492
Views
47
CrossRef citations to date
0
Altmetric
Reviews

Targeted therapeutic RNases (ImmunoRNases)

, PhD, , MD PhD, , PhD, , PhD & , PhD
Pages 79-95 | Published online: 08 Dec 2008

Bibliography

  • Mathe G, Loc TB, Bernard H. Effet sur la leucemie L1201 de la souris d'une combinaison par diszotation d'A-methopterine et de gamma-globulines de hamsters porteur de cette leucemie par hereogreffe. C R 1958;246:1626-8
  • Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975;256(5517):495-7
  • Handbook of Therapeutic Antibodies. Dübel S, editor, Wiley-VCH, Weinheim; 2007
  • Wu AM, Senter PD. Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 2005;23(9):1137-46
  • Lambert JM. Drug-conjugated monoclonal antibodies for the treatment of cancer. Curr Opin Pharmacol 2005;5(5):543-9
  • Hamann PR, Hinman LM, Hollander I, et al. Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug Chem 2002;13(1):47-58
  • Giles FJ, Kantarjian HM, Kornblau SM, et al. Mylotarg (gemtuzumab ozogamicin) therapy is associated with hepatic venoocclusive disease in patients who have not received stem cell transplantation. Cancer 2001;92(2):406-13
  • Sharma SK, Chester KA, Bagshawe KD. Emerging therapeutic concepts I: ADEPT. In: Dübel S, editor, Handbook of therapeutic antibodies. Wiley-VCH, Weinheim, Germany; 2007:501-13
  • Sharma SK, Bagshawe KD, Melton RG, Sherwood RF. Human immune response to monoclonal antibody-enzyme conjugates in ADEPT pilot clinical trial. Cell Biophys 1992;21(1-3):109-20
  • Bosslet K, Czech J, Hoffmann D. Tumor-selective prodrug activation by fusion protein-mediated catalysis. Cancer Res 1994;54(8):2151-9
  • Lowe H, Tolner B, Kogelberg H, et al. A novel mutated human enzyme with a bis-chloro-phenol prodrug for Antibody Directed Enzyme Prodrug Therapy (ADEPT). The National Cancer Research Institute (NCRI) Cancer Conference. Birmingham, UK; 2007
  • Pastan I, Willingham MC, Fitzgerald DJ. Immunotoxins. Cell 1986;47(5):641-8
  • Frankel AE, Kreitman RJ, Sausville EA. Targeted toxins. Clin Cancer Res 2000;6(2):326-34
  • Rybak SM, Newton DL. Immunotoxins and Beyond: Targeted RNases. In: Handbook of therapeutic antibodies. Dübel S, editor, WILEY-VCH, Weinheim; 2007:379-410
  • Johnson VG, Wrobel C, Wilson D, et al. Improved tumor-specific immunotoxins in the treatment of CNS and leptomeningeal neoplasia. J Neurosurg 1989;70(2):240-8
  • Woo JH, Liu JS, Kang SH, et al. GMP production and characterization of the bivalent anti-human T cell immunotoxin, A-dmDT390-bisFv(UCHT1) for Phase I/II clinical trials. Protein Expr Purif 2008;58(1):1-11
  • Weaver M, Laske DW. Transferrin receptor ligand-targeted toxin conjugate (Tf-CRM107) for therapy of malignant gliomas. J Neurooncol 2003;65(1):3-13
  • Frankel AE, Powell BL, Lilly MB. Diphtheria toxin conjugate therapy of cancer. Cancer Chemother Biol Response Modif 2002;20:301-13
  • Pai LH, Wittes R, Setser A, et al. Treatment of advanced solid tumors with immunotoxin LMB-1: an antibody linked to Pseudomonas exotoxin. Nat Med 1996;23:350-3
  • Kreitman RJ, Wilson WH, Bergeron K, et al. Efficacy of the anti-CD22 recombinant immunotoxin BL22 in chemotherapy-resistant hairy-cell leukemia. N Engl J Med 2001;345(4):241-7
  • Kreitman RJ, Squires DR, Stetler-Stevenson M, et al. Phase I trial of recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) in patients with B-cell malignancies. J Clin Oncol 2005;23(27):6719-29
  • Frankel AE, Neville DM, Bugge TA, et al. Immunotoxin therapy of hematologic malignancies. Semin Oncol 2003;30(4):545-57
