316
Views
32
CrossRef citations to date
0
Altmetric
Review

New perspectives for the treatment options in spinal cord injury

, Dr Med Sci (UU) FAIS (USA)
Pages 2773-2800 | Published online: 20 Oct 2008

Bibliography

  • Schwab ME, Bartholdi D. Degeneration and regeneration of axons in the lesioned spinal cord. Phys Rev 1996;76:319-70
  • Winkler T, Sharma HS, Stalberg E, Westman. Spinal cord bioelectrical activity, edema and cell injury following a focal trauma to the spinal cord. An experimental study using pharmacological and morphological approach. In: Stalberg E, Sharma HS, Olsson Y, editors, Spinal cord monitoring. Basic principles, regeneration, pathophysiology and clinical aspects. Springer: New York; 1998. p. 283-63
  • Sharma HS. Pathophysiology of the blood–spinal cord barrier in traumatic injury. In: Sharma HS, Westman J, editors, The blood–spinal cord and brain barriers in health and disease. Elsevier Academic Press: San Diego; 2004. p. 437-518
  • Sharma HS. Pathophysiology of blood–spinal cord barrier in traumatic injury and repair. Curr Pharm Des 2005;11(11):1353-89
  • Sharma HS. Post-traumatic application of brain-derived neurotrophic factor and glia-derived neurotrophic factor on the rat spinal cord enhances neuroprotection and improves motor function. Acta Neurochir Suppl 2006;96:329-34
  • Sharma HS. Neurotrophic factors in combination: a possible new therapeutic strategy to influence pathophysiology of spinal cord injury and repair mechanisms. Curr Pharm Des 2007;13(18):1841-74
  • Stalberg E, Sharma HS, Olsson Y. Spinal cord monitoring. Basic principles, regeneration, pathophysiology and clinical aspects. Springer: New York; 1998. p. 1-527
  • Tator CH, Fehlings MG. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 1991;75:15-26
  • Sharma HS, Olsson Y. Edema formation and cellular alteration in spinal cord injury in the rat and their modification with p-chlorophenylalanine. Acta Neuropathol (Berl) 1990;79:604-10
  • Kakulas BA. Pathology of spinal injuries. Cent Nerv Syst Trauma 1984;1:117-29
  • Kakulas BA, Taylor JR. Pathology of injuries to the vertebral column and the spinal cord. In: Vinken PJ, Bruyn BW, Klauwens HL, Frankel HL, editors, Handbook of clinical neurology. Amsterdam: Elsevier Sciences Publishers; 1992. p.21-51
  • Tator CH, Edmonds VE. Acute spinal cord injury: analysis of epidemiological factors. Can J Surg 1979;121:1453-64
  • Holmes G. Spinal injuries of warfare. Br J Med 1915;2(1915):769-74
  • Brookhart JM, Groat RW, Windle WF. A study of the mechanics of gunshot injury to the spinal cord of the cat. Milit Surg 1948;102(5):386-95
  • Hughes JT. Pathology of spinal cord damage in spinal injuries. 5th edition. In: Feiring EH, editor, Brock's injuries of the brain and spinal cord. Springer: New York; 1974
  • Hughes JT. Pathology of the spinal cord. 2nd editon. Lloyd-Luke: London; 1978
  • Osterholm JL. The pathophysiology spinal cord. Trauma Thomas: Springfield, IL; 1978
  • Ducker TB. Experimental injury of the spinal cord. In: Vinken PJ, Bruyn GW, editors, Handbook of clinical neurology. Volume 9. Elsevier: New York; 1976. p. 26-68
  • Windle WF. The spinal cord and its reaction to traumatic injury. Anatomy–physiology–pharmacology–therapeutics. Modern pharmacology – toxicology. Volume 18. Marcel Dekker, Inc.: New York; 1980
  • Windle WF. Inhibition of regeneration of severed axons in the spinal cord. Exp Neurol 1980;69(1):209-11
  • Windle WF. Recollections of research in spinal cord regeneration. Exp Neurol 1981;71(1):1-5
  • Sharma HS, Nyberg F, Gordh T, et al. Neurotrophic factors attenuate neuronal nitric oxide synthase upregulation, microvascular permeability disturbances, edema formation and cell injury in the spinal cord following trauma. In: Stalberg E, Sharma HS, Olsson Y, editors, Spinal cord monitoring. Basic principles, regeneration, pathophysiology and clinical aspects. Springer: New York; 1998. p. 181-210
