218
Views
17
CrossRef citations to date
0
Altmetric
Reviews

Prospects of RNAi and microRNA-based therapies for hepatitis C

, , &
Pages 713-724 | Published online: 20 May 2009

Bibliography

  • Sarbah SA, Younossi ZM. Hepatitis C: an update on the silent epidemic. J Clin Gastroenterol 2000;30(2):125-43
  • Brown RS. Hepatitis C and liver transplantation. Nature 2005;436(7053):973-8
  • Yilmaz N, Shiffman ML, Stravitz RT, et al. A prospective evaluation of fibrosis progression in patients with recurrent hepatitis C virus following liver transplantation. Liver Transpl 2007;13(7):975-83
  • Manns MP, McHutchison JG, Gordon SC, et al. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet 2001;358(9286):958-65
  • Davis GL, Wong JB, McHutchison JG, et al. Early virologic response to treatment with peginterferon alfa-2b plus ribavirin in patients with chronic hepatitis C. Hepatology 2003;38(3):645-52
  • Zeuzem S, Buti M, Ferenci P, et al. Efficacy of 24 weeks treatment with peginterferon alfa-2b plus ribavirin in patients with chronic hepatitis C infected with genotype 1 and low pretreatment viremia. J Hepatol 2006;44(1):97-103
  • Samuel D, Bizollon T, Feray C, et al. Interferon-α 2b plus ribavirin in patients with chronic hepatitis C after liver transplantation: a randomized study. Gastroenterology 2003;124(3):642-50
  • Garcia-Retortillo M, Forns X. Prevention and treatment of hepatitis C virus recurrence after liver transplantation. J Hepatol 2004;41(1):2-10
  • Fried MW, Shiffman ML, Reddy KR, et al. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med 2002;347(13):975-82
  • Fried MW. Side effects of therapy of hepatitis C and their management. Hepatology 2002;36(5 Suppl 1):S237-44
  • McHutchison JG, Bartenschlager R, Patel K, Pawlotsky JM. The face of future hepatitis C antiviral drug development: recent biological and virologic advances and their translation to drug development and clinical practice. J Hepatol 2006;44(2):411-21
  • Pawlotsky JM. Therapy of hepatitis C: from empiricism to eradication. Hepatology 2006;43(2 Suppl 1):S207-20
  • Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391(6669):806-11
  • Hannon GJ. RNA interference. Nature 2002;418(6894):244-51
  • Tomari Y, Zamore PD. Perspective: machines for RNAi. Genes Dev 2005;19(5):517-29
  • Jopling CL, Yi M, Lancaster AM, et al. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 2005;309(5740):1577-81
  • Simmonds P, Bukh J, Combet C, et al. Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. Hepatology 2005;42(4):962-73
  • Choo QL, Kuo G, Weiner AJ, et al. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 1989;244(4902):359-62
  • Giannini C, Brechot C. Hepatitis C virus biology. Cell Death Differ 2003;10(Suppl 1):S27-38
  • Penin F, Brass V, Appel N, et al. Structure and function of the membrane anchor domain of hepatitis C virus nonstructural protein 5A. J Biol Chem 2004;279(39):40835-43
  • Prabhu R, Garry RF, Dash S. Small interfering RNA targeted to stem-loop II of the 5′ untranslated region effectively inhibits expression of six HCV genotypes. Virol J 2006;3:100. Published online 27 November 2006, doi: 10.1186/1743-422X-3-100
  • Kapadia SB, Brideau-Andersen A, Chisari FV. Interference of hepatitis C virus RNA replication by short interfering RNAs. Proc Natl Acad Sci USA 2003;100(4):2014-8
  • Yokota T, Sakamoto N, Enomoto N, et al. Inhibition of intracellular hepatitis C virus replication by synthetic and vector-derived small interfering RNAs. EMBO Reports 2003;4(6):602-8
  • Wilson JA, Jayasena S, Khvorova A, et al. RNA interference blocks gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells. Proc Natl Acad Sci USA 2003;100(5):2783-8
  • Randall G, Grakoui A, Rice CM. Clearance of replicating hepatitis C virus replicon RNAs in cell culture by small interfering RNAs. Proc Natl Acad Sci USA 2003;100(1):235-40
  • Hamazaki H, Ujino S, Abe E, et al. RNAi expression mediated inhibition of HCV replication. Nucleic Acids Symp Ser 2004;48(1):307-8
  • Ilves H, Kaspar RL, Wang Q, et al. Inhibition of hepatitis C IRES-mediated gene expression by small hairpin RNAs in human hepatocytes and mice. Ann NY Acad Sci 2006;1082:52-5