  • Messmann RA, Vitetta ES, Headlee D, et al. A Phase I study of combination therapy with immunotoxins IgG-HD37-deglycosylated ricin A chain (dgA) and IgG-RFB4-dgA (Combotox) in patients with refractory CD19(+), CD22(+) B cell lymphoma. Clin Cancer Res 2000;6(4):1302-13
  • Onda M, Wang QC, Guo HF, et al. In vitro and in vivo cytotoxic activities of recombinant immunotoxin 8H9(Fv)-PE38 against breast cancer, osteosarcoma, and neuroblastoma. Cancer Res 2004;64(4):1419-24
  • D'alessio G. New and cryptic biological messages from RNases. Trends Cell Biol 1993;3(4):106-9
  • Boix E, Nogues MV. Mammalian antimicrobial proteins and peptides: overview on the RNase A superfamily members involved in innate host defence. Mol Biosyst 2007;3(5):317-35
  • Rybak SM, Newton DL.Immunoenzymes. In: Chamow SM, et al, editors, Antibody fusion proteins. ohn Whiley & Sons, New York; 1999:53-110
  • Aleksandrowicz J. Intracutaneous ribonuclease in chronic myelocytic leukemia. Lancet 1958;272(7043):420
  • Mikulski SM, Costanzi JJ, Vogelzang NJ, et al. Phase II trial of a single weekly intravenous dose of ranpirnase in patients with unresectable malignant mesothelioma. J Clin Oncol 2002;20(1):274-81
  • Glukhov BN, Jerusalimsky AP, Canter VM, Salganik RI. Ribonuclease treatment of tick-borne encephalitis. Arch Neurol 1976;33(9):598-603
  • Rybak SM, Saxena SK, Ackerman EJ, Youle RJ. Cytotoxic potential of ribonuclease and ribonuclease hybrid proteins. J Biol Chem 1991;266(31):21202-7
  • Newton DL, Walbridge S, Mikulski SM, et al. Toxicity of an antitumor ribonuclease to Purkinje neurons. J Neurosci 1994;14(2):538-44
  • Benito A, Ribo M, Vilanova M. On the track of antitumour ribonucleases. Mol Biosyst 2005;1(4):294-302
  • Ledoux L. Action of ribonuclease on certain ascites tumours. Nature 1955;175(4449):258-9
  • Ledoux L. Action of ribonuclease on two solid tumours in vivo Nature 1955;176(4470):36-7
  • Laccetti P, Spalletti-Cernia D, Portella G, et al. Seminal ribonuclease inhibits tumor growth and reduces the metastatic potential of Lewis lung carcinoma. Cancer Res 1994;54(16):4253-6
  • Rybak SM. Antibody-onconase conjugates: cytotoxicity and intracellular routing. Curr Pharm Biotechnol 2008;9(3):226-30
  • Griffiths SJ, Adams DJ, Talbot SJ. Ribonuclease inhibits Kaposi's sarcoma. Nature 1997;390(6660):568
  • Sakakibara R, Hashida K, Tominaga N, et al. A putative mouse oocyte maturation inhibitory protein from urine of pregnant women: N-terminal sequence homology with human nonsecretory ribonuclease. Chem Pharm Bull (Tokyo) 1991;39(1):146-9
  • Newton DL, Rybak SM. Unique recombinant human ribonuclease and inhibition of Kaposi's sarcoma cell growth. J Natl Cancer Inst 1998;90(23):1787-91
  • Chang C, Newton DL, Rybak SM, Wlodawer A. Crystallographic and functional studies of a modified form of eosinophil-derived neurotoxin (EDN) with novel biological activities. J Mol Biol 2002;317(1):119-30
  • Beintema JJ, Kleineidam RG. The ribonuclease a superfamily: general discussion. Cell Mol Life Sci 1998;54(8):825-32
  • Canals A, Ribo M, Benito A, et al. Production of engineered human pancreatic ribonucleases, solving expression and purification problems, and enhancing thermostability. Protein Expr Purif 1999;17(1):169-81
  • Dübel S. Reconstitution of human RNaseA from two separate fragments fused to different single chain antibody fragments: On the way to binary immunotoxins. Tumor Target 1999;4:37-46
  • Fett JW, Strydom DJ, Lobb RR, et al. Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry 1985;24(20):5480-6
  • Tello-Montoliu A, Patel JV, Lip GY. Angiogenin: a review of the pathophysiology and potential clinical applications. J Thromb Haemost 2006;4(9):1864-74