  • Sharma HS, Westman J, Nyberg F. Pathophysiology of brain edema and cell changes following hyperthermic brain injury, In: Sharma HS, Westman J, editors, Brain functions in hot environment. Progress in brain research. Volume 115. Elsevier: Amsterdam; 1998. p. 351-412
  • Sharma HS, Johanson CE. Intracerebroventricularly administered neurotrophins attenuate blood cerebrospinal fluid barrier breakdown and brain pathology following whole-body hyperthermia: an experimental study in the rat using biochemical and morphological approaches. Ann NY Acad Sci 2007;1122:112-29
  • Andine P, Lehmann A, Ellren K, et al. The excitatory amino acid antagonist kynurenic acid administered after hypoxic-ischemia in neonatal rats offers neuroprotection. Neurosci Lett 1988;90(1-2):208-12
  • McDonald JW, Roeser NF, Silverstein FS, Johnston MV. Quantitative assessment of neuroprotection against NMDA-induced brain injury. Exp Neurol 1989;106(3):289-96
  • Sharma HS, Westman J. The blood–spinal cord and brain barriers in health and disease. Academic Press: San Diego; 2004. p. 1-617
  • Davson H, Danielli JF. The permeability of natural membranes. Cambridge University Press: Cambridge; 1943
  • Rapoport SI. Blood–brain barrier in physiology and medicine. New York: Raven Press; 1976
  • Grant G, Westman J. Degenerative changes in dendrites central to axonal transection: electron microscopical observations. Experientia 1968;24:169-70
  • Noble LJ, Wrathall JR. The blood–spinal cord barrier after injury: pattern of vascular events proximal and distal to a transection in the rat. Brain Res 1987;424(1):177-88
  • Noble LJ, Wrathall JR. The blood–spinal cord barrier after injury: pattern of vascular events proximal and distal to a transection in the rat. Brain Res 1987;424(1):177-88
  • Noble LJ, Wrathall JR. Blood–spinal cord barrier disruption proximal to a spinal cord transection in the rat: time course and pathways associated with protein leakage. Exp Neurol 1988;99(3):567-78
  • Popovich PG, Horner PJ, Mullin BB, Stokes BT. A quantitative spatial analysis of the blood–spinal cord barrier. I. Permeability changes after experimental spinal contusion injury. Exp Neurol 1996;142(2):258-75
  • Sharma HS. Degeneration and regeneration in the CNS. New roles of heat shock proteins, nitric oxide and carbon monoxide [editorial]. Aminoacids 2000;19:335-7
  • Sharma HS. Neurobiology of the CNS injury and repair: new roles of amino acids, growth factors and neuropeptides [editorial]. Aminoacids 2002;23:217-9
  • Brightman MW, Klatzo I, Olsson Y, Reese TS. The blood–brain barrier to proteins under normal and pathological conditions. J Neurol Sci 1970;10(3):215-39
  • Bradbury MWB. The concept of a blood–brain barrier. Wiley: Chichester; 1979
  • Cervós-Navarro J, Ferszt R. Brain edema: pathology, diagnosis and therapy. Adv Neurol 1980;28:1-450
  • Sharma HS. Blood–brain barrier in stress. PhD Thesis. Banaras Hindu University Press, Varanasi, India; 1982
  • Sharma HS. Pathophysiology of blood–brain barrier, brain edema and cell injury following hyperthermia: new role of heat shock protein, nitric oxide and carbon monoxide. An experimental study in the rat using light and electron microscopy. Acta Univ Ups 1999;830:1-94
  • Griffiths IR. Vasogenic edema following acute and chronic spinal cord compression in the dog. J Neurosurg 1975;42(2):155-65
  • Griffiths IR. Spinal cord blood flow after acute experimental cord injury in dogs. J Neurol Sci 1976;27(2):247-59
  • Griffiths IR. Spinal cord injuries: a pathological study of naturally occurring lesions in the dog and cat. J Comp Pathol 1978;88(2):303-15
  • Majno G, Palade GE. Studies on inflammation. I. The effect of histamine and serotonin on vascular permeability: an electron microscopic study. J Biophys Biochem Cytol 1961;11:571-605
  • Beggs JL, Waggener JD. Vasogenic edema in the injured spinal cord: a method of evaluating the extent of blood–brain barrier alteration to horseradish peroxidase. Exp Neurol 1975;49(1 Pt 1):86-96
