACPHEE IA, FREDERICKS S, HOLT DW: Does pharmacogenetics have the potential to allow the individualisation of immunosuppressive drug dosing in organ transplantation? Expert. Opin. Pharmacother. (2005) 6(15):2593-2605.
  • FREDERICKS S, HOLT DW, MACPHEE IAM: The pharmacogenetics of immunosuppression for organ transplantation. Am. J. Pharmacogenomics. (2003) 3:291-301.
  • MACPHEE IAM, FREDERICKS S, HOLT DW: Pharmacogenetics as a tool to enable the individualisation of immunosuppressive drug treatment for organ transplantation. Minerva Biotecnologica (2004) 16:161-172.
  • FREDERICKS S, HOLT DW: Pharmacogenomics of immunosuppressive drug metabolism. Curr. Opin. Nephrol. Hypertens. (2003) 12(6):607-613.
  • HESSELINK DA, VAN GELDER T, VAN SCHAIK RH: The pharmacogenetics of calcineurin inhibitors: one step closer toward individualized immunosuppression? Pharmacogenomics (2005) 6(4):323-337.
  • XIE HG, WOOD AJ, KIM RB, STEIN CM, WILKINSON GR: Genetic variability in CYP3A5 and its possible consequences. Pharmacogenomics (2004) 5(3):243-272.
  • WOLFE RA, ASHBY VB, MILFORD EL et al.: Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N. Engl. J. Med. (1999) 341(23):1725-1730.
  • LECHLER RI, SYKES M, THOMSON AW, TURKA LA: Organ transplantation-how much of the promise has been realized? Nat. Med. (2005) 11(6):605-613.
  • HALLORAN PF: Immunosuppressive drugs for kidney transplantation. N. Engl. J. Med. (2004) 351(26):2715-2729.
  • VENKATARAMANAN R, SHAW LM, SARKOZI L et al.: Clinical utility of monitoring tacrolimus blood concentrations in liver transplant patients. J. Clin. Pharmacol. (2001) 41(5):542-551.
  • KAHAN BD, NAPOLI KL, KELLY PA et al.: Therapeutic drug monitoring of sirolimus: correlations with efficacy and toxicity. Clin. Transplant. (2000) 14(2):97-109.
  • CLASE CM, MAHALATI K, KIBERD BA et al.: Adequate early cyclosporin exposure is critical to prevent renal allograft rejection: patients monitored by absorption profiling. Am. J. Transplant. (2002) 2(8):789-795.
  • UNDRE NA, VAN HOOF J, CHRISTIAANS M et al.: Low systemic exposure to tacrolimus correlates with acute rejection. Transplant. Proc. (1999) 31:296-298.
  • NANKIVELL BJ, BORROWS RJ, FUNG CL, O'CONNELL PJ, ALLEN RD, CHAPMAN JR: The natural history of chronic allograft nephropathy. N.Engl. J.Med. (2003) 349(24):2326-2333.
  • DAVIDSON JA, WILKINSON A: New-Onset Diabetes After Transplantation 2003 International Consensus Guidelines: an endocrinologist's view. Diabetes Care (2004) 27(3):805-812.
  • MAES BD, KUYPERS D, MESSIAEN T et al.: Posttransplantation diabetes mellitus in FK-506-treated renal transplant recipients: analysis of incidence and risk factors. Transplantation (2001) 72(10):1655-1661.
  • HOLT DW: Therapeutic drug monitoring of immunosuppressive drugs in kidney transplantation. Curr. Opin. Nephrol. Hypertens. (2002) 11(6):657-663.
  • CANADIAN NEORAL RENAL TRANSPLANTATION STUDY GROUP: Absorption profiling of cyclosporin microemulsion (neoral) during the first 2 weeks after renal transplantation. Transplantation (2001) 72(6):1024-1032.
  • WONG KM, SHEK CC, CHAU KF, LI CS: Abbreviated tacrolimus area-under-the-curve monitoring for renal transplant recipients. Am. J. Kidney Dis. (2000) 35(4):660-666.