  • Kanda T, Steele R, Ray R, Ray RB. Small interfering RNA targeted to hepatitis C virus 5′ nontranslated region exerts potent antiviral effect. J Virol 2007;81(2):669-76
  • Chevalier C, Saulnier A, Benureau Y, et al. Inhibition of hepatitis C virus infection in cell culture by small interfering RNAs. Mol Ther 2007;15(8):1452-62
  • Neumann AU, Lam NP, Dahari H, et al. Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-α therapy. Science 1998;282(5386):103-7
  • Grimm D, Kay MA. Combinatorial RNAi: a winning strategy for the race against evolving targets? Mol Ther 2007;15(5):878-88
  • Wilson JA, Richardson CD. Hepatitis C virus replicons escape RNA interference induced by a short interfering RNA directed against the NS5b coding region. J Virol 2005;79(11):7050-8
  • Konishi M, Wu CH, Kaito M, et al. siRNA-resistance in treated HCV replicon cells is correlated with the development of specific HCV mutations. J Viral Hepat 2006;13(11):756-61
  • Lohmann V, Korner F, Koch J, et al. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 1999;285(5424):110-3
  • Wakita T, Pietschmann T, Kato T, et al. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 2005;11(7):791-6
  • Levy S, Todd SC, Maecker HT. CD81 (TAPA-1): a molecule involved in signal transduction and cell adhesion in the immune system. Annu Rev Immunol 1998;16:89-109
  • Barth H, Schafer C, Adah MI, et al. Cellular binding of hepatitis C virus envelope glycoprotein E2 requires cell surface heparan sulfate. J Biol Chem 2003;278(42):41003-12
  • Scarselli E, Ansuini H, Cerino R, et al. The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. Embo J 2002;21(19):5017-25
  • Agnello V, Abel G, Elfahal M, et al. Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor. Proc Natl Acad Sci USA 1999;96(22):12766-71
  • Pohlmann S, Zhang J, Baribaud F, et al. Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR. J Virol 2003;77(7):4070-80
  • Gardner JP, Durso RJ, Arrigale RR, et al. L-SIGN (CD 209L) is a liver-specific capture receptor for hepatitis C virus. Proc Natl Acad Sci USA 2003;100(8):4498-503
  • Evans MJ, von Hahn T, Tscherne DM, et al. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 2007;446(7137):801-5
  • Zheng A, Yuan F, Li Y, et al. Claudin-6 and claudin-9 function as additional coreceptors for hepatitis C virus. J Virol 2007;81(22):12465-71
  • Meertens L, Bertaux C, Cukierman L, et al. The tight junction proteins claudin-1, -6, and -9 are entry cofactors for hepatitis C virus. J Virol 2008;82(7):3555-60
  • Lanford RE, Evans MJ, Lohmann V, et al. The accelerating pace of HCV research: a summary of the 15th International Symposium on Hepatitis C Virus And Related Viruses. Gastroenterology 2009;136(1):9-16
  • Ploss A, Evans MJ, Gaysinskaya VA, et al. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 2009;457(7231):882-6
  • Wang C, Gale M Jr, Keller BC, et al. Identification of FBL2 as a geranylgeranylated cellular protein required for hepatitis C virus RNA replication. Mol Cell 2005;18(4):425-34
  • Evans MJ, Rice CM, Goff SP. Genetic interactions between hepatitis C virus replicons. J Virol 2004;78(21):12085-9
  • Hamamoto I, Nishimura Y, Okamoto T, et al. Human VAP-B is involved in hepatitis C virus replication through interaction with NS5A and NS5B. J Virol 2005;79(21):13473-82
  • Watashi K, Ishii N, Hijikata M, et al. Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase. Mol Cell 2005;19(1):111-22
  • Okamoto T, Nishimura Y, Ichimura T, et al. Hepatitis C virus RNA replication is regulated by FKBP8 and Hsp90. EMBO J 2006;25(20):5015-25
  • Randall G, Panis M, Cooper JD, et al. Cellular cofactors affecting hepatitis C virus infection and replication. Proc Natl Acad Sci USA 2007;104(31):12884-9
  • Ng TI, Mo H, Pilot-Matias T, et al. Identification of host genes involved in hepatitis C virus replication by small interfering RNA technology. Hepatology 2007;45(6):1413-21
  • Supekova L, Supek F, Lee J, et al. Identification of human kinases involved in hepatitis C virus replication by small interference RNA library screening. J Biol Chem 2008;283(1):29-36