  • Noble LJ, Donovan F, Igarashi T, et al. Matrix metalloproteinases limit functional recovery after spinal cord injury by modulation of early vascular events. J Neurosci 2002;22(17):7526-35
  • Osterholm JL, Alderman JL, Northrup BE. Acute experimental spinal cord injury, In: Ghista DN, Frankel HL, editors, Spinal cord injury medical engineering. Charles C Thomas, Springfield; 1987. p. 5-46
  • Nemecek S. Morphological evidence of microcirculatory disturbances in experimental spinal cord trauma. Adv Neurol 1978;20:395-405
  • Wagner FC, Green BA, Bucy PC. Spinal cord edema associated with paraplegia. Proc Veterans Adm Spinal Cord Inj Conf 1971;18:9-10
  • Wagner FC Jr, Stewart WB. Effect of trauma dose on spinal cord edema. J Neurosurg 1981;54:802-6
  • Olsson Y, Sharma HS, Pettersson CAV. Effects of p-chlorophenylalanine on microvascular permeability changes in spinal cord trauma. An experimental study in the rat using 131I-sodium and lanthanum tracers. Acta Neuropathol (Berl) 1990;79:595-603
  • Sypert GW. Stabilization and management of cervical injuries. In: Pitt LH, Wagner FC, editors, Craniospinal trauma. Thieme: New York; 1990. p. 363-70
  • Dommissie GF. The arteries and veins of the human spinal cord from birth. Churchill Livingstone: Edinburgh; 1975
  • Crock HV, Yoshizawa H. The blood supply of the vertebral column and spinal cord, Springer: New York; 1977
  • Freeman LW, Wright TW. Experimental observations of concussion and contusion of the spinal cord. Ann Surg 1953;137:433-43
  • Bingham WG, Goldman H, Friedman SJ, et al. Blood flow in normal and injured monkey spinal cord. J Neurosurg 1975;43(2):162-71
  • Dohrmann GJ, Wick KM, Bucy PC. Spinal cord blood flow patterns in experimental traumatic paraplegia. J Neurosurg 1973;38(1):52-58
  • Fried LC, Goodkin R. Microangiographic observations of the experimentally traumatized spinal cord. J Neurosurg 1971;35(6):709-14
  • Nelson E, Gertz SD, Rennels ML, et al. Spinal cord injury. The role of vascular damage in the pathogenesis of central hemorrhagic necrosis. Arch Neurol 1977;34(6):332-3
  • Allen AR. Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal column. Preliminary report. JAMA 1911;57:878-80
  • Ikata T, Iwasa K, Morimoto K, et al. Clinical considerations and biochemical basis of prognosis of cervical spinal cord injury. Spine 1989;14:1096-101
  • de la Torre JC. Spinal cord injury. Review of basic and applied research. Spine 1981;6:315-35
  • Bresnahan CJ, Beattie MS, Todd FD, Noyes DH. A behavioural and anatomical analysis of spinal cord injury produced by a feedback-controlled impaction device. Exp Neurol 1987;95:548-70
  • Fehlings MG, Tator CH. A review of experimental models of acute spinal cord injury, In: Illis L, editor, spinal cord dysfunction. Assessment, Oxford University Press: Oxford; 1988. p. 3-33
  • Kakulas BA. Neuropathology: the foundation for new treatments in spinal cord injury. Spinal Cord 2004;42(10):549-63
  • Kakulas BA. The applied neuropathology of human spinal cord injury. Spinal Cord 1999;37(2):79-88
  • Bunge RP, Puckett WR, Becerra JL, et al. Observations on the pathology of human spinal cord injury. A review and classification of 22 new cases with details from a case of chronic cord compression with extensive focal demyelination. Adv Neurol 1993;59:75-89
  • Ducker TB, Brown RH. Neurophysiology and standards of spinal cord monitoring. Elsevier: Amsterdam; 1989
  • Wolman L. The disturbance of circulation in traumatic paraplegia in acute and late stages: a pathological study. Paraplegia 1965;2:213-26
  • Tator CH. Update on the pathophysiology and pathology of acute spinal cord injury. Brain Pathol 1995;5(4):407-13
  • Tator CH. Biology of neurological recovery and functional restoration after spinal cord injury. Neurosurgery 1998;42(4):696-707; discussion 707-8
