238
Views
20
CrossRef citations to date
0
Altmetric
Reviews

Towards a durable RNAi gene therapy for HIV-AIDS

&
Pages 161-170 | Published online: 19 Dec 2008

Bibliography

  • He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004;5:522-31
  • Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411:494-8
  • Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science 2002;296:550-3
  • Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000;404:293-6
  • Bitko V, Musiyenko A, Shulyayeva O, Barik S. Inhibition of respiratory viruses by nasally administered siRNA. Nat Med 2005;11:29350293-55
  • Ge Q, Filip L, Bai A, et al. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc Natl Acad Sci USA 2004;101:8676-81
  • Li BJ, Tang Q, Cheng D, et al. Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat Med 2005;11:944-51
  • Zhang W, Yang H, Kong X, et al. Inhibition of respiratory syncytial virus infection with intranasal siRNA nanoparticles targeting the viral NS1 gene. Nat Med 2005;11:56-62
  • Kleinman ME, Yamada K, Takeda A, et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 2008;452:591-7
  • Reich SJ, Fosnot J, Kuroki A, et al. Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Molecular vision 2003;9:210-16
  • Shen J, Samul R, Silva RL, et al. Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Ther 2005;13:225-34
  • Robbins M, Judge A, Ambegia E, et al. Misinterpreting the therapeutic effects of siRNA caused by immune stimulation. Hum Gene Ther 2008: published online 19 August 2008, doi:10.1089/hgt.2008.131
  • Berkhout B. RNA interference as an antiviral approach: targeting HIV-1. Curr Opin Mol Ther 2004;6:141-5
  • Lee NS, Rossi JJ. Control of HIV-1 replication by RNA interference. Virus Res 2004;6:141-5
  • Anderson J, Li MJ, Palmer B, et al. Safety and efficacy of a lentiviral vector containing three anti-HIV genes-CCR5 Ribozyme, Tat-rev siRNA, and TAR decoy-in SCID-hu mouse-derived T cells. Mol Ther 2007;14:1182-8
  • Grimm D, Kay MA. Therapeutic application of RNAi: is mRNA targeting finally ready for prime time? J Clin Invest 2007;117:3633-41
  • Kumar P, Ban HS, Kim SS, et al. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 2008;134:577-86
  • Goffinet C, Keppler OT. Efficient nonviral gene delivery into primary lymphocytes from rats and mice. FASEB J 2006;20:500-2
  • Ter Brake O, Berkhout. A novel approach for inhibition of HIV-1 by RNA interference: counteracting viral escape with a second generation of siRNAs. Journal of RNAi and Gene Silencing 2005;1:56-65
  • Ter Brake O, ‘t Hooft K, et al. Lentiviral vector design for multiple shRNA expression and durable HIV-1 Inhibition. Mol Ther 2008;16:557-64
  • Haasnoot J, Westerhout EM, Berkhout B. RNA interference against viruses: strike and counterstrike. Nat Biotechnol 2007;25:1435-43
  • Boden D, Pusch O, Lee F, et al. Human immunodeficiency virus type 1 escape from RNA interference. J Virol 2003;77:11531-5
  • Boden D, Pusch O, Lee F, et al. Efficient gene transfer of HIV-1-specific short hairpin RNA into human lymphocytic cells using recombinant adeno-associated virus vectors. Mol Ther 2004;9:396-402
  • Boden D, Pusch O, Silbermann R, et al. Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins. Nucleic Acids Res 2004;32:1154-8
  • Das AT, Brummelkamp TR, Westerhout EM, et al. Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J Virol 2004;78:2601-5
  • Westerhout EM, Ooms M, Vink M, et al. HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome. Nucleic Acids Res 2005;33:796-804
  • Westerhout EM, Vink M, Haasnoot PC, et al. A conditionally replicating HIV-based vector that stably expresses an antiviral shRNA against HIV-1 replication. Mol Ther 2006;14:268-75
  • Liu YP, Haasnoot J, Ter Brake, et al. Inhibition of HIV-1 by multiple siRNAs expressed from a single microRNA polycistron. Nucleic Acids Res 2008;36:2811-24
  • Ter Brake, O Konstantinova, P Ceylan, M Berkhout. Silencing of HIV-1 with RNA interference: a multiple shRNA approach. Mol Ther 2006;14:883-92
  • von Eije KJ, Ter Brake O, Berkhout B. Human immunodeficiency virus type 1 escape is restricted when conserved genome sequences are targeted by RNA interference. J Virol 2008;82:2895-903
  • Martinez MA, Clotet B, Este JA. RNA interference of HIV replication. Trends Immunol 2002;23:559-61
  • Martinez MA, Gutierrez A, Armand-ugon M, et al. Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. AIDS 2002;16:2385-90
  • Sabariegos R, Gimenez-barcons M, Tapia N, et al. Sequence homology required by human immunodeficiency virus type 1 to escape from short interfering RNAs. J Virol 2006;80:571-7
  • Anderson J, Banerjea A, Akkina R. Bispecific short hairpin siRNA constructs targeted to CD4, CXCR4, and CCR5 confer HIV-1 resistance. Oligonucleotides 2003;13:303-12
