411
Views
36
CrossRef citations to date
0
Altmetric
Reviews

The good, the bad and the ugly: how altered peptide ligands modulate immunity

, , &
Pages 1873-1884 | Published online: 06 Nov 2008

Bibliography

  • Evavold BD, Sloan-Lancaster J, Allen PM. Tickling the TCR: selective T-cell functions stimulated by altered peptide ligands. Immunol Today 1993;14(12):602-9
  • Evavold BD, Allen PM. Separation of IL-4 production from Th cell proliferation by an altered T cell receptor ligand. Science 1991;252(5010):1308-10
  • Madrenas J, Germain RN. Variant TCR ligands: new insights into 1the molecular basis of antigen-dependent signal transduction and T-cell activation. Semin Immunol 1996;8(2):83-101
  • Racioppi L, Ronchese F, Matis LA, Germain RN. Peptide-major histocompatibility complex class II complexes with mixed agonist/antagonist properties provide evidence for ligand-related differences in T cell receptor-dependent intracellular signaling. J Exp Med 1993;177(4):1047-60
  • De Magistris MT, Alexander J, Coggeshall M, et al. Antigen analog-major histocompatibility complexes act as antagonists of the T cell receptor. Cell 1992;68(4):625-34
  • Sloan-Lancaster J, Evavold BD, Allen PM. Induction of T-cell anergy by altered T-cell-receptor ligand on live antigen-presenting cells. Nature 1993;363(6425):156-9
  • Alexander J, Ruppert J, Snoke K, Sette A. TCR antagonism and T cell tolerance can be independently induced in a DR-restricted, hemagglutinin-specific T cell clone. Int Immunol 1994;6(3):363-7
  • Jameson SC, Carbone FR, Bevan MJ. Clone-specific T cell receptor antagonists of major histocompatibility complex class I-restricted cytotoxic T cells. J Exp Med 1993;177(6):1541-50
  • Evavold BD, Sloan-Lancaster J, Allen PM. Antagonism of superantigen-stimulated helper T-cell clones and hybridomas by altered peptide ligand. Proc Natl Acad Sci USA 1994;91(6):2300-4
  • Ruppert J, Alexander J, Snoke K, et al. Effect of T-cell receptor antagonism on interaction between T cells and antigen-presenting cells and on T-cell signaling events. Proc Natl Acad Sci USA 1993;90(7):2671-5
  • Degano M, Garcia KC, Apostolopoulos V, et al. Wilson IA. A functional hot spot for antigen recognition in a superagonist TCR/MHC complex. Immunity 2000;12(3):251-61
  • Thomson CT, Kalergis AM, Sacchettini JC, Nathenson SG. A structural difference limited to one residue of the antigenic peptide can profoundly alter the biological outcome of the TCR-peptide/MHC class I interaction. J Immunol 2001;166(6):3994-7
  • Kalergis AM, Nathenson SG. Altered peptide ligand-mediated TCR antagonism can be modulated by a change in a single amino acid residue within the CDR3β of an MHC class I-restricted TCR. J Immunol 2000;165(1):280-5
  • Fuchs S, Nevo D, Tarrab-Hazdai R, Yaar I. Strain differences in the autoimmune response of mice to acetylcholine receptors. Nature 1976;263(5575):329-30
  • Drachman DB. Myasthenia gravis. N Engl J Med 1994;330(25):1797-810
  • Brocke S, Dayan M, Rothbard J, et al. The autoimmune response of different mouse strains to T-cell epitopes of the human acetylcholine receptor α subunit. Immunology 1990;69(4):495-500
  • Katz-Levy Y, Paas-Rozner M, Kirshner S, et al. A peptide composed of tandem analogs of two myasthenogenic T cell epitopes interferes with specific autoimmune responses. Proc Natl Acad Sci USA 1997;94(7):3200-5