  • SCHOLTEN EM, CREMERS SC, SCHOEMAKER RC et al.: AUC-guided dosing of tacrolimus prevents progressive systemic overexposure in renal transplant recipients. Kidney Int. (2005) 67(6):2440-2447.
  • A blinded, randomized clinical trial of mycophenolate mofetil for the prevention of acute rejection in cadaveric renal transplantation. The Tricontinental Mycophenolate Mofetil Renal Transplantation Study Group. Transplantation (1996) 61(7):1029-1037.
  • EVANS WE: Thiopurine S-methyltransferase: a genetic polymorphism that affects a small number of drugs in a big way. Pharmacogenetics (2002) 12(6):421-423.
  • HESSELINK DA, VAN SCHAIK RH, VAN DER HEIDEN IP et al.: Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin. Pharmacol. Ther. (2003) 74(3):245-254.
  • WEI-LIN W, JING J, SHU-SEN Z et al.: Tacrolimus dose requirement in relation to donor and recipient ABCB1 and CYP3A5 gene polymorphisms in Chinese liver transplant patients. Liver Transpl. (2006) 12(5):775-780.
  • ROY JN, BARAMA A, POIRIER C, VINET B, ROGER M: Cyp3A4, Cyp3A5, and MDR-1 genetic influences on tacrolimus pharmacokinetics in renal transplant recipients. Pharmacogenet. Genom. (2006) 16(9):659-665.
  • VON AHSEN N, RICHTER M, GRUPP C, RINGE B, OELLERICH M, ARMSTRONG VW: No influence of the MDR-1 C3435T polymorphism or a CYP3A4 promoter polymorphism (CYP3A4-V allele) on dose-adjusted cyclosporin A trough concentrations or rejection incidence in stable renal transplant recipients. Clin. Chem. (2001) 47(6):1048-1052.
  • RIVORY LP, QIN H, CLARKE SJ et al.: Frequency of cytochrome P450 3A4 variant genotype in transplant population and lack of association with cyclosporin clearance. Eur. J. Clin. Pharmacol. (2000) 56:395-398.
  • MIN DI, ELLINGROD VL: Association of the CYP3A4*1B 5′-flanking region polymorphism with cyclosporine pharmacokinetics in healthy subjects. Ther. Drug Monit. (2003) 25(3):305-309.
  • KUEHL P, ZHANG J, LIN Y et al.: Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet. (2001) 27:383-391.
  • DALLY H, BARTSCH H, JAGER B et al.: Genotype relationships in the CYP3A locus in Caucasians. Cancer Lett. (2004) 207(1):95-99.
  • MACPHEE IAM, FREDERICKS S, TAI T et al.: Tacrolimus pharmacogenetics: polymorphisms associated with expression of cytochrome P4503A5 and P-glycoprotein correlate with dose requirement. Transplantation (2002) 74(11):1486-1489.
  • MACPHEE IA, FREDERICKS S, TAI T et al.: The influence of pharmacogenetics on the time to achieve target tacrolimus concentrations after kidney transplantation. Am. J. Transplant. (2004) 4(6):914-919.
  • MACPHEE IA, FREDERICKS S, MOHAMED M et al.: Tacrolimus pharmacogenetics: the CYP3A5*1 allele predicts low dose-normalized tacrolimus blood concentrations in whites and South Asians. Transplantation (2005) 79(4):499-502.
  • THERVET E, ANGLICHEAU D, KING B et al.: Impact of cytochrome p450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. Transplantation (2003) 76(8):1233-1235.
  • ZHENG HX, WEBBER S, ZEEVI A et al.: Tacrolimus dosing in pediatric heart transplant patients is related to CYP3A5 and MDR1 gene polymorphisms. Am. J. Transplant. (2003) 3:477-483.
  • HAUFROID V, MOURAD M, VAN K V et al.: The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenetics (2004) 14(3):147-154.
  • TSUCHIYA N, SATOH S, TADA H et al.: Influence of CYP3A5 and MDR1 (ABCB1) polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. Transplantation (2004) 78(8):1182-1187.