  • Kakulas BA, Bedbrook GM. Pathology of injuries of the verteral column with emphasis on the macroscopical aspects. In: Vinken PJ, Bruyn GW, editors, in collaboration with Braakman R, Klawans HL Jr, associate editors. Handbook of Clinical Neurology. Injures of the Spine and Spinal Cord Part I, Vol 25. Amsterdam: North-Holland Publishing Company, New York: American Elsevier Publishing Co. Inc.; 1976. p. 27-42
  • Dimitrijevi MR. Residual motor functions in spinal cord injury. Adv Neurol 1988;47:138-55
  • Curt A, Dietz V. Electrophysiological recordings in patients with spinal cord injury: significance for predicting outcome. Spinal Cord 1999;37(3):157-65
  • Hall ED, Braughler JM. Acute effects of intravenous glucocorticoid pretreatment on the in vitro peroxidation of cat spinal cord tissue. Exp Neurol 1981;73(1):321-4
  • Hall ED, Braughler JM. Glucocorticoid mechanisms in acute spinal cord injury: a review and therapeutic rationale. Surg Neurol 1982;18(5):320-7
  • Baptiste DC, Fehlings MG. Update on the treatment of spinal cord injury. Prog Brain Res 2007;161:217-33
  • Bracken MB, Shepard MJ, Collins WF, et al. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med 1990;322(20):1405-11
  • Bracken MB, Shepard MJ, Collins WF Jr, et al. Methylprednisolone or naloxone treatment after acute spinal cord injury: 1-year follow-up data. Results of the second national acute spinal cord injury study. J Neurosurg 1992;76(1):23-31
  • Bracken MB, Collins WF, Freeman DF, et al. Efficacy of methylprednisolone in acute spinal cord injury. JAMA 1984;251(1):45-52
  • Bracken MB, Shepard MJ, Holford TR, et al. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the third national acute spinal cord injury randomized controlled trial. National acute spinal cord injury study. JAMA 1997;277(20):1597-604
  • Sekhon LH, Fehlings MG. Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine 2001;26(24 Suppl):S2-12
  • Hurlbert RJ, Hamiltom MG. Methylprednisolone for acute spinal cord injury: 5-year practice reversal. Can J Neurol Sci 2008;35(1):41-5
  • Agnati LF, Fuxe K, Zoli M, et al. Effects of neurotoxic and mechanical lesions of the mesostriatal dopamine pathway on striatal polyamine levels in the rat: modulation by chronic ganglioside GM1 treatment. Neurosci Lett 1985;61(3):339-44
  • Fass B, Ramirez JJ. Effects of ganglioside treatments on lesion-induced behavioral impairments and sprouting in the CNS. J Neurosci Res 1984;12(2-3):445-58
  • Geisler FH, Dorsey FC, Coleman WP. GM1 gangliosides in the treatment of spinal cord injury: report of preliminary data analysis. Acta Neurobiol Exp (Wars) 1990;50(4-5):515-21
  • Sharma HS, Alm P. Role of nitric oxide on the blood–brain and the spinal cord barriers. In: Sharma HS, Westman J, editors, The blood–spinal cord and brain barriers in health and disease. Elsevier Academic Press: San Diego; 2004. p. 191-230
  • Geisler FH, Coleman WP, Grieco G, Poonian D; Sygen Study Group. The Sygen multicenter acute spinal cord injury study. Spine 2001;26(24 Suppl):S87-98
  • Faden AI, Jacobs TP, Smith MT. Thyrotropin-releasing hormone in experimental spinal injury: dose response and late treatment. Neurology 1984;34(10):1280-4
  • Pitts LH, Ross A, Chase GA, Faden AI. Treatment with thyrotropin-releasing hormone (TRH) in patients with traumatic spinal cord injuries. J Neurotrauma 1995;12(3):235-43
  • Faden AI. Role of endogenous opioids and opioid receptors in central nervous system. Handb Exp Pharmacol 1993;104(I):325-41
  • Hirbec H, Mausset al, Kamenka JM, et al. Re-evaluation of phencyclidine low-affinity or ‘non-NMDA’ binding sites. J Neurosci Res 2002;68(3):305-14
  • Gaviria M, Privat A, d'Arbigny P, et al. Neuroprotective effects of a novel NMDA antagonist, gacyclidine, after experimental contusive spinal cord injury in adult rats. Brain Res 2000;874(2):200-9
  • Mitha AP, Maynard KI. Gacyclidine (Beaufour-Ipsen). Curr Opin Investig Drugs 2001;2(6):814-9
  • Tikka TM, Koistinaho JE. Minocycline provides neuroprotection against N-methyl-D-aspartate neurotoxicity by inhibiting microglia. J Immunol 2001;166(12):7527-33
  • Zhu S, Stavrovskaya IG, Drozda M, et al. Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature 2002;417(6884):74-8