  • Barichievy S, Saayman S, von Eije KJ, et al. The inhibitory efficacy of RNA POL III-expressed long hairpin RNAs targeted to untranslated regions of the HIV-1 5′ long terminal repeat. Oligonucleotides 2007;17:419-31
  • Boden D, Pusch O, Lee F, et al. Promoter choice affects the potency of HIV-1 specific RNA interference. Nucleic Acids Res 2003;31:5033-8
  • Capodici J, Kariko K, Weissman D. Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference. J Immunol 2002;169:5196-201
  • Chiu YL, Cao H, Jacque JM, et al. Inhibition of human immunodeficiency virus type 1 replication by RNA interference directed against human transcription elongation factor P-TEFb (CDK9/CyclinT1). J Virol 2004;78:2517-29
  • Huff B. News from the bench. Assay for less-fit phenotype? GMHC Treat Issues 2004;18:14
  • Konstantinova P, Ter Brake, O Haasnoot, et al. Trans-inhibition of HIV-1 by a long hairpin RNA expressed within the viral genome. Retrovirology 2007;4:15: published online March 1 2007, doi:10.1186/1742-4690-4-15
  • Lawrence D. RNAi could hold promise in the treatment of HIV. Lancet 2002;359:2007.
  • Li Z, Xiong Y, Peng Y, et al. Specific inhibition of HIV-1 replication by short hairpin RNAs targeting human cyclin T1 without inducing apoptosis. FEBS Lett 2005;579:3100-6
  • Liu YP, Haasnoot J, Berkhout B. Design of extended short hairpin RNAs for HIV-1 inhibition. Nucleic Acids Res 2007;35:5683-93.
  • Nishitsuji H, Ikeda T, Miyoshi H, et al. Expression of small hairpin RNA by lentivirus-based vector confers efficient and stable gene-suppression of HIV-1 on human cells including primary non-dividing cells. Microbes Infect 2004;6:76-85
  • Omoto S, Ito M, Tsutsumi Y, et al. HIV-1 nef suppression by virally encoded microRNA. Retrovirology 2004;1:44: published online 15 December 2004, doi:10.1186/1742-4690-1-44
  • Ping YH, Chu CY, Cao H, et al. Modulating HIV-1 replication by RNA interference directed against human transcription elongation factor SPT5. Retrovirology 2004;1:46: published online 27 December 2004, doi:10.1186/1742-4690-1-46
  • Rossi JJ. RNAi as a treatment for HIV-1 infection. Biotechn 2006;Suppl:25-9.
  • Saayman S, Barichievy S, Capovilla A, et al. The efficacy of generating three independent anti-HIV-1 siRNAs from a single U6 RNA Pol III-expressed long hairpin RNA. PLoS One 2008;3:e2602: published online July 2 2008, doi:10.1371/journal.pone.0002602
  • Son J, Uchil PD, Kim YB, et al. Effective suppression of HIV-1 by artificial bispecific miRNA targeting conserved sequences with tolerance for wobble base-pairing. Biochem Biophys Res Commun 2008;374:214-18
  • Yamamoto T, Omoto S, Mizuguchi M, et al. Double-stranded nef RNA interferes with human immunodeficiency virus type 1 replication. Microbiol Immunol 2002;46:809-17
  • Yamamoto T, Miyoshi H, Yamamoto N, et al. Lentivirus vectors expressing short hairpin RNAs against the U3-overlapping region of HIV nef inhibit HIV replication and infectivity in primary macrophages. Blood 2006;108:3305-12
  • Zhou N, Fang J, Mukhtar M, et al. Inhibition of HIV-1 fusion with small interfering RNAs targeting the chemokine coreceptor CXCR4. Gene Ther 2004;11:1703-12
  • Ter BO, Haasnoot J, Kurreck J, Berkhout B. ESF-EMBO symposium: antiviral applications of RNA interference. Retrovirology 2008;5:81: published online 18 September 2008, doi:10.1186/1742-5-81
  • Naito Y, Nohtomi K, Onogi T, et al. Optimal design and validation of antiviral siRNA for targeting HIV-1. Retrovirology 2007;4:80. published online 8 November 2007, doi:10.1186/1742-4690-4-80
  • Coburn GA, Cullen BR. Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. J Virol 2002;76:9225-31
  • Jacque JM, Triques K, Stevenson M. Modulation of HIV-1 replication by RNA interference. Nature 2002;418:435-8
  • Joshi PJ, North TW, Prasad VR. Aptamers directed to HIV-1 reverse transcriptase display greater efficacy over small hairpin RNAs targeted to viral RNA in blocking HIV-1 replication. Mol Ther 2005;11:677-86
  • Nishitsuji H, Kohara M, Kannagi M, Masuda T. Effective suppression of human immunodeficiency virus type 1 through a combination of short- or long-hairpin RNAs targeting essential sequences for retroviral integration. J Virol 2006;80:7658-66
  • Surabhi RM, Gaynor RB. RNA interference directed against viral and cellular targets inhibits human immunodeficiency virus type 1 replication. J Virol 2002;76:12963-73
  • Hu WY, Myers CP, Kilzer JM, et al. Inhibition of retroviral pathogenesis by RNA interference. Curr Biol 2002;12:1301-11
  • Westerhout EM, Ter Brake O, Berkhout B. The virion-associated incoming HIV-1 RNA genome is not targeted by RNA interference. Retrovirology 2006;3:57-65.