  • Paas-Rozner M, Sela M, Mozes E. The nature of the active suppression of responses associated with experimental autoimmune myasthenia gravis by a dual altered peptide ligand administered by different routes. Proc Natl Acad Sci USA 2001;98(22):12642-7
  • Faber-Elmann A, Paas-Rozner M, Sela M, Mozes E. Altered peptide ligands act as partial agonists by inhibiting phospholipase C activity induced by myasthenogenic T cell epitopes. Proc Natl Acad Sci USA 1998;95(24):14320-5
  • Paas-Rozner M, Sela M, Mozes E. A dual altered peptide ligand down-regulates myasthenogenic T cell responses by up-regulating CD25- and CTLA-4-expressing CD4+ T cells. Proc Natl Acad Sci USA 2003;100(11):6676-81
  • Van de Water J, Shimoda S, Niho Y, et al. The role of T cells in primary biliary cirrhosis. Semin Liver Dis 1997;17(2):105-13
  • Kita H, Lian ZX, Van de Water J, et al. Identification of HLA-A2-restricted CD8+ cytotoxic T cell responses in primary biliary cirrhosis: T cell activation is augmented by immune complexes cross-presented by dendritic cells. J Exp Med 2002;195(1):113-23
  • Kita H, Matsumura S, He XS, et al. Analysis of TCR antagonism and molecular mimicry of an HLA-A0201-restricted CTL epitope in primary biliary cirrhosis. Hepatology 2002;36(4 Pt 1):918-26
  • Sekine T, Kato T, Masuko-Hongo K, et al. Type II collagen is a target antigen of clonally expanded T cells in the synovium of patients with rheumatoid arthritis. Ann Rheum Dis 1999;58(7):446-50
  • Li R, Li X, Li Z. Altered collagen II peptides inhibited T-cell activation in rheumatoid arthritis. Clin Immunol 2006;118(2-3):317-23
  • Cheng YJ, Zhou Q, Li ZG. The inhibitory effect of altered collagen II peptide on HLA-DRB1-restricted T-cell activation. Scand J Immunol 2005;61(3):260-5
  • Sakurai Y, Brand DD, Tang B, et al. Analog peptides of type II collagen can suppress arthritis in HLA-DR4 (DRB1*0401) transgenic mice. Arthritis res ther 2006;8(5):R150. Published online 18 September 2006, doi:10.1186/ar2043
  • Myers LK, Tang B, Rosioniec EF, et al. An altered peptide ligand of type II collagen suppresses autoimmune arthritis. Crit rev immunol 2007;27(4):345-56
  • Boots AM, Hubers H, Kouwijzer M, et al. Identification of an altered peptide ligand based on the endogenously presented, rheumatoid arthritis-associated, human cartilage glycoprotein-39(263–275) epitope: an MHC anchor variant peptide for immune modulation. Arthritis res ther 2007;9(4):R71 published online 23 July 2007, doi:10.1186/ar2269
  • Daniel D, Wegmann DR. Protection of nonobese diabetic mice from diabetes by intranasal or subcutaneous administration of insulin peptide B-(9–23). Proc Natl Acad Sci USA 1996;93(2):956-60
  • Delovitch TL, Singh B. The nonobese diabetic mouse as a model of autoimmune diabetes: immune dysregulation gets the NOD. Immunity 1997;7(6):727-38
  • Alleva DG, Gaur A, Jin L, et al. Immunological characterization and therapeutic activity of an altered-peptide ligand, NBI-6024, based on the immunodominant type 1 diabetes autoantigen insulin B-chain (9–23) peptide. Diabetes 2002;51(7):2126-34
  • Alleva DG, Maki RA, Putnam AL, et al. Immunomodulation in type 1 diabetes by NBI-6024, an altered peptide ligand of the insulin B epitope. Scand J Immunol 2006;63(1):59-69
  • Zhang L, Nakayama M, Eisenbarth GS. Insulin as an autoantigen in NOD/human diabetes. Curr Opin Immunol 2008;20(1):111-8
  • Arden SD, Roep BO, Neophytou PI, et al. Imogen 38: a novel 38-kD islet mitochondrial autoantigen recognized by T cells from a newly diagnosed type 1 diabetic patient. J Clin Invest 1996;97(2):551-61
