87
Views
22
CrossRef citations to date
0
Altmetric
Reviews

A novel role for the marrow microenvironment in initiating and sustaining hematopoietic disease

, MD & , MD
Pages 21-28 | Published online: 21 Nov 2008

Bibliography

  • Russell ES. Hereditary anemias of the mouse: A review for geneticists. Adv Genet 1979;20:357-459
  • McCulloch EA, Siminovitch L, Till JE, et al. The cellular basis of the genetically determined hemopoietic defect in anemic mice of genotype sl/sld Blood 1965;26(4):399-410
  • Copeland NG, Gilbert DJ, Cho BC, et al. Mast cell growth factor maps near the steel locus on mouse chromosome 10 and is deleted in a number of steel alleles. Cell 1990;63(1):175-83
  • Trentin JJ. Determination of bone marrow stem cell differentiation by stromal hemopoietic inductive microenvironments (HIM). Am J Pathol 1971;65(3):621-8
  • Williams DE, Eisenman J, Baird A, et al. Identification of a ligand for the c-kit proto-oncogene. Cell 1990;63(1):167-74
  • Huang E, Nocka K, Beier DR, et al. The hematopoietic growth factor KL is encoded by the Sl. locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell 1990;63(1):225-33
  • Curry JL, Trentin JJ, Wolf N. Hemopoietic spleen colony studies. II. erythropoiesis. J Exp Med 1967;125(4):703-20
  • Wolf NS, Trentin JJ. Hemopoietic colony studies. V effect of hemopoietic organ stroma on differentiation of pluripotent stem cells. J Exp Med 1968;127(1):205-14
  • Gerdes AJ, Storb R. The repopulation of irradiated bone marrow by the infusion of stored autologous marrow. Radiology 1970;94(2):441-5
  • Dexter TM, Allen TD, Lajtha LG. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 1977;91(3):335-44
  • Gartner S, Kaplan HS. Long-term culture of human bone marrow cells. Proc Natl Acad Sci USA 1980;77(8):4756-9
  • Mayani H, Guilbert LJ, Janowska-Wieczorek A. Biology of the hemopoietic microenvironment. Eur J Haematol 1992;49(5):225-33
  • Greenberger JS. The hematopoietic microenvironment. Crit Rev Oncol Hematol 1991;11(1):65-84
  • Calvi LM, Adams GB, Weibrecht KW, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003;425(6960):841-6
  • Zhang J, Niu C, Ye L, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003;425(6960):836-41
  • Taichman RS. Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 2005;105(7):2631-9
  • Visnjic D, Kalajzic Z, Rowe DW, et al. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 2004;103(9):3258-64
  • Chabannon C, Torok-Storb B. Stem cell-stromal cell interactions. Curr Top Microbiol Immunol 1992;177:123-136
  • Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 1978;4(1-2):7-25
  • Gong JK. Endosteal marrow: a rich source of hematopoietic stem cells. Science 1978;199(4336):1443-5
  • Kiel MJ, Yilmaz OH, Iwashita T, et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005;121(7):1109-21
  • Scadden DT. The stem cell niche in health and leukemic disease. Best Pract Res Clin Haematol 2007;20(1):19-27
  • Duhrsen U, Hossfeld DK. Stromal abnormalities in neoplastic bone marrow diseases. Ann Hematol 1996;73(2):53-70
  • Podar K, Richardson PG, Hideshima T, et al. The malignant clone and the bone-marrow environment. Best Pract Res Clin Haematol 2007;20(4):597-612
  • Mitsiades CS, Mitsiades NS, Munshi NC, et al. The role of the bone microenvironment in the pathophysiology and therapeutic management of multiple myeloma: Interplay of growth factors, their receptors and stromal interactions. Eur J Cancer 2006;42(11):1564-73
  • Bhatia R, McGlave PB, Dewald GW, et al. Abnormal function of the bone marrow microenvironment in chronic myelogenous leukemia: Role of malignant stromal macrophages. Blood 1995;85(12):3636-45