  • Rugeles MT, Trubey CM, Bedoya VI, et al. Ribonuclease is partly responsible for the HIV-1 inhibitory effect activated by HLA alloantigen recognition. Aids 2003;17(4):481-6
  • Saxena SK, Rybak SM, Davey RT JR, et al. Angiogenin is a cytotoxic, tRNA-specific ribonuclease in the RNase A superfamily. J Biol Chem 1992;267(30):21982-6
  • Rybak SM, Hoogenboom HR, Meade HM, et al. Humanization of immunotoxins. Proc Natl Acad Sci USA 1992;89(8):3165-9
  • Darzynkiewicz Z, Carter SP, Mikulski SM, et al. Cytostatic and cytotoxic effects of Pannon (P-30 Protein), a novel anticancer agent. Cell Tissue Kinet 1988;21(3):169-82
  • Lee I, Lee YH, Mikulski SM, et al. Tumoricidal effects of onconase on various tumors. J Surg Oncol 2000;73(3):164-71
  • Costanzi J, Sidransky D, Navon A, Goldsweig H. Ribonucleases as a novel pro-apoptotic anticancer strategy: review of the preclinical and clinical data for ranpirnase. Cancer Invest 2005;23(7):643-50
  • Vogelzang NJ, Aklilu M, Stadler WM, et al. A Phase II trial of weekly intravenous ranpirnase (Onconase), a novel ribonuclease in patients with metastatic kidney cancer. Invest New Drugs 2001;19(3):255-60
  • Vogelzang NJ, Porta C, Mutti L. New agents in the management of advanced mesothelioma. Semin Oncol 2005;32(3):336-50
  • Pavlakis N, Vogelzang NJ. Ranpirnase – an antitumour ribonuclease: its potential role in malignant mesothelioma. Expert Opin Biol Ther 2006;6(4):391-9
  • Halicka DH, Pozarowski P, Ita M, et al. Enhancement of activation-induced apoptosis of lymphocytes by the cytotoxic ribonuclease onconase (Ranpirnase). Int J Oncol 2002;21(6):1245-50
  • Wu Y, Mikulski SM, Ardelt W, et al. A cytotoxic ribonuclease. Study of the mechanism of onconase cytotoxicity. J Biol Chem 1993;268(14):10686-93
  • Wu Y, Saxena SK, Ardelt W, et al. A study of the intracellular routing of cytotoxic ribonucleases. J Biol Chem 1995;270(29):17476-81
  • Iordanov MS, Ryabinina OP, Wong J, et al. Molecular determinants of apoptosis induced by the cytotoxic ribonuclease onconase: evidence for cytotoxic mechanisms different from inhibition of protein synthesis. Cancer Res 2000;60(7):1983-94
  • Saxena SK, Sirdeshmukh R, Ardelt W, et al. Entry into cells and selective degradation of tRNAs by a cytotoxic member of the RNase A family. J Biol Chem 2002;277(17):15142-6
  • Grabarek J, Ardelt B, Du L, Darzynkiewicz Z. Activation of caspases and serine proteases during apoptosis induced by onconase (Ranpirnase). Exp Cell Res 2002;278(1):61-71
  • Ardelt B, Ardelt W, Darzynkiewicz Z. Cytotoxic ribonucleases and RNA interference (RNAi). Cell Cycle 2003;2(1):22-4
  • Tsai SY, Hsieh TC, Ardelt B, et al. Combined effects of onconase and IFN-beta on proliferation, macromolecular syntheses and expression of STAT-1 in JCA-1 cancer cells. Int J Oncol 2002;20(5):891-6
  • Lee I, Lee YH, Mikulski SM, Shogen K. Effect of ONCONASE +/- tamoxifen on ASPC-1 human pancreatic tumors in nude mice. Adv Exp Med Biol 2003;530:187-96
  • Rybak SM, Pearson JW, Fogler WE, et al. Enhancement of vincristine cytotoxicity in drug-resistant cells by simultaneous treatment with onconase, an antitumor ribonuclease. J Natl Cancer Inst 1996;88(11):747-53
  • Haigis MC, Kurten EL, Raines RT. Ribonuclease inhibitor as an intracellular sentry. Nucleic Acids Res 2003;31(3):1024-32
  • Gaur D, Swaminathan S, Batra JK. Interaction of human pancreatic ribonuclease with human ribonuclease inhibitor. Generation of inhibitor-resistant cytotoxic variants. J Biol Chem 2001;276(27):24978-84
  • Leland PA, Schultz LW, Kim BM, Raines RT. Ribonuclease A variants with potent cytotoxic activity. Proc Natl Acad Sci USA 1998;95(18):10407-12