  • Geluk A, van Meijgaarden KE, Roep BO, Ottenhoff TH. Altered peptide ligands of islet autoantigen Imogen 38 inhibit antigen specific T cell reactivity in human type-1 diabetes. J Autoimmun 1998;11(4):353-61
  • Masewicz SA, Papadopoulos GK, Swanson E, et al. Modulation of T cell response to hGAD65 peptide epitopes. Tissue Antigens 2002;59(2):101-12
  • Janssen EM, van Oosterhout AJ, van Rensen AJ, et al. Modulation of Th2 responses by peptide analogues in a murine model of allergic asthma: amelioration or deterioration of the disease process depends on the Th1 or Th2 skewing characteristics of the therapeutic peptide. J Immunol 2000;164(2):580-8
  • Kinnunen T, Jutila K, Kwok WW, et al. Potential of an altered peptide ligand of lipocalin allergen Bos d 2 for peptide immunotherapy. J Allergy Clin Immunol 2007;119(4):965-72
  • Katsara M, Matsoukas J, Deraos G, Apostolopoulos V. Towards immunotherapeutic drugs and vaccines against multiple sclerosis. Acta Biochim Biophys Sinica 2008;40(7):636-42
  • Hafler DA, Slavik JM, Anderson DE, et al. Multiple sclerosis. Immunol Rev 2005;204:208-31
  • Steinman L. Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell 1996;85(3):299-302
  • de Haan EC, Moret EE, Wagenaar-Hilbers JP, et al. Possibilities and limitations in the rational design of modified peptides for T cell mediated immunotherapy. Mol Immunol 2005;42(3):365-73
  • Smilek DE, Wraith DC, Hodgkinson S, et al. A single amino acid change in a myelin basic protein peptide confers the capacity to prevent rather than induce experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 1991;88(21):9633-7
  • Chou YK, Vandenbark AA, Jones RE, et al. Selection of encephalitogenic rat T-lymphocyte clones recognizing an immunodominant epitope on myelin basic protein. J Neurosci Res 1989;22(2):181-7
  • de Haan EC, Wauben MH, Grosfeld-Stulemeyer MC, Moret EE. Structure-based design and evaluation of MHC class II binding peptides. Biologicals 2001;29(3-4):289-92
  • Tselios T, Probert L, Daliani I, et al. Design and synthesis of a potent cyclic analogue of the myelin basic protein epitope MBP72–85: importance of the Ala81 carboxyl group and of a cyclic conformation for induction of experimental allergic encephalomyelitis. J Med Chem 1999;42(7):1170-7
  • Tselios T, Daliani I, Deraos S, et al. Treatment of experimental allergic encephalomyelitis (EAE) by a rationally designed cyclic analogue of myelin basic protein (MBP) epitope 72–85. Bioorg Med Chem Lett 2000;10(24):2713-17
  • Karin N, Mitchell DJ, Brocke S, et al. Reversal of experimental autoimmune encephalomyelitis by a soluble peptide variant of a myelin basic protein epitope: T cell receptor antagonism and reduction of interferon γ and tumor necrosis factor α production. J Exp Med 1994;180(6):2227-37
  • Matsoukas J, Apostolopoulos V, Kalbacher H, et al. Design and synthesis of a novel potent myelin basic protein epitope 87–99 cyclic analogue: enhanced stability and biological properties of mimics render them a potentially new class of immunomodulators. J Med Chem 2005;48(5):1470-80
  • Katsara M, Tselios T, Deraos S, et al. Round and round we go: cyclic peptides in disease. Curr Med Chem 2006;13(19):2221-32
  • Tselios T, Apostolopoulos V, Daliani I, et al. Antagonistic effects of human cyclic MBP(87–99) altered peptide ligands in experimental allergic encephalomyelitis and human T-cell proliferation. J Med Chem 2002;45(2):275-83
