685
Views
85
CrossRef citations to date
0
Altmetric
Reviews

TGF-β3: A potential biological therapy for enhancing chondrogenesis

, , , , , & show all
Pages 689-701 | Published online: 09 May 2009

Bibliography

  • Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 1998;47:487-504
  • Newman AP. Articular cartilage repair. Am J Sports Med 1998;26(2):309-24
  • Caplan AI, Elyaderani M, Mochizuki Y, et al. Principles of cartilage repair and regeneration. Clin Orthop Relat Res 1997;(342):254-69
  • Depalma AF, McKeever CD, Subin DK. Process of repair of articular cartilage demonstrated by histology and autoradiography with tritiated thymidine. Clin Orthop Relat Res 1966;48:229-42
  • Mankin HJ. The response of articular cartilage to mechanical injury. J Bone Joint Surg Am 1982;64(3):460-6
  • Buckwalter JA, Mow VC, Ratcliffe A. Restoration of injured or degenerated articular cartilage. J Am Acad Orthop Surg 1994;2(4):192-201
  • Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am 1993;75(4):532-53
  • Mitchell N, Shepard N. The resurfacing of adult rabbit articular cartilage by multiple perforations through the subchondral bone. J Bone Joint Surg Am 1976;58(2):230-3
  • Cheung HS, Lynch KL, Johnson RP, Brewer BJ. In vitro synthesis of tissue-specific type II collagen by healing cartilage. I. Short-term repair of cartilage by mature rabbits. Arthritis Rheum 1980;23(2):211-9
  • Furukawa T, Eyre DR, Koide S, Glimcher MJ. Biochemical studies on repair cartilage resurfacing experimental defects in the rabbit knee. J Bone Joint Surg Am 1980;62(1):79-89
  • Hjertquist SO, Lemperg R. Histological, autoradiographic and microchemical studies of spontaneously healing osteochondral articular defects in adult rabbits. Calcif Tissue Res 1971;8(1):54-72
  • Heldin CH, Miyazono K, Ten DIJKE. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 1997;390(6659):465-71
  • Shi Y, Massague J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 2003;113(6):685-700
  • Zhang YW, Yasui N, Ito K, et al. A RUNX2/PEBP2αA/CBFA1 mutation displaying impaired transactivation and Smad interaction in cleidocranial dysplasia. Proc Natl Acad Sci U S A 2000;97(19):10549-54
  • Lee SY, Nakagawa T, Reddi AH. Induction of chondrogenesis and expression of superficial zone protein (SZP)/lubricin by mesenchymal progenitors in the infrapatellar fat pad of the knee joint treated with TGF-β1 and BMP-7. Biochem Biophys Res Commun 2008;376(1):148-53
  • Mehlhorn AT, Niemeyer P, Kaschte K, et al. Differential effects of BMP-2 and TGF-β1 on chondrogenic differentiation of adipose derived stem cells. Cell Prolif 2007;40(6):809-23
  • Yamane S, Reddi AH. Induction of chondrogenesis and superficial zone protein accumulation in synovial side population cells by BMP-7 and TGF-β1. J Orthop Res 2008;26(4):485-92
  • Shintani N, Hunziker EB. Chondrogenic differentiation of bovine synovium: bone morphogenetic proteins 2 and 7 and transforming growth factor β1 induce the formation of different types of cartilaginous tissue. Arthritis Rheum 2007;56(6):1869-79
  • Hao J, Varshney RR, Wang DA. TGF-β3: A promising growth factor in engineered organogenesis. Expert Opin Biol Ther 2008;8(10):1485-93
  • Furumatsu T, Tsuda M, Taniguchi N, et al. Smad3 induces chondrogenesis through the activation of SOX9 via CREB-binding protein/p300 recruitment. J Biol Chem 2005;280(9):8343-50
  • Massague J, Wotton D. Transcriptional control by the TGF-β/Smad signaling system. EMBO J 2000;19(8):1745-54
  • Miyazawa K, Shinozaki M, Hara T, et al. Two major Smad pathways in TGF-β superfamily signalling. Genes Cells 2002;7(12):1191-204
  • Dennler S, Itoh S, Vivien D, et al. Direct binding of Smad3 and Smad4 to critical TGFβ-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 1998;17(11):3091-100
  • Zawel L, Dai JL, Buckhaults P, et al. Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell 1998;1(4):611-7
  • Alliston T, Choy L, Ducy P, et al. TGF-β-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. EMBO J 2001;20(9):2254-72
  • Liu D, Black BL, Derynck R. TGF-β inhibits muscle differentiation through functional repression of myogenic transcription factors by Smad3. Genes Dev 2001;15(22):2950-66
  • Nishihara A, Hanai JI, Okamoto N, et al. Role of p300, a transcriptional coactivator, in signalling of TGF-β. Genes Cells 1998;3(9):613-23