  • Hayashida T, Ueda M, Aiura K, et al. Anti-angiogenic effect of an insertional fusion protein of human basic fibroblast growth factor and ribonuclease-1. Protein Eng Des Sel 2005;18(7):321-7
  • Lee JE, Raines RT. Contribution of active-site residues to the function of onconase, a ribonuclease with antitumoral activity. Biochemistry 2003;42(39):11443-50
  • Klink TA, Raines RT. Conformational stability is a determinant of ribonuclease A cytotoxicity. J Biol Chem 2000;275(23):17463-67
  • Rybak SM, Newton DL, Mikulski SM, et al. Cytotoxic Onconase and ribonuclease A chimeras: Comparison and in vitro characterization. Drug Deliv 1993;1:3-10
  • Rodriguez M, Torrent G, Bosch M, et al. Intracellular pathway of Onconase that enables its delivery to the cytosol. J Cell Sci 2007;120(Pt 8):1405-11
  • Bosch M, Benito A, Ribo M, et al. A nuclear localization sequence endows human pancreatic ribonuclease with cytotoxic activity. Biochemistry 2004;43(8):2167-77
  • Futami J, Maeda T, Kitazoe M, et al. Preparation of potent cytotoxic ribonucleases by cationization: enhanced cellular uptake and decreased interaction with ribonuclease inhibitor by chemical modification of carboxyl groups. Biochemistry 2001;40(25):7518-24
  • De Lorenzo C, Di Malta C, Cali G, et al. Intracellular route and mechanism of action of ERB-hRNase, a human anti-ErbB2 anticancer immunoagent. FEBS Lett 2007;581(2):296-300
  • Hust M, Jostock T, Menzel C, et al. Single chain Fab (scFab) fragment. BMC Biotechnol 2007;7:14
  • Carter P. Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer 2001;1(2):118-29
  • Schirrmann T, Al-Halabi L, Dübel S, Hust M. Production systems for recombinant antibodies. Frontiers in Bioscience. Front Biosci 2008;13:4576-94
  • Yokota T, Milenic DE, Whitlow M, Schlom J. Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res 1992;52(12):3402-8
  • Wu AM, Chen W, Raubitschek A, et al. Tumor localization of anti-CEA single-chain Fvs: improved targeting by non-covalent dimers. Immunotechnology 1996;2(1):21-36
  • Colcher D, Bird R, Roselli M, et al. In vivo tumor targeting of a recombinant single-chain antigen-binding protein. J Natl Cancer Inst 1990;82(14):1191-7
  • Milenic DE, Yokota T, Filpula DR, et al. Construction, binding properties, metabolism, and tumor targeting of a single-chain Fv derived from the pancarcinoma monoclonal antibody CC49. Cancer Res 1991;51(23 Pt 1):6363-71
  • Hudson PJ, Souriau C. Engineered antibodies. Nat Med 2003;9(1):129-34
  • Adams GP, Mccartney JE, Tai MS, et al. Highly specific in vivo tumor targeting by monovalent and divalent forms of 741F8 anti-c-erbB-2 single-chain Fv. Cancer Res 1993;53(17):4026-34
  • Nielsen UB, Adams GP, Weiner LM, Marks JD. Targeting of bivalent anti-ErbB2 diabody antibody fragments to tumor cells is independent of the intrinsic antibody affinity. Cancer Res 2000;60(22):6434-40
  • Krauss J, Arndt MA, Dübel S, Rybak SM. Antibody-targeted RNase fusion proteins (immunoRNases) for cancer therapy. Curr Pharm Biotechnol 2008;9(3):231-4
  • Newton DL, Ilercil O, Laske DW, et al. Cytotoxic ribonuclease chimeras. Targeted tumoricidal activity in vitro and in vivo. J Biol Chem 1992;67(27):19572-8
  • De Lorenzo C, Arciello A, Cozzolino R, et al. A fully human antitumor immunoRNase selective for ErbB-2-positive carcinomas. Cancer Res 2004;64(14):4870-4
  • Menzel C, Schirrmann T, Konthur Z, et al. Human antibody RNase fusion protein targeting CD30+ lymphomas. Blood 2008;111(7):3830-7
  • Newton DL, Xue Y, Olson KA, et al. Angiogenin single-chain immunofusions: influence of peptide linkers and spacers between fusion protein domains. Biochemistry 1996;35(2):545-53