  • Brundula V, Rewcastle NB, Metz LM, et al. Targeting leukocyte MMPs and transmigration: minocycline as a potential therapy for multiple sclerosis. Brain 2002;125(Pt 6):1297-308
  • Cho IH, Chung YM, Park CK, et al. Systemic administration of minocycline inhibits formalin-induced inflammatory pain in rat. Brain Res 2006;1072(1):208-14
  • Dommergues MA, Plaisant F, Verney C, Gressens P. Early microglial activation following neonatal excitotoxic brain damage in mice: a potential target for neuroprotection. Neuroscience 2003;121(3):619-28
  • Stirling DP, Koochesfahani KM, Steeves JD, Tetzlaff W. Minocycline as a neuroprotective agent. Neuroscientist 2005;11(4):308-22
  • Sharma HS, Cervos-Navarro J. Nimodipine improves cerebral blood flow and reduces brain edema, cellular damage and blood–brain barrier permeability following heat stress in young rats. In: Krieglstein J, Oberpichler H, editors, Pharmacology of cerebral ischemia. CRC Press, Boca Raton: FL; 1990. p. 303-10
  • Sharma HS. Blood–brain and spinal cord barriers in stress. In: Sharma HS, Westman J, editors, The blood–spinal cord and brain barriers in health and disease. Elsevier Academic Press: San Diego; 2004. p. 231-98
  • Petitjean ME, Pointillart V, Dixmerias F, et al. Medical treatment of spinal cord injury in the acute stage [in French]. Ann Fr Anesth Reanim 1998;17(2):114-22
  • Nashmi R, Fehlings MG. Mechanisms of axonal dysfunction after spinal cord injury: with an emphasis on the role of voltage-gated potassium channels. Brain Res Brain Res Rev 2001;38(1-2):165-91
  • Hansebout RR, Blight AR, Fawcett S, Reddy K. 4-Aminopyridine in chronic spinal cord injury: a controlled, double-blind, crossover study in eight patients. J Neurotrauma 1993;10(1):1-18
  • DeForge D, Nymark J, Lemaire E, et al. Effect of 4-aminopyridine on gait in ambulatory spinal cord injuries: a double-blind, placebo-controlled, crossover trial. Spinal Cord 2004;42(12):674-85
  • Uchihashi Y, Bencsics A, Umeda E, et al. Na+ channel block prevents the ischemia-induced release of norepinephrine from spinal cord slices. Eur J Pharmacol 1998;346(2-3):145-50
  • Winton MJ, Dubreuil CI, Lasko D, et al. Characterization of new cell permeable C3-like proteins that inactivate Rho and stimulate neurite outgrowth on inhibitory substrates. J Biol Chem 2002;277(36):32820-9
  • Buss A, Pech K, Merkler D, et al. Sequential loss of myelin proteins during Wallerian degeneration in the human spinal cord. Brain 2005;128(Pt 2):356-64
  • Dubreuil CI, Winton MJ, McKerracher L. Rho activation patterns after spinal cord injury and the role of activated Rho in apoptosis in the central nervous system. J Cell Biol 2003;162(2):233-43
  • Wiessner C, Bareyre FM, Allegrini PR, et al. Anti-Nogo-A antibody infusion 24 hours after experimental stroke improved behavioral outcome and corticospinal plasticity in normotensive and spontaneously hypertensive rats. J Cereb Blood Flow Metab 2003;23(2):154-65
  • Dupuis L, Pehar M, Cassina P, et al. Nogo receptor antagonizes p75NTR-dependent motor neuron death. Proc Natl Acad Sci USA 2008;105(2):740-5
  • Schnell L, Fearn S, Klassen H, et al. Acute inflammatory responses to mechanical lesions in the CNS: differences between brain and spinal cord. Eur J Neurosci 1999;11(10):3648-58
  • Heumann R, Lindholm D, Bandtlow C, et al. Differential regulation of mRNA encoding nerve growth factor and its receptor in rat sciatic nerve during development, degeneration, and regeneration: role of macrophages. Proc Natl Acad Sci USA 1987;84(23):8735-9
  • Imai M, Watanabe M, Suyama K, et al. Delayed accumulation of activated macrophages and inhibition of remyelination after spinal cord injury in an adult rodent model. J Neurosurg Spine 2008;8(1):58-66
  • Rapalino O, Lazarov-Spiegler O, Agranov E, et al. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med 1998;4(7):814-21