  • ZHENG H, ZEEVI A, SCHUETZ E et al.: Tacrolimus dosing in adult lung transplant patients is related to cytochrome P4503A5 gene polymorphism. J. Clin. Pharmacol. (2004) 44(2):135-140.
  • ZHAO Y, SONG M, GUAN D et al.: Genetic polymorphisms of CYP3A5 genes and concentration of the cyclosporine and tacrolimus. Transplant. Proc. (2005) 37(1):178-181.
  • ZHANG X, LIU ZH, ZHENG JM et al.: Influence of CYP3A5 and MDR1 polymorphisms on tacrolimus concentration in the early stage after renal transplantation. Clin. Transplant. (2005) 19(5):638-643.
  • MOURAD M, MOURAD G, WALLEMACQ P et al.: Sirolimus and tacrolimus trough concentrations and dose requirements after kidney transplantation in relation to CYP3A5 and MDR1 polymorphisms and steroids. Transplantation (2005) 80(7):977-984.
  • TADA H, TSUCHIYA N, SATOH S et al.: Impact of CYP3A5 and MDR1(ABCB1) C3435T polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. Transplant. Proc. (2005) 37(4):1730-1732.
  • CHEUNG CY, OP DEN BUIJSCH RA, WONG KM et al.: Influence of different allelic variants of the CYP3A and ABCB1 genes on the tacrolimus pharmacokinetic profile of Chinese renal transplant recipients. Pharmacogenomics (2006) 7(4):563-574.
  • UESUGI M, MASUDA S, KATSURA T, OIKE F, TAKADA Y, INUI K: Effect of intestinal CYP3A5 on postoperative tacrolimus trough levels in living-donor liver transplant recipients. Pharmacogenet. Genom. (2006) 16(2):119-127.
  • HAUFROID V, WALLEMACQ P, VANKERCKHOVE V et al.: CYP3A5 and ABCB1 polymorphisms and tacrolimus pharmacokinetics in renal transplant candidates: guidelines from an experimental study. Am. J. Transplant. (2006) 6(11):2706-2713.
  • MAI I, PERLOFF ES, BAUER S et al.: MDR1 haplotypes derived from exons 21 and 26 do not affect the steady-state pharmacokinetics of tacrolimus in renal transplant patients. Br. J. Clin. Pharmacol. (2004) 58(5):548-553.
  • ENG HS, MOHAMED Z, CALNE R et al.: The influence of CYP3A gene polymorphisms on cyclosporine dose requirement in renal allograft recipients. Kidney Int. (2006) 69(10):1858-1864.
  • KREUTZ R, ZURCHER H, KAIN S, MARTUS P, OFFERMANN G, BEIGE J: The effect of variable CYP3A5 expression on cyclosporine dosing, blood pressure and long-term graft survival in renal transplant patients. Pharmacogenetics (2004) 14(10):665-671.
  • FREDERICKS S, JORGA A, MACPHEE IAM et al.: Multi-drug resistance gene-1 (MDR-1) haplotypes and the CYP3A5*1 genotype have no influence on ciclosporin dose requirements as assessed by C0 or C2 measurements. Clin. Transplant. (2007) 21(2):252-257.
  • ANGLICHEAU D, THERVET E, ETIENNE I et al.: CYP3A5 and MDR1 genetic polymorphisms and cyclosporine pharmacokinetics after renal transplantation. Clin. Pharmacol. Ther. (2004) 75(5):422-433.
  • MIN DI, ELLINGROD VL, MARSH S, MCLEOD H: CYP3A5 polymorphism and the ethnic differences in cyclosporine pharmacokinetics in healthy subjects. Ther. Drug Monit. (2004) 26(5):524-528.
  • ANGLICHEAU D, LE CORRE D, LECHATON S et al.: Consequences of genetic polymorphisms for sirolimus requirements after renal transplant in patients on primary sirolimus therapy. Am. J. Transplant. (2005) 5(3):595-603.
  • LE MEUR Y, DJEBLI N, SZELAG JC et al.: CYP3A5*3 influences sirolimus oral clearance in de novo and stable renal transplant recipients. Clin. Pharmacol. Ther. (2006) 80(1):51-60.