  • Tselios T, Daliani I, Probert L, et al. Treatment of experimental allergic encephalomyelitis (EAE) induced by guinea pig myelin basic protein epitope 72–85 with a human MBP(87–99) analogue and effects of cyclic peptides. Bioorg Med Chem 2000;8(8):1903-9
  • Ruiz PJ, Garren H, Hirschberg DL, et al. Microbial epitopes act as altered peptide ligands to prevent experimental autoimmune encephalomyelitis. J Exp Med 1999;189(8):1275-84
  • Kuchroo VK, Greer JM, Kaul D, et al. A single TCR antagonist peptide inhibits experimental allergic encephalomyelitis mediated by a diverse T cell repertoire. J Immunol 1994;153(7):3326-36
  • Nicholson LB, Murtaza A, Hafler BP, et al. A T cell receptor antagonist peptide induces T cells that mediate bystander suppression and prevent autoimmune encephalomyelitis induced with multiple myelin antigens. Proc Natl Acad Sci USA 1997;94(17):9279-84
  • Katsara M, Yuriev E, Ramsland PA, et al. A double mutation of MBP(83–99) peptide induces IL-4 responses and antagonizes IFN-γ responses. J Neuroimmunol 2008;200(1-2):77-89
  • Tselios TV, Lamari FN, Karathanasopoulou I, et al. Synthesis and study of the electrophoretic behavior of mannan conjugates with cyclic peptide analogue of myelin basic protein using lysine-glycine linker. Anal Biochem 2005;347(1):121-8
  • Sheng KC, Pouniotis DS, Wright MD, et al. Mannan derivatives induce phenotypic and functional maturation of mouse dendritic cells. Immunology 2006;118(3):372-83
  • Apostolopoulos V, Barnes N, Pietersz GA, McKenzie IF. Ex vivo targeting of the macrophage mannose receptor generates anti-tumor CTL responses. Vaccine 2000;18(27):3174-84
  • Apostolopoulos V, McKenzie IF. Role of the mannose receptor in the immune response. Curr Mol Med 2001;1(4):469-74
  • Apostolopoulos V, McKenzie IF, Pietersz GA. Generation of MUC1 cytotoxic T-cells in mice and epitope mapping. Methods Mol Biol 2000;125:455-62
  • Apostolopoulos V, Pietersz GA, Gordon S, et al. Aldehyde-mannan antigen complexes target the MHC class I antigen-presentation pathway. Eur J Immunol 2000;30(6):1714-23
  • Apostolopoulos V, Pietersz GA, Loveland BE, et al. Oxidative/reductive conjugation of mannan to antigen selects for T1 or T2 immune responses. Proc Natl Acad Sci USA 1995;92(22):10128-32
  • Apostolopoulos V, Pietersz GA, McKenzie IF. Cell-mediated immune responses to MUC1 fusion protein coupled to mannan. Vaccine 1996;14(9):930-8
  • Apostolopoulos V, Xing PX, McKenzie IF. Murine immune response to cells transfected with human MUC1: immunization with cellular and synthetic antigens. Cancer Res 1994;54(19):5186-93
  • Apostolopoulos V, Yu M, Corper AL, et al. Crystal structure of a non-canonical low-affinity peptide complexed with MHC class I: a new approach for vaccine design. J Mol Biol 2002;318(5):1293-305
  • Katsara M, Yuriev E, Ramsland PA, et al. Mannosylation of mutated MBP83-99 peptides diverts immune responses from Th1 to Th2. Mol Immunol 2008;45(13):3661-70
  • Katsara M, Deraos G, Tselios T, et al. Design of novel cyclic altered peptide ligands of myelin basic protein MBP83-99 that modulate immune responses in SJL/J mice. J Med Chem 2008;51(13):3971-8
  • Fridkis-Hareli M, Teitelbaum D, Gurevich E, et al. Direct binding of myelin basic protein and synthetic copolymer 1 to class II major histocompatibility complex molecules on living antigen-presenting cells–specificity and promiscuity. Proc Natl Acad Sci USA 1994;91(11):4872-6