  • Simmons PJ, Przepiorka D, Thomas ED, et al. Host origin of marrow stromal cells following allogeneic bone marrow transplantation. Nature 1987;328(6129):429-32
  • Perkins S, Fleischman RA. Hematopoietic microenvironment. Origin, lineage, and transplantability of the stromal cells in long-term bone marrow cultures from chimeric mice. J Clin Invest 1988;81(4):1072-80
  • Lennon JE, Micklem HS. Stromal cells in long-term murine bone marrow culture: FACS studies and origin of stromal cells in radiation chimeras. Exp Hematol 1986;14(4):287-92
  • Laver J, Jhanwar SC, O'Reilly RJ, Castro-Malaspina H. Host origin of the human hematopoietic microenvironment following allogeneic bone marrow transplantation. Blood 1987;70(6):1966-8
  • Cortelezzi A, Fracchiolla NS, Mazzeo LM, et al. Endothelial precursors and mature endothelial cells are increased in the peripheral blood of myelodysplastic syndromes. Leuk Lymphoma 2005;46(9):1345-51
  • Pruneri G, Bertolini F, Soligo D, et al. Angiogenesis in myelodysplastic syndromes. Br J Cancer 1999;81(8):1398-401
  • Bellamy WT, Richter L, Sirjani D, et al. Vascular endothelial cell growth factor is an autocrine promoter of abnormal localized immature myeloid precursors and leukemia progenitor formation in myelodysplastic syndromes. Blood 2001;97(5):1427-34
  • Broxmeyer HE, Cooper S, Li ZH, et al. Myeloid progenitor cell regulatory effects of vascular endothelial cell growth factor. Int J Hematol 1995;62(4):203-15
  • Flores-Figueroa E, Gutierrez-Espindola G, Montesinos JJ, et al. In vitro characterization of hematopoietic microenvironment cells from patients with myelodysplastic syndrome. Leuk Res 2002;26(7):677-86
  • Flores-Figueroa E, Arana-Trejo RM, Gutierrez-Espindola G, et al. Mesenchymal stem cells in myelodysplastic syndromes: Phenotypic and cytogenetic characterization. Leuk Res 2005;29(2):215-24
  • Blau O, Hofmann WK, Baldus CD, et al. Chromosomal aberrations in bone marrow mesenchymal stroma cells from patients with myelodysplastic syndrome and acute myeloblastic leukemia. Exp Hematol 2007;35(2):221-9
  • Marcondes AM, Mhyre AJ, Stirewalt DL, et al. Dysregulation of IL-32 in myelodysplastic syndrome and chronic myelomonocytic leukemia modulates apoptosis and impairs NK function. Proc Natl Acad Sci USA 2008;105(8):2865-70
  • Uchiyama H, Barut BA, Chauhan D, et al. Characterization of adhesion molecules on human myeloma cell lines. Blood 1992;80(9):2306-14
  • Uchiyama H, Barut BA, Mohrbacher AF, et al. Adhesion of human myeloma-derived cell lines to bone marrow stromal cells stimulates interleukin-6 secretion. Blood 1993;82(12):3712-20
  • Mitsiades CS, Mitsiades N, Poulaki V, et al. Activation of NF-κB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: Therapeutic implications. Oncogene 2002;21(37):5673-83
  • Hideshima T, Chauhan D, Richardson P, et al. NF-κB as a therapeutic target in multiple myeloma. J Biol Chem 2002;277(19):16639-47
  • Hideshima T, Nakamura N, Chauhan D, Anderson KC. Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene 2001;20(42):5991-6000
  • Gupta D, Treon SP, Shima Y, et al. Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: Therapeutic applications. Leukemia 2001;15(12):1950-61
  • Hideshima T, Chauhan D, Schlossman R, et al. The role of tumor necrosis factor α in the pathophysiology of human multiple myeloma: Therapeutic applications. Oncogene 2001;20(33):4519-27
  • Ferlin M, Noraz N, Hertogh C, et al. Insulin-like growth factor induces the survival and proliferation of myeloma cells through an interleukin-6-independent transduction pathway. Br J Haematol 2000;111(2):626-34
  • Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998;93(2):165-76
  • Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell 1997;89(2):309-19
  • Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 1998;95(7):3597-602
  • Suda T, Takahashi N, Udagawa N, et al. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 1999;20(3):345-57
  • Qiang YW, Chen Y, Stephens O, et al. Myeloma-derived dickkopf-1 disrupts wnt-regulated osteoprotegerin and RANKL production by osteoblasts: a potential mechanism underlying osteolytic bone lesions in multiple myeloma. Blood 2008;112(1):196-207
  • Tefferi A. Myelofibrosis with myeloid metaplasia. N Engl J Med 2000;342(17):1255-65
  • Chagraoui H, Wendling F, Vainchenker W. Pathogenesis of myelofibrosis with myeloid metaplasia: insight from mouse models. Best Pract Res Clin Haematol 2006;19(3):399-412
  • Chagraoui H, Komura E, Tulliez M, et al. Prominent role of TGF-β1 in thrombopoietin-induced myelofibrosis in mice. Blood 2002;100(10):3495-503
  • Vannucchi AM, Bianchi L, Cellai C, et al. Development of myelofibrosis in mice genetically impaired for GATA-1 expression (GATA-1low mice). Blood 2002;100(4):1123-32
  • Vannucchi AM, Bianchi L, Paoletti F, et al. A pathobiologic pathway linking thrombopoietin, GATA-1, and TGF-β1 in the development of myelofibrosis. Blood 2005;105(9):3493-501
  • Villeval JL, Cohen-Solal K, Tulliez M, et al. High thrombopoietin production by hematopoietic cells induces a fatal myeloproliferative syndrome in mice. Blood 1997;90(11):4369-83
  • Chagraoui H, Tulliez M, Smayra T, et al. Stimulation of osteoprotegerin production is responsible for osteosclerosis in mice overexpressing TPO. Blood 2003;101(8):2983-9
  • Kerbauy DB, Deeg HJ. Apoptosis and antiapoptotic mechanisms in the progression of myelodysplastic syndrome. Exp Hematol 2007;35(11):1739-46
  • Stirewalt DL, Mhyre AJ, Marcondes M, et al. Tumour necrosis factor-induced gene expression in human marrow stroma: Clues to the pathophysiology of MDS? Br J Haematol 2008;140(4):444-53
  • Benito AI, Bryant E, Loken MR, et al. NOD/SCID mice transplanted with marrow from patients with myelodysplastic syndrome (MDS) show long-term propagation of normal but not clonal human precursors. Leuk Res 2003;27(5):425-36
  • Sokol L, List AF. Immunomodulatory therapy for myelodysplastic syndromes. Int J Hematol 2007;86(4):301-5
  • Barlogie B, Tricot G, Anaissie E. Thalidomide in the management of multiple myeloma. Semin Oncol 2001;28(6):577-82
  • Schwarz EM, Ritchlin CT. Clinical development of anti-RANKL therapy. Arthritis Res Ther 2007;9(Suppl 1):S7
  • Deeg HJ, Gotlib J, Beckham C, et al. Soluble TNF receptor fusion protein (etanercept) for the treatment of myelodysplastic syndrome: A pilot study. Leukemia 2002;16(2):162-4
  • Mayani H, Guilbert LJ, Clark SC, et al. Composition and functional integrity of the in vitro hemopoietic microenvironment in acute myelogenous leukemia: Effect of macrophage colony-stimulating factor. Exp Hematol 1992;20(9):1077-84
  • Mayani H, Guilbert LJ, Janowska-Wieczorek A. Functional characterization of fibroblastic cells in long-term marrow cultures from patients with acute myelogenous leukemia. Leukemia 1993;7(10):1564-9
  • Mayani H. Composition and function of the hemopoietic microenvironment in human myeloid leukemia. Leukemia 1996;10(6):1041-7
  • Deeg HJ, Beckham C, Loken MR, et al. Negative regulators of hemopoiesis and stroma function in patients with myelodysplastic syndrome. Leuk Lymphoma 2000;37(3-4):405-14