  • Knoller N, Auerbach G, Fulga V, et al. Clinical experience using incubated autologous macrophages as a treatment for complete spinal cord injury: Phase I study results. J Neurosurg Spine 2005;3(3):173-81
  • Aguayo AJ, Bray GM, Carter DA, et al. Regrowth and connectivity of injured central nervous system axons in adult rodents. Acta Neurobiol Exp (Wars) 1990;50(4-5):381-9
  • Ramón-Cueto A, Plant GW, Avila J, Bunge MB. Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants. J Neurosci 1998;18(10):3803-15
  • Raisman G. A promising therapeutic approach to spinal cord repair. J R Soc Med 2003;96(6):259-61
  • Johansson CB, Svensson M, Wallstedt L, et al. Neural stem cells in the adult human brain. Exp Cell Res 1999;253(2):733-6
  • Zigova T, Sanberg PR. The rising star of neural stem cell research. Nat Biotechnol 1998;16(11):1007-8
  • Cummings BJ, Uchida N, Tamaki SJ, et al. Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci USA 2005;102(39):14069-74
  • Karimi-Abdolrezaee S, Eftekharpour E, Wang J, et al. Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J Neurosci 2006;26(13):3377-89
  • Clark BR, Keating A. Biology of bone marrow stroma. Ann NY Acad Sci 1995;70:70-8
  • Hofstetter CP, Schwarz EJ, Hess D, et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci USA 2002;99(4):2199-204
  • Yoon SH, Shim YS, Park YH, et al. Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: phase I/II clinical trial. Stem Cells 2007;25(8):2066-73
  • Syková E, Jendelová P, Urdzíková L, et al. Bone marrow stem cells and polymer hydrogels – two strategies for spinal cord injury repair. Cell Mol Neurobiol 2006;26(7-8):1113-29
  • Syková E, Homola A, Mazanec R, et al. Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant 2006;15(8-9):675-87
  • Pellitteri R, Russo A, Stanzani S. Schwann cell: a source of neurotrophic activity on cortical glutamatergic neurons in culture. Brain Res 2006;1069(1):139-44
  • Zheng M, Kuffler DP. Guidance of regenerating motor axons in vivo by gradients of diffusible peripheral nerve-derived factors. J Neurobiol 2000;42(2):212-19
  • Kohama I, Lankford KL, Preiningerova J, et al. Transplantation of cryopreserved adult human Schwann cells enhances axonal conduction in demyelinated spinal cord. J Neurosci 2001;21(3):944-50
  • Firouzi M, Moshayedi P, Saberi H, et al. Transplantation of Schwann cells to subarachnoid space induces repair in contused rat spinal cord. Neurosci Lett 2006;402(1-2):66-70
  • Oudega M, Xu XM. Schwann cell transplantation for repair of the adult spinal cord. J Neurotrauma 2006;23(3-4):453-67
  • Bambakidis NC, Miller RH. Transplantation of oligodendrocyte precursors and sonic hedgehog results in improved function and white matter sparing in the spinal cords of adult rats after contusion. Spine J 2004;4(1):16-26
  • Doucette R. Olfactory ensheathing cells: potential for glial cell transplantation into areas of CNS injury. Histol Histopathol 1995;10(2):503-7
  • Li Y, Field PM, Raisman G. Regeneration of adult rat corticospinal axons induced by transplanted olfactory ensheathing cells. J Neurosci 1998;18(24):10514-24
  • Ramón-Cueto A, Cordero MI, Santos-Benito FF, Avila J. Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron 2000;25(2):425-35
  • Féron F, Perry C, Cochrane J, et al. Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain 2005;128(Pt 12):2951-60
  • Huang H, Chen L, Wang H, et al. Influence of patients' age on functional recovery after transplantation of olfactory ensheathing cells into injured spinal cord injury. Chin Med J (Engl) 2003;116(10):1488-91
  • Dobkin BH, Curt A, Guest J. Cellular transplants in China: observational study from the largest human experiment in chronic spinal cord injury. Neurorehabil Neural Repair 2006;20(1):5-13
  • Koob AO, Colby JM, Borgens RB. Behavioral recovery from traumatic brain injury after membrane reconstruction using polyethylene glycol. J Biol Eng 2008;2(1):9-17
  • Luo J, Shi R. Polyethylene glycol inhibits apoptotic cell death following traumatic spinal cord injury. Brain Res 2007;1155:10-6