  • Vasandani VM, Wu YN, Mikulski SM, et al. Molecular determinants in the plasma clearance and tissue distribution of ribonucleases of the ribonuclease A superfamily. Cancer Res 1996;56(18):4180-6
  • Haigis MC, Raines RT. Secretory ribonucleases are internalized by a dynamin-independent endocytic pathway. J Cell Sci 2003;116(Pt 2):313-24
  • Newton DL, Hansen HJ, Mikulski SM, et al. Potent and specific antitumor effects of an anti-CD22-targeted cytotoxic ribonuclease: potential for the treatment of non-Hodgkin lymphoma. Blood 2001;97(2):528-35
  • Newton DL, Pearson JW, Xue Y, et al. Anti-tumor ribonuclease combined with or conjugated to monoclonal antibody MRK16, overcomes multidrug resistance to vincristine in vitro and in vivo. Int J Oncology 1996;8:1095-104
  • Newton DL, Pollock D, Ditullio P, et al. Antitransferrin receptor antibody-RNase fusion protein expressed in the mammary gland of transgenic mice. J Immunol Methods 1999;231(1-2):159-67
  • Debinski W, Pastan I. Monovalent immunotoxin containing truncated form of Pseudomonas exotoxin as potent antitumor agent. Cancer Res 1992;52(19):5379-85
  • Schroff RW, Foon KA, Beatty SM, et al. Human anti-murine immunoglobulin responses in patients receiving monoclonal antibody therapy. Cancer Res 1985;45(2):879-85
  • Chen S, Le SY, Newton DL, et al. A gender-specific mRNA encoding a cytotoxic ribonuclease contains a 3′ UTR of unusual length and structure. Nucleic Acids Res 2000;28(12):2375-82
  • Arndt MA, Krauss J, Schwarzenbacher R, et al. Generation of a highly stable, internalizing anti-CD22 single-chain Fv fragment for targeting non-Hodgkin's lymphoma. Int J Cancer 2003;107(5):822-9
  • Krauss J, Arndt MA, Martin AC, et al. Specificity grafting of human antibody frameworks selected from a phage display library: generation of a highly stable humanized anti-CD22 single-chain Fv fragment. Protein Eng 2003;16(10):753-9
  • Boix E, Wu Y, Vasandani VM, et al. Role of the N terminus in RNase A homologues: differences in catalytic activity, ribonuclease inhibitor interaction and cytotoxicity. J Mol Biol 1996;257(5):992-1007
  • Shapiro R, Harper JW, Fox EA, et al. Expression of Met-(-1) angiogenin in Escherichia coli: conversion to the authentic less than Glu-1 protein. Anal Biochem 1988;175(2):450-61
  • Russo N, Nobile V, Di Donato A, et al. The C-terminal region of human angiogenin has a dual role in enzymatic activity. Proc Natl Acad Sci USA 1996;93(8):3243-7
  • Krauss J, Arndt MA, Vu BK, et al. Targeting malignant B-cell lymphoma with a humanized anti-CD22 scFv-angiogenin immunoenzyme. Br J Haematol 2005;128(5):602-9
  • Arndt MA, Krauss J, Vu BK, et al. A dimeric angiogenin immunofusion protein mediates selective toxicity toward CD22+ tumor cells. J Immunother 2005;28(3):245-51
  • Krauss J, Arndt MA, Vu BK, et al. Efficient killing of CD22+ tumor cells by a humanized diabody-RNase fusion protein. Biochem Biophys Res Commun 2005;331(2):595-602
  • Carnahan J, Wang P, Kendall R, et al. Epratuzumab, a humanized monoclonal antibody targeting CD22: characterization of in vitro properties. Clin Cancer Res 2003;9(10 Pt 2):S3982-90
  • Falini B, Flenghi L, Fedeli L, et al. In vivo targeting of Hodgkin and Reed-Sternberg cells of Hodgkin's disease with monoclonal antibody Ber-H2 (CD30): immunohistological evidence. Br J Haematol 1992;82(1):38-45
  • Renner C, Stehle I, Lee FT, et al. Targeting properties of an anti-CD16/anti-CD30 bispecific antibody in an in vivo system. Cancer Immunol Immunother 2001;50(2):102-8