  • Gao Y, Lobritz MA, Roth J, et al. Targets of small interfering RNA restriction during human immunodeficiency virus type 1 replication. J Virol 2008;82:2938-51
  • Lee SK, Dykxhoorn DM, Kumar P, et al. Lentiviral delivery of short hairpin RNAs protects CD4 T cells from multiple clades and primary isolates of HIV. Blood 2005;106:818-26
  • Unwalla HJ, Li HT, Bahner I, et al. Novel Pol II fusion promoter directs human immunodeficiency virus type 1-inducible coexpression of a short hairpin RNA and protein. J Virol 2006;80:1863-73
  • Ter Brake O, von Eije KJ, Berkhout B. Probing the sequence space available for HIV-1 evolution. AIDS 2008;22:1875-7
  • Liu YP, Berkhout B. Combinatorial RNAi strategies against HIV-1 and other escape-prone viruses. Int J BioSci Technol 2008;1:1-10
  • Grimm D, Kay MA. Combinatorial RNAi: a winning strategy for the race against evolving targets? Mol Ther 2007;15:878-88
  • Hannon GJ, Rossi JJ. Unlocking the potential of the human genome with RNA interference. Nature 2004;431:371-8
  • Shankar P, Manjunath N, Lieberman J. The prospect of silencing disease using RNA interference. JAMA (2005);293:1367-1373
  • Stevenson M. Dissecting HIV-1 through RNA interference. Nat Rev Immunol 2003;3:851-8
  • Mansky LM. The mutation rate of human immunodeficiency virus type 1 is influenced by the vpr gene. Virol 1996;222:391-400
  • Anderson J, Akkina R. HIV-1 resistance conferred by siRNA cosuppression of CXCR4 and CCR5 coreceptors by a bispecific lentiviral vector. AIDS Res Ther 2005;2:1: published online 13 January 2005, doi:10.1186/1742-6405-2-1
  • Llano M, Saenz DT, Meehan A, et al. An essential role for LEDGF/p75 in HIV integration. Science 2006;314:461-4
  • Maertens G, Cherepanov P, Pluymers W, et al. LEDGF/p75 is essential for nuclear and chromosomal targeting of HIV-1 integrase in human cells. J Biol Chem 2003;278:33528-39
  • Jacque JM, Stevenson M. The inner-nuclear-envelope protein emerin regulates HIV-1 infectivity. Nature 2006;441:641-5
  • Nguyen DG, Wolff KC, Yin H, et al. “UnPAKing” human immunodeficiency virus (HIV) replication: using small interfering RNA screening to identify novel cofactors and elucidate the role of group I PAKs in HIV Infection. J Virol 2006;80:130-7
  • Liu R, Paxton WA, Choe S, et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 1996;86:367-77
  • de Roda Husman AM, Blaak H, Brouwer M, Schuitemaker H. CC chemokine receptor 5 cell-surface expression in relation to CC chemokine receptor 5 genotype and the clinical course of HIV-1 infection. J Immunol 1999;163:4597-603
  • An DS, Donahue RE, Kamata M, et al. Stable reduction of CCR5 by RNAi through hematopoietic stem cell transplant in non-human primates. Proc Natl Acad Sci USA 2007;104:13110-15
  • Root DE, Hacohen N, Hahn WC, et al. Genome-scale loss-of-function screening with a lentiviral RNAi library. Nat Methods 2006;3:715-19
  • Huesken D, Lange J, Mickanin C, et al. Design of a genome-wide siRNA library using an artificial neural network. Nat Biotechnol 2005;23:995-1001
  • Miyagishi M, Matsumoto S, Taira K. Generation of an shRNAi expression library against the whole human transcripts. Virus Res 2004;102:117-24
  • Paddison PJ, Silva JM, Conklin DS, et al. A resource for large-scale RNA-interference-based screens in mammals. Nature 2004;428:427-431
  • Berns K, Hijmans EM, Mullenders J, et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 2004;428:431-7
  • Brass AL, Dykxhoorn DM, Benita Y, et al. Identification of host proteins required for HIV infection through a functional genomic screen. Science 2008;319:921-6
  • König R, Zhou Y, Elleder D, et al. Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 2008;135:49-60
  • Ringrose J, Jeeninga RE, Berkhout B, Speijer D. Proteomic studies reveal coordinated changes in T cell expression patterns upon HIV-1 infection. J Virol 2008;82:4320-30