  • King VR, Averill SA, Hewazy D, et al. Erythropoietin and carbamylated erythropoietin are neuroprotective following spinal cord hemisection in the rat. Eur J Neurosci 2007;26(1):90-100
  • Yazihan N, Uzuner K, Salman B, et al. Erythropoietin improves oxidative stress following spinal cord trauma in rats. Injury 2008. [Epub ahead of print]
  • Liu F, You SW, Yao LP, et al. Secondary degeneration reduced by inosine after spinal cord injury in rats. Spinal Cord 2006;44(7):421-6
  • Bohnert DM, Purvines S, Shapiro S, Borgens RB. Simultaneous application of two neurotrophic factors after spinal cord injury. J Neurotrauma 2007;24(5):846-63
  • García-Alías G, Lin R, Akrimi SF, et al. Therapeutic time window for the application of chondroitinase ABC after spinal cord injury. Exp Neurol 2008;210(2):331-8
  • Shields LB, Zhang YP, Burke DA, et al. Benefit of chondroitinase ABC on sensory axon regeneration in a laceration model of spinal cord injury in the rat. Surg Neurol 2008;69(6):568-77
  • Nikulina E, Tidwell JL, Dai HN, et al. The phosphodiesterase inhibitor rolipram delivered after a spinal cord lesion promotes axonal regeneration and functional recovery. Proc Natl Acad Sci USA 2004;101(23):8786-90
  • Kajana S, Goshgarian HG. Administration of phosphodiesterase inhibitors and an adenosine A1 receptor antagonist induces phrenic nerve recovery in high cervical spinal cord injured rats. Exp Neurol 2008;210(2):671-80
  • Wang X, Baughman KW, Basso DM, Strittmatter SM. Delayed Nogo receptor therapy improves recovery from spinal cord contusion. Ann Neurol 2006;60(5):540-9
  • Kitzman PH, Uhl TL, Dwyer MK. Gabapentin suppresses spasticity in the spinal cord-injured rat. Neuroscience 2007;149(4):813-21
  • Baastrup C, Finnerup NB. Pharmacological management of neuropathic pain following spinal cord injury. CNS Drugs 2008;22(6):455-75
  • Zahir T, Nomura H, Guo XD, et al. Bioengineering neural stem/progenitor cell-coated tubes for spinal cord injury repair. Cell Transplant 2008;17(3):245-54
  • Iwata A, Browne KD, Pfister BJ, et al. Long-term survival and outgrowth of mechanically engineered nervous tissue constructs implanted into spinal cord lesions. Tissue Eng 2006;12(1):101-10
  • Delamarter RB, Sherman J, Carr JB. Pathophysiology of spinal cord injury. Recovery after immediate and delayed decompression. J Bone Joint Surg Am 1995;77(7):1042-9
  • Fehlings MG, Perrin RG. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of recent clinical evidence. Spine 2006;31(11 Suppl):S28-35; discussion S36
  • Tator CH. The stimulus for an acute spinal cord injury unit. Can J Neurol Sci 1999;26(3):239-41
  • Hicks AL, Adams MM, Martin Ginis K, et al. Long-term body-weight-supported treadmill training and subsequent follow-up in persons with chronic SCI: effects on functional walking ability and measures of subjective well-being. Spinal Cord 2005;43(5):291-8
  • Dimitrijevic MR, Gerasimenko Y, Pinter MM. Evidence for a spinal central pattern generator in humans. Ann NY Acad Sci 1998;860:360-76
  • Gordh T, Chu H, Sharma HS. Spinal nerve lesion alters blood–spinal cord barrier function and activates astrocytes in the rat. Pain 2006;124(1-2):211-21
  • Kiyatkin EA, Brown PL, Sharma HS. Brain edema and breakdown of the blood–brain barrier during methamphetamine intoxication: critical role of brain hyperthermia. Eur J Neurosci 2007;26(5):1242-53
  • Sharma HS, Zimmer C, Westman J, Cervos-Navarro J. Acute systemic heat stress increases glial fibrillary acidic protein immunoreactivity in brain: experimental observations in conscious normotensive young rats. Neuroscience 1992;48(4):889-901
  • Sharma HS, Ali SF. Alterations in blood–brain barrier function by morphine and methamphetamine. Ann NY Acad Sci 2006;1074:198-224
  • Sharma HS, Olsson Y, Cervos-Navarro J. Early perifocal cell changes and edema in traumatic injury of the spinal cord are reduced by indomethacin, an inhibitor of prostaglandin synthesis. Acta Neuropathol (Berl) 1993;85:145-53