  • SAEKI T, UEDA K, TANAGAWARA Y, HORI R, KOMANO T: Human P-glycoprotein transports cyclosporin A and FK505. J. Biol. Chem. (1993) 268(9):6077-6080.
  • MILLER DS, FRICKER G, DREWE J: p-Glycoprotein-mediated transport of a fluorescent rapamycin derivative in renal proximal tubule. J. Pharmacol. Exp. Ther. (1997) 282(1):440-444.
  • MARZOLINI C, PAUS E, BUCLIN T, KIM RB: Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin. Pharmacol. Ther. (2004) 75(1):13-33.
  • KIM RB: MDR1 single nucleotide polymorphisms: multiplicity of haplotypes and functional consequences. Pharmacogenetics (2002) 12:425-427.
  • FROMM MF: Genetically determined differences in P-glycoprotein function: implications for disease risk. Toxicology (2002) 181-182:299-303.
  • SAKAEDA T: MDR1 genotype-related pharmacokinetics: fact or fiction? Drug Metab. Pharmacokinet. (2005) 20(6):391-414.
  • CHOUDHURI S, KLAASSEN CD: Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int. J. Toxicol. (2006) 25(4):231-259.
  • LAMBA J, STROM S, VENKATARAMANAN R et al.: MDR1 genotype is associated with hepatic cytochrome P450 3A4 basal and induction phenotype. Clin. Pharmacol. Ther. (2006) 79(4):325-338.
  • KIMCHI-SARFATY C, OH JM, KIM IW et al.: A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science (2007) 315(5811):525-528.
  • SHTIL AA, AZARE J: Redundancy of biological regulation as the basis of emergence of multidrug resistance. Int. Rev. Cytol. (2005) 246:1-29.
  • MASUDA S, GOTO M, FUKATSU S et al.: Intestinal MDR1/ABCB1 level at surgery as a risk factor of acute cellular rejection in living-donor liver transplant patients. Clin. Pharmacol. Ther. (2006) 79(1):90-102.
  • FREDERICKS S, MORETON M, REBOUX S et al.: Multidrug resistance gene-1 (MDR-1) haplotypes have a minor influence on tacrolimus dose requirements. Transplantation (2006) 82(5):705-708.
  • AKBAS SH, BILGEN T, KESER I et al.: The effect of MDR1 (ABCB1) polymorphism on the pharmacokinetic of tacrolimus in Turkish renal transplant recipients. Transplant. Proc. (2006) 38(5):1290-1292.
  • WANG J, ZEEVI A, MCCURRY K et al.: Impact of ABCB1 (MDR1) haplotypes on tacrolimus dosing in adult lung transplant patients who are CYP3A5 *3/*3 non-expressors. Transpl. Immunol. (2006) 15(3):235-240.
  • ANGLICHEAU D, VERSTUYFT C, LAURENT-PUIG P et al.: Association of the multidrug resistance-1 gene single-nucleotide polymorphisms with the tacrolimus dose requirements in renal transplant recipients. J. Am. Soc. Nephrol. (2003) 14:1889-1896.
  • HOFFMEYER S, BURK O, VON RICHTER O et al.: Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc. Natl. Acad. Sci. USA (2000) 97(7):3473-3478.
  • WANG W, ZHANG XD, GUAN DL et al.: Relationship between MDR1 polymorphism and blood concentration of cyclosporine A. Chin. Med. J. (Engl.) (2005) 118(24):2097-2100.
  • AZARPIRA N, AGHDAIE MH, BEHZAD-BEHBAHANIE A et al.: Association between cyclosporine concentration and genetic polymorphisms of CYP3A5 and MDR1 during the early stage after renal transplantation. Exp. Clin. Transplant. (2006) 4(1):416-419.
  • BONHOMME-FAIVRE L, DEVOCELLE A, SALIBA F et al.: MDR-1 C3435T polymorphism influences cyclosporine a dose requirement in liver-transplant recipients. Transplantation (2004) 78(1):21-25.