  • Aharoni R, Teitelbaum D, Arnon R, Sela M. Copolymer 1 acts against the immunodominant epitope 82–100 of myelin basic protein by T cell receptor antagonism in addition to major histocompatibility complex blocking. Proc Natl Acad Sci USA 1999;96(2):634-9
  • Duda PW, Schmied MC, Cook SL, et al. Glatiramer acetate (Copaxone) induces degenerate, Th2-polarized immune responses in patients with multiple sclerosis. J Clin Invest 2000;105(7):967-76
  • Neuhaus O, Farina C, Yassouridis A, et al. Multiple sclerosis: comparison of copolymer-1- reactive T cell lines from treated and untreated subjects reveals cytokine shift from T helper 1 to T helper 2 cells. Proc Natl Acad Sci USA 2000;97(13):7452-7
  • Bakker AB, Schreurs MW, Tafazzul G, et al. Identification of a novel peptide derived from the melanocyte-specific gp100 antigen as the dominant epitope recognized by an HLA-A2.1-restricted anti-melanoma CTL line. Int J Cancer 1995;62(1):97-102
  • Dionne SO, Smith MH, Marincola FM, Lake DF. Functional characterization of CTL against gp100 altered peptide ligands. Cancer Immunol Immunother 2003;52(4):199-206
  • Overwijk WW, Tsung A, Irvine KR, et al. gp100/pmel 17 is a murine tumor rejection antigen: induction of “self”-reactive, tumoricidal T cells using high-affinity, altered peptide ligand. J Exp Med 1998;188(2):277-86
  • Overwijk WW, Theoret MR, Finkelstein SE, et al. Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med 2003;198(4):569-80
  • Hwang LN, Yu Z, Palmer DC, Restifo NP. The in vivo expansion rate of properly stimulated transferred CD8+ T cells exceeds that of an aggressively growing mouse tumor. Cancer Res 2006;66(2):1132-8
  • Yun C, Senju S, Fujita H, et al. Augmentation of immune response by altered peptide ligands of the antigenic peptide in a human CD4+ T-cell clone reacting to TEL/AML1 fusion protein. Tissue Antigens 1999;54(2):153-61
  • Apostolopoulos V, Haurum JS, McKenzie IF. MUC1 peptide epitopes associated with five different H-2 class I molecules. Eur J Immunol 1997;27(10):2579-87
  • Apostolopoulos V, Karanikas V, Haurum JS, McKenzie IF. Induction of HLA-A2-restricted CTLs to the mucin 1 human breast cancer antigen. J Immunol 1997;159(11):5211-8
  • Apostolopoulos V, Lazoura E. Noncanonical peptides in complex with MHC class I. Expert Rev Vaccines 2004;3(2):151-62
  • Apostolopoulos V, McKenzie IF, Wilson IA. Getting into the groove: unusual features of peptide binding to MHC class I molecules and implications in vaccine design. Front Biosci 2001;6:D1311-1320
  • Apostolopoulos V, Yuriev E, Lazoura E, et al. MHC and MHC-like molecules: Structural perspectives on the design of molecular vaccines. Hum Vaccin 2008;4(6): published online http://www.landesbioscience.com/journals/vaccines/article/6690
  • Lazoura E, Apostolopoulos V. Insights into peptide-based vaccine design for cancer immunotherapy. Currt Med Chem 2005;12(13):1481-94
  • Lazoura E, Apostolopoulos V. Rational Peptide-based vaccine design for cancer immunotherapeutic applications. Curr Med Chem 2005;12(6):629-39
  • Fong L, Hou Y, Rivas A, et al. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci USA 2001;98(15):8809-14
  • Palena C, Arlen P, Zeytin H, et al. Enhanced expression of lymphotactin by CD8+ T cells is selectively induced by enhancer agonist peptides of tumor-associated antigens. Cytokine 2003;24(4):128-42