  • McKeating JA, Zhang LQ, Logvinoff C, et al. Diverse hepatitis C virus glycoproteins mediate viral infection in a CD81-dependent manner. J Virol 2004;78(16):8496-505
  • Henry SD, Metselaar HJ, Lonsdale RC, et al. Mycophenolic acid inhibits hepatitis C virus replication and acts in synergy with cyclosporin A and interferon-α. Gastroenterology 2006;131(5):1452-62
  • Meuleman P, Hesselgesser J, Paulson M, et al. Anti-CD81 antibodies can prevent a hepatitis C virus infection in vivo. Hepatology 2008;48(6):1761-8
  • Lavillette D, Morice Y, Germanidis G, et al. Human serum facilitates hepatitis C virus infection, and neutralizing responses inversely correlate with viral replication kinetics at the acute phase of hepatitis C virus infection. J Virol 2005;79(10):6023-34
  • Zhu Q, Oei Y, Mendel DB, et al. Novel robust hepatitis C virus mouse efficacy model. Antimicrob Agents Chemother 2006;50(10):3260-8
  • Wu GY, Konishi M, Walton CM, et al. A novel immunocompetent rat model of HCV infection and hepatitis. Gastroenterology 2005;128(5):1416-23
  • Meuleman P, Leroux-Roels G. The human liver-uPA-SCID mouse: a model for the evaluation of antiviral compounds against HBV and HCV. Antiviral Res 2008;80(3):231-8
  • McCaffrey AP, Meuse L, Pham T-TT, et al. RNA interference in adult mice. Nature 2002;418:38-9
  • Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411(6836):494-8
  • Sledz CA, Holko M, de Veer MJ, et al. Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 2003;5(9):834-9
  • Persengiev SP, Zhu X, Green MR. Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA 2004;10(1):12-8
  • Robbins MA, Rossi JJ. Sensing the danger in RNA. Nat Med 2005;11(3):250-1
  • Kleinman ME, Yamada K, Takeda A, et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 2008;452(7187):591-7
  • Corey DR. Chemical modification: the key to clinical application of RNA interference? J Clin Invest 2007;117(12):3615-22
  • Morrissey DV, Lockridge JA, Shaw L, et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 2005;23(8):1002-7
  • Morrissey DV, Blanchard K, Shaw L, et al. Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology 2005;41(6):1349-56
  • Hu YB, Li DG, Lu HM. Modified synthetic siRNA targeting tissue inhibitor of metalloproteinase-2 inhibits hepatic fibrogenesis in rats. J Gene Med 2007;9(3):217-29
  • Watanabe T, Umehara T, Yasui F, et al. Liver target delivery of small interfering RNA to the HCV gene by lactosylated cationic liposome. J Hepatol 2007;47(6):744-50
  • Song E, Zhu P, Lee SK, et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 2005;23(6):709-17
  • Wen WH, Liu JY, Qin WJ, et al. Targeted inhibition of HBV gene expression by single-chain antibody mediated small interfering RNA delivery. Hepatology 2007;46(1):84-94
  • Sato Y, Murase K, Kato J, et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat Biotechnol 2008;26(4):431-42
  • Kim SI, Shin D, Lee H, et al. Targeted delivery of siRNA against hepatitis C virus by apolipoprotein A-I-bound cationic liposomes. J Hepatol 2009;50(3):479-88
  • Castanotto D, Rossi JJ. The promises and pitfalls of RNA-interference-based therapeutics. Nature 2009;457(7228):426-33
  • Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev 2009;8(2):129-38
  • Uprichard SL, Boyd B, Althage A, Chisari FV. Clearance of hepatitis B virus from the liver of transgenic mice by short hairpin RNAs. Proc Natl Acad Sci USA 2005;102(3):773-8
  • Sakamoto N, Tanabe Y, Yokota T, et al. Inhibition of hepatitis C virus infection and expression in vitro and in vivo by recombinant adenovirus expressing short hairpin RNA. J Gastroenterol Hepatol 2008;23(9):1437-47
  • Schulick AH, Vassalli G, Dunn PF, et al. Established immunity precludes adenovirus-mediated gene transfer in rat carotid arteries. Potential for immunosuppression and vector engineering to overcome barriers of immunity. J Clin Invest 1997;99(2):209-19
  • Crowther C, Ely A, Hornby J, et al. Efficient inhibition of hepatitis B virus replication in vivo using polyethylene glycol-modified adenovirus vectors. Hum Gene Ther 2008;19(11):1325-32