  • Sharma HS, Vannemreddy P, Patnaik R, et al. Histamine receptors influence blood–spinal cord barrier permeability, edema formation, and spinal cord blood flow following trauma to the rat spinal cord. Acta Neurochir Suppl 2006;96:316-21
  • Sharma HS, Westman J, Olsson Y, Alm P. Involvement of nitric oxide in acute spinal cord injury: an immunohistochemical study using light and electron microscopy in the rat. Neurosci Res 1996;24:373-84
  • Sharma HS, Sharma A. Antibodies as promising novel neuroprotective agents in the central nervous system injuries. Central Nerv Syst Agents Med Chem 2008;8(3):In press
  • Sharma HS, Olsson Y, Nyberg F. Influence of dynorphin-A antibodies on the formation of edema and cell changes in spinal cord trauma. In: Nyberg F, Sharma HS, Wissenfeld-Halin Z, editors, Progress in brain research. Volume 104. Elsevier: Amsterdam; 1995. p. 401-16
  • Sharma HS, Winkler T, Stålberg E, et al. Topical application of TNF-alpha antiserum attenuates spinal cord trauma induced edema formation, microvascular permeability disturbances and cell injury in the rat. Acta Neurochir Suppl 2003;86:407-13
  • Sharma HS. Neuroprotective effects of neurotrophins and melanocortins in spinal cord injury: an experimental study in the rat using pharmacological and morphological approaches. Ann NY Acad Sci 2005;1053:407-21
  • Sharma HS. Neurotrophic factors attenuate microvascular permeability disturbances and axonal injury following trauma to the rat spinal cord. Acta Neurochir Suppl 2003;86:383-8
  • Sharma HS. Nanoneuroscience: emerging concepts on nanoneurotoxicity and nanoneuroprotection. Nanomedicine 2007;2(6):753-8
  • Sharma HS, Sharma A. Nanoparticles aggravate heat stress induced cognitive deficits, blood–brain barrier disruption, edema formation and brain pathology. Prog Brain Res 2007;162:245-73
  • Sharma HS, Ali SF, Dong W, et al. Drug delivery to the spinal cord tagged with nanowire enhances neuroprotective efficacy and functional recovery following trauma to the rat spinal cord. Ann NY Acad Sci 2007;1122:197-218
  • Sharma HS, Sharma A. Recent perspectives in nanoparticles induced neuroprotection and neurotoxicity. J Nanosci Nanotech 2008; In press
  • Chvatal SA, Kim YT, Bratt-Leal AM, et al. Spatial distribution and acute anti-inflammatory effects of methylprednisolone after sustained local delivery to the contused spinal cord. Biomaterials 2008;29(12):1967-75
  • Sharma HS, Lundstedt T, Flärdh M, et al. Neuroprotective effects of melanocortins in CNS injury. Curr Pharm Des 2007;13(19):1929-41
  • Sharma HS. Blood–central nervous system barriers. A gateway to neurodegeneration and neuroreg eneration. In: Lajtha A, editor, Handbook of neurochemistry and molecular neurobiology. Volume 24. Chapter 11. Springer: New York; 2008. p. 1-95
  • Kastner A, Gauthier P. Are rodents an appropriate pre-clinical model for treating spinal cord injury? Examples from the respiratory system. Exp Neurol 2008; [Epub ahead of print]
  • Steeves JD, Lammertse D, Curt A, et al. International Campaign for Cures of Spinal Cord Injury Paralysis. Guidelines for the conduct of clinical trials for spinal cord injury (SCI) as developed by the ICCP panel: clinical trial outcome measures. Spinal Cord 2007;45(3):206-21
  • Fawcett JW, Curt A, Steeves JD, et al. Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord 2007;45(3):190-205
  • Steeves JD, Fawcett JW, Tuszynski MH, et al. Experimental treatments for spinal cord injury: what you should know if you are considering participation in a clinical trial. A guide for people with spinal cord injury, their families, friends and caregivers. Provided by International Campaign for Cures of Spinal Cord injury and Paraplegia (ICCP). Available from: http://www.icord.org/iccp.html [Last accessed on 2008 August 5]
  • Brain Facts and Figures. Available from: http://faculty.washington.edu/chudler/facts.html#spinal [Accessed 2008 May 15]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.