  • Lazoura E, Lodding J, Farrugia W, et al. Enhanced major histocompatibility complex class I binding and immune responses through anchor modification of the non-canonical tumour-associated mucin 1-8 peptide. Immunology 2006;119(3):306-16
  • Apostolopoulos V, Yuriev E, Ramsland PA, et al. A glycopeptide in complex with MHC class I uses the GalNAc residue as an anchor. Proc Natl Acad Sci USA 2003;100(25):15029-34
  • Tang Y, Lin Z, Ni B, et al. An altered peptide ligand for naive cytotoxic T lymphocyte epitope of TRP-2(180–188) enhanced immunogenicity. Cancer Immunol Immunother 2007;56(3):319-29
  • Mimura K, Kono K, Southwood S, et al. Substitution analog peptide derived from HER-2 can efficiently induce HER-2-specific, HLA-A24 restricted CTLs. Cancer Immunol Immunother 2006;55(11):1358-66
  • Gritzapis AD, Mahaira LG, Perez SA, et al. Vaccination with human HER-2/neu (435-443) CTL peptide induces effective antitumor immunity against HER-2/neu -expressing tumor cells in vivo. Cancer Res 2006;66(10):5452-60
  • Klenerman P, Rowland-Jones S, McAdam S, et al. Cytotoxic T-cell activity antagonized by naturally occurring HIV-1 Gag variants. Nature 1994;369(6479):403-7
  • Bertoletti A, Sette A, Chisari FV, et al. Natural variants of cytotoxic epitopes are T-cell receptor antagonists for antiviral cytotoxic T cells. Nature 1994;369(6479):407-10
  • Hollsberg P, Weber WE, Dangond F, et al. Differential activation of proliferation and cytotoxicity in human T-cell lymphotropic virus type I Tax-specific CD8 T cells by an altered peptide ligand. Proc Natl Acad Sci USA 1995;92(9):4036-40
  • Bouhdoud L, Villain P, Merzouki A, et al. T-cell receptor-mediated anergy of a human immunodeficiency virus (HIV) gp120-specific CD4+ cytotoxic T-cell clone, induced by a natural HIV type 1 variant peptide. J Virol 2000;74(5):2121-30
  • Hahn YS. Subversion of immune responses by hepatitis C virus: immunomodulatory strategies beyond evasion? Curr Opin Immunol 2003;15(4):443-9
  • Herzer K, Falk CS, Encke J, et al. Upregulation of major histocompatibility complex class I on liver cells by hepatitis C virus core protein via p53 and TAP1 impairs natural killer cell cytotoxicity. J Virol 2003;77(15):8299-309
  • Chang KM, Rehermann B, McHutchison JG, et al. Immunological significance of cytotoxic T lymphocyte epitope variants in patients chronically infected by the hepatitis C virus. J Clin Invest 1997;100(9):2376-85
  • Grakoui A, Shoukry NH, Woollard DJ, et al. HCV persistence and immune evasion in the absence of memory T cell help. Science 2003;302(5645):659-62
  • Frasca L, Del Porto P, Tuosto L, et al. Hypervariable region 1 variants act as TCR antagonists for hepatitis C virus-specific CD4+ T cells. J Immunol 1999;163(2):650-8
  • Carrabba MG, Castelli C, Maeurer MJ, et al. Suboptimal activation of CD8+ T cells by melanoma-derived altered peptide ligands: role of Melan-A/MART-1 optimized analogues. Cancer Res 2003;63(7):1560-7
  • Rivoltini L, Squarcina P, Loftus DJ, et al. A superagonist variant of peptide MART1/Melan A27-35 elicits anti-melanoma CD8+ T cells with enhanced functional characteristics: implication for more effective immunotherapy. Cancer Res 1999;59(2):301-6
  • Good MF, Pombo D, Quakyi IA, et al. Human T-cell recognition of the circumsporozoite protein of Plasmodium falciparum : immunodominant T-cell domains map to the polymorphic regions of the molecule. Proc Natl Acad Sci USA 1988;85(4):1199-203
  • Plebanski M, Hill AV. The immunology of malaria infection. Curr Opin Immunol 2000;12(4):437-41