  • Iwata M, Pillai M, Ramakrishnan A, et al. Reduced expression of inducible gelatinase B/matrix metalloproteinase-9 in monocytes from patients with myelodysplastic syndrome: correlation of inducible levels with the percentage of cytogenetically marked cells and with marrow cellularity. Blood 2007;109(1):85-92
  • Heissig B, Hattori K, Dias S, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 2002;109(5):625-37
  • McQuibban GA, Butler GS, Gong JH, et al. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem 2001;276(47):43503-8
  • Flores-Figueroa E, Montesinos JJ, Flores-Guzman P, et al. Functional analysis of myelodysplastic syndromes-derived mesenchymal stem cells. Leuk Res 2008;32(9):1407-16
  • Deeg HJ. Marrow stroma in MDS: Culprit or bystander? Leuk Res 2002;26(7):687-8
  • Marsh JC, Harhalakis N, Dowding C, et al. Recurrent graft failure following syngeneic bone marrow transplantation for aplastic anaemia. Bone Marrow Transplant 1989;4(5):581-5
  • Witherspoon RP, Schubach W, Neiman P, et al. Donor cell leukemia developing six years after marrow grafting for acute leukemia. Blood 1985;65(5):1172-4
  • Lawler M, Locasciulli A, Longoni D, et al. Leukaemic transformation of donor cells in a patient receiving a second allogeneic bone marrow transplant for severe aplastic anaemia. Bone Marrow Transplant 2002;29(5):453-456
  • Mc Cann SR, Lawler M, Gardiner N, et al. Donor leukemia following allogeneic bone marrow transplantation. Leukemia 1994;8(Suppl 1):S133-5
  • Rupec RA, Jundt F, Rebholz B, et al. Stroma-mediated dysregulation of myelopoiesis in mice lacking IκBα. Immunity 2005;22(4):479-91
  • Walkley CR, Shea JM, Sims NA, et al. Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell 2007;129(6):1081-95
  • Walkley CR, Olsen GH, Dworkin S, et al. A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor γ deficiency. Cell 2007;129(6):1097-110
  • Melchert M, List A. The thalidomide saga. Int J Biochem Cell Biol 2007;39(7-8):1489-99
  • Hanson JA, Gillespie JW, Grover A, et al. Gene promoter methylation in prostate tumor-associated stromal cells. J Natl Cancer Inst 2006;98(4):255-61
  • Fiegl H, Millinger S, Goebel G, et al. Breast cancer DNA methylation profiles in cancer cells and tumor stroma: Association with HER-2/neu status in primary breast cancer. Cancer Res 2006;66(1):29-33
  • Raj K, John A, Ho A, et al. CDKN2B. methylation status and isolated chromosome 7 abnormalities predict responses to treatment with 5-azacytidine. Leukemia 2007;21(9):1937-44
  • Yang AS, Doshi KD, Choi SW, et al DNA methylation changes after 5-aza-2′-deoxycytidine therapy in patients with leukemia. Cancer Res 2006;66(10):5495-503
  • Baron F, Storb R. Current roles for allogeneic hematopoietic cell transplantation following nonmyeloablative or reduced-intensity conditioning. Clin Adv Hematol Oncol 2005;3(10):799-819
  • Alyea EP, Kim HT, Ho V, et al. Impact of conditioning regimen intensity on outcome of allogeneic hematopoietic cell transplantation for advanced acute myelogenous leukemia and myelodysplastic syndrome. Biol Blood Marrow Transplant 2006;12(10):1047-55
  • Martino R, Iacobelli S, Brand R, et al. Retrospective comparison of reduced-intensity conditioning and conventional high-dose conditioning for allogeneic hematopoietic stem cell transplantation using HLA-identical sibling donors in myelodysplastic syndromes. Blood 2006;108(3):836-46
  • Scott BL, Sandmaier BM, Storer B, et al. Myeloablative vs nonmyeloablative allogeneic transplantation for patients with myelodysplastic syndrome or acute myelogenous leukemia with multilineage dysplasia: A retrospective analysis. Leukemia 2006;20(1):128-35

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.