  • Pouponnot C, Jayaraman L, Massague J. Physical and functional interaction of SMADs and p300/CBP. J Biol Chem 1998;273(36):22865-8
  • Ng LJ, Wheatley S, Muscat GE, et al. SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse. Dev Biol 1997;183(1):108-21
  • Bell DM, Leung KK, Wheatley SC, et al. SOX9 directly regulates the type-II collagen gene. Nat Genet 1997;16(2):174-8
  • Tsuda M, Takahashi S, Takahashi Y, Asahara H. Transcriptional co-activators CREB-binding protein and p300 regulate chondrocyte-specific gene expression via association with Sox9. J Biol Chem 2003;278(29):27224-9
  • Kamachi Y, Uchikawa M, Kondoh H. Pairing SOX off: with partners in the regulation of embryonic development. Trends Genet 2000;16(4):182-7
  • Tan L, Peng H, Osaki M, et al. Egr-1 mediates transcriptional repression of COL2A1 promoter activity by interleukin-1β. J Biol Chem 2003;278(20):17688-700
  • Waldrip WR, Bikoff EK, Hoodless PA, et al. Smad2 signaling in extraembryonic tissues determines anterior-posterior polarity of the early mouse embryo. Cell 1998;92(6):797-808
  • Datto MB, Frederick JP, Pan L, et al. Targeted disruption of Smad3 reveals an essential role in transforming growth factor β-mediated signal transduction. Mol Cell Biol 1999;19(4):2495-504
  • Stanton LA, Underhill TM, Beier F. MAP kinases in chondrocyte differentiation. Dev Biol 2003;263(2):165-75
  • Tuli R, Tuli S, Nandi S, et al. Transforming growth factor-β-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk. J Biol Chem 2003;278(42):41227-36
  • Murakami S, Kan M, McKeehan WL, de Crombrugghe B. Up-regulation of the chondrogenic Sox9 gene by fibroblast growth factors is mediated by the mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S A 2000;97(3):1113-8
  • Watanabe H, de Caestecker MP, Yamada Y. Transcriptional cross-talk between Smad, ERK1/2, and p38 mitogen-activated protein kinase pathways regulates transforming growth factor-β-induced aggrecan gene expression in chondrogenic ATDC5 cells. J Biol Chem 2001;276(17):14466-73
  • Mrugala D. Bony C, Neves N, et al. Phenotypic and functional characterisation of ovine mesenchymal stem cells: application to a cartilage defect model. Ann Rheum Dis 2008;67(3):288-95
  • Choi SJ, Na K, Kim S, et al. Combination of ascorbate and growth factor (TGF β-3) in thermo-reversible hydrogel constructs embedded with rabbit chondrocytes for neocartilage formation. J Biomed Mater Res A 2007;83(4):897-905
  • Choi YS, Lim SM, Shin HC, et al. Chondrogenesis of human periosteum-derived progenitor cells in atelocollagen. Biotechnol Lett 2007;29(2):323-9
  • Fan H, Zhang C, Li J, et al. Gelatin microspheres containing TGF-β3 enhance the chondrogenesis of mesenchymal stem cells in modified pellet culture. Biomacromolecules 2008;9(3):927-34
  • Haider M, Cappello J, Ghandehari H, Leong KW. In vitro chondrogenesis of mesenchymal stem cells in recombinant silk-elastinlike hydrogels. Pharm Res 2008;25(3):692-9
  • Kang SW, Bada LP, Kang CS, et al. Articular cartilage regeneration with microfracture and hyaluronic acid. Biotechnol Lett 2008;30(3):435-9
  • Lima EG, Bian L, Ng KW, et al. The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-β3. Osteoarthritis Cartilage 2007;15(9):1025-33
  • Mehlhorn AT, Schmal H, Kaiser S, et al. Mesenchymal stem cells maintain TGF-β-mediated chondrogenic phenotype in alginate bead culture. Tissue Eng 2006;12(6):1393-403
  • Miyanishi K, Trindade MC, Lindsey DP, et al. Effects of hydrostatic pressure and transforming growth factor-β3 on adult human mesenchymal stem cell chondrogenesis in vitro. Tissue Eng 2006;12(6):1419-28
  • Moioli EK, Mao JJ. Chondrogenesis of mesenchymal stem cells by controlled delivery of transforming growth factor-β3. Conf Proc IEEE Eng Med Biol Soc 2006;1:2647-50
  • Na K, Kim S, Woo DG, et al. Synergistic effect of TGFβ-3 on chondrogenic differentiation of rabbit chondrocytes in thermo-reversible hydrogel constructs blended with hyaluronic acid by in vivo test. J Biotechnol 2007;128(2):412-22
  • Park JS, Woo DG, Yang HN, et al. Heparin-bound transforming growth factor-β3 enhances neocartilage formation by rabbit mesenchymal stem cells. Transplantation 2008;85(4):589-96
  • Wang Y, Kim UJ, Blasioli DJ, et al. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials 2005;26(34):7082-94