  • Plebanski M, Proudfoot O, Pouniotis D, et al. Immunogenetics and the design of Plasmodium falciparum vaccines for use in malaria-endemic populations. J Clin Invest 2002;110(3):295-301
  • Flanagan KL, Lee EA, Gravenor MB, et al. Unique T cell effector functions elicited by Plasmodium falciparum epitopes in malaria-exposed Africans tested by three T cell assays. J Immunol 2001;167(8):4729-37
  • Reece WH, Plebanski M, Akinwunmi P, et al. Naturally exposed populations differ in their T1 and T2 responses to the circumsporozoite protein of Plasmodium falciparum. Infect Immun 2002;70(3):1468-74
  • Plebanski M, Lee EA, Hannan CM, et al. Altered peptide ligands narrow the repertoire of cellular immune responses by interfering with T-cell priming. Nat Med 1999;5(5):565-71
  • Aidoo M, Lalvani A, Allsopp CE, et al. Identification of conserved antigenic components for a cytotoxic T lymphocyte-inducing vaccine against malaria. Lancet 1995;345(8956):1003-7
  • Conway DJ, Greenwood BM, McBride JS. The epidemiology of multiple-clone Plasmodium falciparum infections in Gambian patients. Parasitology 1991;(103 Pt 1):1-6
  • de la Cruz VF, Lal AA, McCutchan TF. Sequence variation in putative functional domains of the circumsporozoite protein of Plasmodium falciparum. Implications for vaccine development. J Biol Chem 1987;262(25):11935-9
  • Lockyer MJ, Marsh K, Newbold CI. Wild isolates of Plasmodium falciparum show extensive polymorphism in T cell epitopes of the circumsporozoite protein. Mol Biochem Parasitol 1989;37(2):275-80
  • Stoute JA, Slaoui M, Heppner DG, et al. A preliminary evaluation of a recombinant circumsporozoite protein vaccine against Plasmodium falciparum malaria. RTS,S Malaria Vaccine Evaluation Group. N Engl J Med 1997;336(2):86-91
  • Doolan DL, Khamboonruang C, Beck HP, et al. Cytotoxic T lymphocyte (CTL) low-responsiveness to the Plasmodium falciparum circumsporozoite protein in naturally-exposed endemic populations: analysis of human CTL response to most known variants. Int Immunol 1993;5(1):37-46
  • Gilbert SC, Plebanski M, Gupta S, et al. Association of malaria parasite population structure, HLA, and immunological antagonism. Science 1998;279(5354):1173-7
  • Plebanski M, Flanagan KL, Lee EA, et al. Interleukin 10-mediated immunosuppression by a variant CD4 T cell epitope of Plasmodium falciparum. Immunity 1999;10(6):651-60
  • Crowe PD, Qin Y, Conlon PJ, Antel JP. NBI-5788, an altered MBP83-99 peptide, induces a T-helper 2-like immune response in multiple sclerosis patients. Ann Neurol 2000;48(5):758-65
  • Kappos L, Comi G, Panitch H, et al. Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized Phase II trial. The Altered Peptide Ligand in Relapsing MS Study Group. Nat Med 2000;6(10):1176-82
  • Kim HJ, Antel JP, Duquette P, et al. Persistence of immune responses to altered and native myelin antigens in patients with multiple sclerosis treated with altered peptide ligand. Clin Immunol 2002;104(2):105-14
  • Bielekova B, Goodwin B, Richert N, et al. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a Phase II clinical trial with an altered peptide ligand. Nat Med 2000;6(10):1167-75
  • Iero M, Squarcina P, Romero P, et al. Low TCR avidity and lack of tumor cell recognition in CD8+ T cells primed with the CEA-analogue CAP1-6D peptide. Cancer Immunol Immunother 2007;56(12):1979-91

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.