  • Berkhout B, Jeang KT. RISCy business: microRNAs, pathogenesis, and viruses. J Biol Chem 2007;282:26641-5
  • Berkhout B. A balancing act: Viruses and miRNAs. J Formos Med Assoc 2008;107:1-3
  • Huang J, Wang F, Argyris E, et al. Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat Med 2007;13:1241-7
  • Banerjea A, Li MJ, Bauer G, et al. Inhibition of HIV-1 by lentiviral vector-transduced siRNAs in T lymphocytes differentiated in SCID-hu mice and CD34+ progenitor cell-derived macrophages. Mol Ther 2003;8:62-71
  • Chang LJ, Liu X, He J. Lentiviral siRNAs targeting multiple highly conserved RNA sequences of human immunodeficiency virus type 1. Gene Ther 2005;12:1133-44
  • Ter Brake, O Berkhout. Lentiviral vectors that carry anti-HIV shRNAs: problems and solutions. J Gene Med 2007;9:743-50
  • Westerhout EM, Berkhout B. A systematic analysis of the effect of target RNA structure on RNA interference. Nucleic Acids Res 2007;35:4322-30
  • An W, Telesnitsky A. Frequency of direct repeat deletion in a human immunodeficiency virus type 1 vector during reverse transcription in human cells. Virol 2001;286:475-82
  • Weinberg MS, Ely A, Barichievy S, et al. Specific inhibition of HBV replication in vitro and in vivo with expressed long hairpin RNA. Mol Ther 2007;15:534-41
  • Grimm D, Streetz KL, Jopling CL, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006;441:537-41
  • Bridge AJ, Pebernard S, Ducraux A, et al. Induction of an interferon response by RNAi vectors in mammalian cells. Nat Genet 2003;34:263-64
  • Hornung V, Guenthner-biller M, Bourquin C, et al. Sequence-specific potent induction of IFN-α by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 2005;11:263-70
  • Pebernard S, Iggo RD. Determinants of interferon-stimulated gene induction by RNAi vectors. Differentiation 2004;72:103-11
  • Robbins MA, Rossi JJ. Sensing the danger in RNA. Nat Med 2005;11:250-51
  • Sioud M. Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol Biol 2005;348:1079-90
  • Birmingham A, Anderson EM, Reynolds A, et al. 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 2006;3:199-204
  • Jackson AL, Burchard J, Schelter J, et al. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 2006;12:1179-87
  • Lin X, Ruan X, Anderson MG, et al. siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res 2005;33:4527-35
  • Legrand N, Weijer K, Spits H. Experimental models to study development and function of the human immune system in vivo. J Immunol 2006;176:2053-8
  • Ter Brake O, Legrand N, von Eije KJ, et al. Evaluation of safety and efficacy of RNAi against HIV-1 in the human immune system (Rag-2-/-γc-/-) mouse model. Gene Ther 2008; published online 31 July 2008, doi:10.1038/gt.2008.124
  • Baenziger S, Tussiwand R, Schlaepfer E, et al. Disseminated and sustained HIV infection in CD34+ cord blood cell-transplanted Rag2-/-γc-/- mice. Proc Natl Acad Sci USA 2006;103:15951-6
  • Berges BK, Wheat WH, Palmer BE, et al. HIV-1 infection and CD4 T cell depletion in the humanized Rag2-/-γc-/- (RAG-hu) mouse model. Retrovirology 2006;3:76: published online 1 November 2006, doi:10.1186/1742-4690-3-76
  • Zhang L, Kovalev GI, Su L. HIV-1 infection and pathogenesis in a novel humanized mouse model. Blood 2007;109:2978-81
  • Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806-11
  • Wilkinson KA, Merino EJ, Weeks KM. Selective 2¢-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution. Nat Protoc 2006;1:1610-16
  • Henry SD, van der Wegen P, Metselaar HJ, et al. Simultaneous targeting of HCV replication and viral binding with a single lentiviral vector containing multiple RNA interference expression cassettes. Mol Ther 2006;14:485-93
  • Birney E, Stamatoyannopoulos JA, Dutta A, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 2007;447:799-816
  • Carninci P, Kasukawa T, Katayama S, et al. The transcriptional landscape of the mammalian genome. Science 2005;309:1559-63

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.