  • Lu S, Cullen BR. Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and microRNA biogenesis. J Virol 2004;78(23):12868-76
  • Andersson MG, Haasnoot PC, Xu N, et al. Suppression of RNA interference by adenovirus virus-associated RNA. J Virol 2005;79(15):9556-65
  • Kochanek S, Clemens PR, Mitani K, et al. A new adenoviral vector: replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and β-galactosidase. Proc Natl Acad Sci USA 1996;93(12):5731-6
  • Ruiz R, Witting SR, Saxena R, Morral N. Robust hepatic gene silencing for functional studies using helper-dependent adenovirus vectors. Hum Gene Ther 2009;20(1):87-94
  • Witting SR, Brown M, Saxena R, et al. Helper-dependent adenovirus-mediated short hairpin RNA expression in the liver activates the interferon response. J Biol Chem 2008;283(4):2120-8
  • Manno CS, Pierce GF, Arruda VR, et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 2006;12(3):342-7
  • Gao L, Aizaki H, He JW, Lai MM. Interactions between viral nonstructural proteins and host protein hVAP-33 mediate the formation of hepatitis C virus RNA replication complex on lipid raft. J Virol 2004;78(7):3480-8
  • Nakai H, Fuess S, Storm TA, et al. Unrestricted hepatocyte transduction with adeno-associated virus serotype 8 vectors in mice. J Virol 2005;79(1):214-24
  • Wang Z, Ma HI, Li J, et al. Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo. Gene Ther 2003;10(26):2105-11
  • Naldini L, Blomer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996;272(5259):263-7
  • Henry SD, van der Wegen P, Metselaar HJ, et al. Simultaneous targeting of HCV replication and viral binding with a single lentiviral vector containing multiple RNA interference expression cassettes. Mol Ther 2006;14(4):485-93
  • Takigawa Y, Nagano-Fujii M, Deng L, et al. Suppression of hepatitis C virus replicon by RNA interference directed against the NS3 and NS5B regions of the viral genome. Microbiol Immunol 2004;48(8):591-8
  • Johnston JC, Gasmi M, Lim LE, et al. Minimum requirements for efficient transduction of dividing and nondividing cells by feline immunodeficiency virus vectors. J Virol 1999;73(6):4991-5000
  • Poeschla EM, Wong-Staal F, Looney DJ. Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors. Nat Med 1998;4(3):354-7
  • Rizvi TA, Panganiban AT. Simian immunodeficiency virus RNA is efficiently encapsidated by human immunodeficiency virus type 1 particles. J Virol 1993;67(5):2681-8
  • Markusic DM, Kanitz A, Oude-Elferink RP, Seppen J. Preferential gene transfer of lentiviral vectors to liver-derived cells, using a hepatitis B peptide displayed on GP64. Hum Gene Ther 2007;18(7):673-9
  • Chang K, Elledge SJ, Hannon GJ. Lessons from nature: microRNA-based shRNA libraries. Nat Methods 2006;3(9):707-14
  • Grimm D, Streetz KL, Jopling CL, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006;441(7092):537-41
  • Giering JC, Grimm D, Storm TA, Kay MA. Expression of shRNA from a tissue-specific pol II promoter is an effective and safe RNAi therapeutic. Mol Ther 2008;16(9):1630-6
  • Shaked A, Csete ME, Drazan KE, et al. Adenovirus-mediated gene transfer in the transplant setting. II. Successful expression of transferred cDNA in syngeneic liver grafts. Transplantation 1994;57(10):1508-11
  • Olthoff KM, Judge TA, Gelman AE, et al. Adenovirus-mediated gene transfer into cold-preserved liver allografts: survival pattern and unresponsiveness following transduction with CTLA4Ig. Nat Med 1998;4(2):194-200
  • Gong N, Dong C, Chen Z, et al. Adenovirus-mediated antisense-ERK2 gene therapy attenuates chronic allograft nephropathy. Transplant Proc 2006;38(10):3228-30
  • Dudler J, Simeoni E, Fleury S, et al. Gene transfer of interleukin-18-binding protein attenuates cardiac allograft rejection. Transpl Int 2007;20(5):460-6
  • Henry SD, van der Wegen P, Metselaar HJ, et al. Hydroxyethyl starch-based preservation solutions enhance gene therapy vector delivery under hypothermic conditions. Liver Transpl 2008;14(12):1708-17
  • Gottwein E, Cullen BR. Viral and cellular microRNAs as determinants of viral pathogenesis and immunity. Cell Host Microbe 2008;3(6):375-87