  • Schnell R, Staak O, Borchmann P, et al. A Phase I study with an anti-CD30 ricin A-chain immunotoxin (Ki-4.dgA) in patients with refractory CD30+ Hodgkin's and non-Hodgkin's lymphoma. Clin Cancer Res 2002;8(6):1779-86
  • Braschoss S, Hirsch B, Dübel S, et al. New anti-CD30 human pancreatic ribonuclease-based immunotoxin reveals strong and specific cytotoxicity in vivo. Leuk Lymphoma 2007;48(6):1179-86
  • Huhn M, Sasse S, Tur MK, et al. Human angiogenin fused to human CD30 ligand (Ang-CD30L) exhibits specific cytotoxicity against CD30-positive lymphoma. Cancer Res 2001;61(24):8737-42
  • Barth S, Matthey B, Huhn M, et al. CD30L-ETA': a new recombinant immunotoxin based on the CD30 ligand for possible use against human lymphoma. Cytokines Cell Mol Ther 1999;5(2):69-78
  • Stocker M, Tur MK, Sasse S, et al. Secretion of functional anti-CD30-angiogenin immunotoxins into the supernatant of transfected 293T-cells. Protein Expr Purif 2003;28(2):211-9
  • Zewe M, Rybak SM, Dübel S, et al. Cloning and cytotoxicity of a human pancreatic RNase immunofusion. Immunotechnology 1997;3(2):127-36
  • Suzuki M, Saxena SK, Boix E, et al. Engineering receptor-mediated cytotoxicity into human ribonucleases by steric blockade of inhibitor interaction. Nat Biotechnol 1999;17(3):265-70
  • Newton DL, Nicholls PJ, Rybak SM, Youle RJ. Expression and characterization of recombinant human eosinophil-derived neurotoxin and eosinophil-derived neurotoxin-anti-transferrin receptor sFv. J Biol Chem 1994;269(43):26739-45
  • Rybak SM, Hoogenboom HR, Newton DL, et al. Rational immunotherapy with ribonuclease chimeras. An approach toward humanizing immunotoxins. Cell Biophys 1992;21(1-3):121-38
  • Gho YS, Chae CB. Luteinizing hormone releasing hormone-RNase A conjugates specifically inhibit the proliferation of LHRH-receptor-positive human prostate and breast tumor cells. Mol Cells 1999;9(1):31-6
  • Psarras K, Ueda M, Tanabe M, et al. Targeting activated lymphocytes with an entirely human immunotoxin analogue: human pancreatic RNase1-human IL-2 fusion. Cytokine 2000;12(6):786-90
  • Deonarain MP, Epenetos AA. Design, characterization and anti-tumour cytotoxicity of a panel of recombinant, mammalian ribonuclease-based immunotoxins. Br J Cancer 1998;77(4):537-46
  • Jinno H, Ueda M, Ozawa S, et al. Epidermal growth factor receptor-dependent cytotoxic effect by an EGF-ribonuclease conjugate on human cancer cell lines–a trial for less immunogenic chimeric toxin. Cancer Chemother Pharmacol 1996;38(4):303-8
  • Jinno H, Ueda M, Ozawa S, et al. Epidermal growth factor receptor-dependent cytotoxicity for human squamous carcinoma cell lines of a conjugate composed of human EGF and RNase 1. Life Sci 1996;58(21):1901-8
  • Jinno H, Ueda M, Ozawa S, et al. The cytotoxicity of a conjugate composed of human epidermal growth factor and eosinophil cationic protein. Anticancer Res 2002;22(6C):4141-5
  • Yoon JM, Han SH, Kown OB, et al. Cloning and cytotoxicity of fusion proteins of EGF and angiogenin. Life Sci 1999;64(16):1435-45
  • Psarras K, Ueda M, Yamamura T, et al. Human pancreatic RNase1-human epidermal growth factor fusion: an entirely human ‘immunotoxin analog’ with cytotoxic properties against squamous cell carcinomas. Protein Eng 1998;11(12):1285-92
  • De Lorenzo C, Nigro A, Piccoli R, D'alessio G. A new RNase-based immunoconjugate selectively cytotoxic for ErbB2-overexpressing cells. FEBS Lett 2002;516(1-3):208-12
  • Lee I. Ranpirnase (Onconase), a cytotoxic amphibian ribonuclease, manipulates tumour physiological parameters as a selective killer and a potential enhancer for chemotherapy and radiation in cancer therapy. Expert Opin Biol Ther 2008;8(6):813-27

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.