  • MAI I, STORMER E, GOLDAMMER M et al.: MDR1 haplotypes do not affect the steady-state pharmacokinetics of cyclosporine in renal transplant patients. J. Clin. Pharmacol. (2003) 43(10):1101-1107.
  • KUZUYA T, KOBAYASHI T, MORIYAMA N et al.: Amlodipine, but not MDR1 polymorphisms, alters the pharmacokinetics of cyclosporine A in Japanese kidney transplant recipients. Transplantation (2003) 76(5):865-868.
  • HAUSER IA, SCHAEFFELER E, GAUER S et al.: ABCB1 genotype of the donor but not of the recipient is a major risk factor for cyclosporine-related nephrotoxicity after renal transplantation. J. Am. Soc. Nephrol. (2005) 16(5):1501-1511.
  • MIN DI, ELLINGROD VL: C3435T mutation in exon 26 of the human MDR1 gene ans cyclosporine pharmacokinetics in healthy subjects. Ther. Drug Monit. (2002) 24:400-404.
  • CHOWBAY B, CUMARASWAMY S, CHEUNG YB, ZHOU Q, LEE EJD: Genetic polymorphisms in MDR1 and CYP3A4 genes in Asians and the influence of MDR1 haplotypes on cyclosporin disposition in heart transplant recipients. Pharmacogenetics (2003) 13:89-95.
  • HIGGINS RM, MORLIDGE C, MAGEE P, MCDIARMAID-GORDON A, LAM FT, KASHI H: Conversion between cyclosporin and tacrolimus – 30-fold dose prediction. Nephrol. Dial. Transplant. (1999) 14(6):1609.
  • KAWASAKI S, MAKUUCHI M, ISHIZONE S, MATSUNAMI H, TERADA M, KAWARAZAKI H: Liver regeneration in recipients and donors after transplantation. Lancet (1992) 339(8793):580-581.
  • INOMATA Y, KIUCHI T, KIM I et al.: Auxiliary partial orthotopic living donor liver transplantation as an aid for small-for-size grafts in larger recipients. Transplantation (1999) 67(10):1314-1319.
  • LEUNG DY, HAMID Q, VOTTERO A et al.: Association of glucocorticoid insensitivity with increased expression of glucocorticoid receptor beta. J. Exp. Med. (1997) 186(9):1567-1574.
  • HONDA M, ORII F, AYABE T et al.: Expression of glucocorticoid receptor beta in lymphocytes of patients with glucocorticoid-resistant ulcerative colitis. Gastroenterology (2000) 118(5):859-866.
  • ZHENG H, SCHUETZ E, ZEEVI A et al.: Sequential analysis of tacrolimus dosing in adult lung transplant patients with ABCB1 haplotypes. J. Clin. Pharmacol. (2005) 45(4):404-410.
  • Anglicheau D, FLAMANT M, SCHLAGETER MH et al.: Pharmacokinetic interaction between corticosteroids and tacrolimus after renal transplantation. Nephrol Dial Transplant. (2003) 18(11):2409-14
  • HUANG YH, GALIJATOVIC A, NGUYEN N et al.: Identification and functional characterization of UDP-glucuronosyltransferases UGT1A8*1, UGT1A8*2 and UGT1A8*3. Pharmacogenetics (2002) 12(4):287-297.
  • HESSELINK DA, VAN HEST RM, MATHOT RA et al.: Cyclosporine interacts with mycophenolic acid by inhibiting the multidrug resistance-associated protein 2. Am. J. Transplant. (2005) 5(5):987-994.
  • ITO S, IEIRI I, TANABE M, SUZUKI A, HIGUCHI S, OTSUBO K: Polymorphism of the ABC transporter genes, MDR1, MRP1 and MRP2/cMOAT, in healthy Japanese subjects. Pharmacogenetics (2001) 11(2):175-184.
  • KUYPERS DR, NAESENS M, VERMEIRE S, VANRENTERGHEM Y: The impact of uridine diphosphate-glucuronosyltransferase 1A9 (UGT1A9) gene promoter region single-nucleotide polymorphisms T-275A and C-2152T on early mycophenolic acid dose-interval exposure in de novo renal allograft recipients. Clin. Pharmacol. Ther. (2005) 78(4):351-361.