  • Hunziker EB, Driesang IM, Morris EA. Chondrogenesis in cartilage repair is induced by members of the transforming growth factor-beta superfamily. Clin Orthop Relat Res 2001;(391 Suppl):S171-181
  • Ma HL, Hung SC, Lin SY, et al. Chondrogenesis of human mesenchymal stem cells encapsulated in alginate beads. J Biomed Mater Res A 2003;64(2):273-81
  • Freed LE, Vunjak-novakovic G, Biron RJ, et al. Biodegradable polymer scaffolds for tissue engineering. Biotechnology (N Y) 1994;12(7):689-93
  • Grande DA, Halberstadt C, Naughton G, et al. Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts. J Biomed Mater Res 1997;34(2):211-20
  • Martin I, Padera RF, Vunjak-Novakovic G, Freed LE. In vitro differentiation of chick embryo bone marrow stromal cells into cartilaginous and bone-like tissues. J Orthop Res 1998;16(2):181-9
  • Athanasiou KA, Niederauer GG, Agrawal CM. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 1996;17(2):93-102
  • Cancedda R, Dozin B, Giannoni P, Quarto R. Tissue engineering and cell therapy of cartilage and bone. Matrix Biol 2003;22(1):81-91
  • Kim UJ, Park J, Kim HJ, et al. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 2005;26(15):2775-85
  • Meinel L, Hofmann S, Karageorgiou V, et al. Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds. Biotechnol Bioeng 2004;88(3):379-91
  • Fragonas E, Valente M, Pozzi-Mucelli M, et al. Articular cartilage repair in rabbits by using suspensions of allogenic chondrocytes in alginate. Biomaterials 2000;21(8):795-801
  • Diduch DR, Jordan LC, Mierisch CM, Balian G. Marrow stromal cells embedded in alginate for repair of osteochondral defects. Arthroscopy 2000;16(6):571-7
  • Perka C, Schultz O, Spitzer RS, Lindenhayn K. The influence of transforming growth factor β1 on mesenchymal cell repair of full-thickness cartilage defects. J Biomed Mater Res 2000;52(3):543-52
  • Altman GH, Diaz F, Jakuba C, et al. Silk-based biomaterials. Biomaterials 2003;24(3):401-16
  • Meinel L, Hofmann S, Karageorgiou V, et al. The inflammatory responses to silk films in vitro and in vivo. Biomaterials 2005;26(2):147-55
  • Steadman JR, Briggs KK, Rodrigo JJ, et al. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 2003;19(5):477-84
  • Williams RJ III, Harnly HW. Microfracture: indications, technique, and results. Instr Course Lect 2007;56:419-28
  • Harner CD, Vince KG, Fu FH. Techniques in knee surgery. Lippincott Williams & Wilkins, Philadelphia. 2001
  • Frisbie DD, Trotter GW, Powers BE, et al. Arthroscopic subchondral bone plate microfracture technique augments healing of large chondral defects in the radial carpal bone and medial femoral condyle of horses. Vet Surg 1999;28(4):242-55
  • Gudas R, Kalesinskas RJ, Kimtys V, et al. A prospective randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint in young athletes. Arthroscopy 2005;21(9):1066-75
  • Miniaci A, Tytherleigh-Strong G. Fixation of unstable osteochondritis dissecans lesions of the knee using arthroscopic autogenous osteochondral grafting (mosaicplasty). Arthroscopy 2007;23(8):845-51
  • Wahegaonkar AL, Doi K, Hattori Y, Addosooki A. Technique of osteochondral autograft transplantation mosaicplasty for capitellar osteochondritis dissecans. J Hand Surg [Am] 2007;32(9):1454-61
  • Hangody L, Vasarhelyi G, Hangody LR, et al. Autologous osteochondral grafting–technique and long-term results. Injury 2008;39 Suppl 1:S32-39
  • Brittberg M, Lindahl A, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994;331(14):889-95
  • Minas T. Autologous chondrocyte implantation for focal chondral defects of the knee. Clin Orthop Relat Res 2001;(391 Suppl):S349-361
  • Peterson L, Minas T, Brittberg M, et al. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res 2000;(374):212-34
  • Sohn DH, Lottman LM, Lum LY, et al. Effect of gravity on localization of chondrocytes implanted in cartilage defects. Clin Orthop Relat Res 2002;(394):254-62
  • Steinwachs M, Kreuz PC. Autologous chondrocyte implantation in chondral defects of the knee with a type I/III collagen membrane: a prospective study with a 3-year follow-up. Arthroscopy 2007;23(4):381-7
  • Benya PD, Shaffer JD. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 1982;30(1):215-24

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.