  • NAESENS M, KUYPERS DR, VERBEKE K, VANRENTERGHEM Y: Multidrug resistance protein 2 genetic polymorphisms influence mycophenolic acid exposure in renal allograft recipients. Transplantation (2006) 82(8):1074-1084.
  • MAHALATI K, BELITSKY P, SKETRIS I, WEST K, PANEK R: Neoral monitoring by simplified sparse sampling area under the concentration-time curve: its relationship to acute rejection and cyclosporine nephrotoxicity early after kidney transplantation. Transplantation (1999) 68(1):55-62.
  • JOY MS, NICKELEIT V, HOGAN SL, THOMPSON BD, FINN WF: Calcineurin inhibitor-induced nephrotoxicity and renal expression of P-glycoprotein. Pharmacotherapy (2005) 25(6):779-789.
  • HEBERT MF, DOWLING AL, GIERWATOWSKI C et al.: Association between ABCB1 (multidrug resistance transporter) genotype and post-liver transplantation renal dysfunction in patients receiving calcineurin inhibitors. Pharmacogenetics (2003) 13(11):661-674.
  • ANGLICHEAU D, PALLET N, RABANT M et al.: Role of P-glycoprotein in cyclosporine cytotoxicity in the cyclosporine-sirolimus interaction. Kidney Int. (2006) 70(6):1019-1025.
  • YAMAUCHI A, IEIRI I, KATAOKA Y et al.: Neurotoxicity induced by tacrolimus after liver transplantation: relation to genetic polymorphisms of the ABCB1 (MDR1) gene. Transplantation (2002) 74(4):571-578.
  • ASANO T, TAKAHASHI KA, FUJIOKA M et al.: ABCB1 C3435T and G2677T/A polymorphism decreased the risk for steroid-induced osteonecrosis of the femoral head after kidney transplantation. Pharmacogenetics (2003) 13(11):675-682.
  • NUMAKURA K, SATOH S, TSUCHIYA N et al.: Clinical and genetic risk factors for posttransplant diabetes mellitus in adult renal transplant recipients treated with tacrolimus. Transplantation (2005) 80(10):1419-1424.
  • FRUMAN DA, WOOD MA, GJERTSON CK, KATZ HR, BURAKOFF SJ, BIERER BE: FK506 binding protein 12 mediates sensitivity to both FK506 and rapamycin in murine mast cells. Eur. J. Immunol. (1995) 25(2):563-571.
  • CARDENAS ME, LIM E, HEITMAN J: Mutations that perturb cyclophilin A ligand binding pocket confer cyclosporin A resistance in Saccharomyces cerevisiae. J. Biol. Chem. (1995) 270(36):20997-21002.
  • BOWNE SJ, SULLIVAN LS, BLANTON SH et al.: Mutations in the inosine monophosphate dehydrogenase 1 gene (IMPDH1) cause the RP10 form of autosomal dominant retinitis pigmentosa. Hum. Mol. Genet. (2002) 11(5):559-568.
  • BALDAN N, RIGOTTI P, FURIAN L et al.: Co-administration of sirolimus alters tacrolimus pharmacokinetics in a dose-dependent manner in adult renal transplant recipients. Pharmacol. Res. (2006) 54(3):181-185.
  • CATTANEO D, MERLINI S, PELLEGRINO M et al.: Therapeutic drug monitoring of sirolimus: effect of concomitant immunosuppressive therapy and optimization of drug dosing. Am. J. Transplant. (2004) 4(8):1345-1351.
  • DONNENBERG VS, BURCKART GJ, GRIFFITH BP, JAIN AB, ZEEVI A, BERG AD: P-glycoprotein (P-gp) is upregulated in peripheral T-cell subsets from solid organ transplant recipients. J. Clin. Pharmacol. (2001) 41(12):1271-1279.
  • DOWLING TC, BRIGLIA AE, FINK JC et al.: Characterization of hepatic cytochrome p4503A activity in patients with end-stage renal disease. Clin. Pharmacol. Ther. (2003) 73(5):427-434.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.