  • Jopling CL, Schutz S, Sarnow P. Position-dependent function for a tandem microRNA miR-122-binding site located in the hepatitis C virus RNA genome. Cell Host Microbe 2008;4(1):77-85
  • Liu J. Control of protein synthesis and mRNA degradation by microRNAs. Curr Opin Cell Biol 2008;20(2):214-21
  • Shan Y, Zheng J, Lambrecht RW, Bonkovsky HL. Reciprocal effects of micro-RNA-122 on expression of heme oxygenase-1 and hepatitis C virus genes in human hepatocytes. Gastroenterology 2007;133(4):1166-74
  • Zhu Z, Wilson AT, Mathahs MM, et al. Heme oxygenase-1 suppresses hepatitis C virus replication and increases resistance of hepatocytes to oxidant injury. Hepatology 2008;48(5):1430-9
  • Henke JI, Goergen D, Zheng J, et al. microRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J 2008;27(24):3300-10
  • Pedersen IM, Cheng G, Wieland S, et al. Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 2007;449(7164):919-22
  • Sarasin-Filipowicz M, Krol J, Markiewicz I, et al. Decreased levels of microRNA miR-122 in individuals with hepatitis C responding poorly to interferon therapy. Nat Med 2009;15(1):31-3
  • Murakami Y, Aly HH, Tajima A, et al. Regulation of the hepatitis C virus genome replication by miR-199a*. J Hepatol 2009;50(3):453-60
  • Hutvagner G, Simard MJ, Mello CC, Zamore PD. Sequence-specific inhibition of small RNA function. PLoS Biol 2004;2(4):E98. Published online 24 February, 2004, doi: 10.1371/journal.pbio.0020098
  • Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with ‘lantagomirs’. Nature 2005;438(7068):685-9
  • Esau C, Davis S, Murray SF, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006;3(2):87-98
  • Valoczi A, Hornyik C, Varga N, et al. Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res 2004;32(22):e175. Published online 16 November 2004, doi: 10.1093/nar/gnh171
  • Elmen J, Lindow M, Schutz S, et al. LNA-mediated microRNA silencing in non-human primates. Nature 2008;452(7189):896-9
  • Elmen J, Lindow M, Silahtaroglu A, et al. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res 2008;36(4):1153-62
  • Fabani MM, Gait MJ. miR-122 targeting with LNA/2′-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA-peptide conjugates. RNA 2008;14(2):336-46
  • Bhat B, Esau C, Davis S, et al. 2′-O-Methoxyethyl/2′-Fluoro modified oligonucleotides result in more potent inhibition of micro RNA-122 in vivo: a target implicatedin HCV replication. Nucleic Acids Symp Ser 2008;(52):69
  • Kronke J, Kittler R, Buchholz F, et al. Alternative approaches for efficient inhibition of hepatitis C virus RNA replication by small interfering RNAs. J Virol 2004;78(7):3436-46
  • De Francesco R, Migliaccio G. Challenges and successes in developing new therapies for hepatitis C. Nature 2005;436(7053):953-60
  • Watanabe T, Sudoh M, Miyagishi M, et al. Intracellular-diced dsRNA has enhanced efficacy for silencing HCV RNA and overcomes variation in the viral genotype. Gene Ther 2006;13(11):883-92
  • Kruger M, Beger C, Welch PJ, et al. Involvement of proteasome α-subunit PSMA7 in hepatitis C virus internal ribosome entry site-mediated translation. Mol Cell Biol 2001;21(24):8357-64
  • Spangberg K, Wiklund L, Schwartz S. HuR, a protein implicated in oncogene and growth factor mRNA decay, binds to the 3′ ends of hepatitis C virus RNA of both polarities. Virology 2000;274(2):378-90
  • Korf M, Jarczak D, Beger C, et al. Inhibition of hepatitis C virus translation and subgenomic replication by siRNAs directed against highly conserved HCV sequence and cellular HCV cofactors. J Hepatol 2005;43(2):225-34
  • Chung KH, Hart CC, Al-Bassam S, et al. Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155. Nucleic Acids Res 2006;34(7):e53
  • Liu YP, Haasnoot J, ter Brake O, et al. Inhibition of HIV-1 by multiple siRNAs expressed from a single microRNA polycistron. Nucleic Acids Res 2008;36(9):2811-24
  • Pan Q, Henry SD, Metselaar HJ, et al. Combined antiviral activity of interferon-alpha and RNA interference directed against hepatitis C without affecting vector delivery and gene silencing. J Mol Med. 2009; Apr 30. [Epub ahead of print]
  • Randall G, Chen L, Panis M, et al. Silencing of USP18 potentiates the antiviral activity of interferon against hepatitis C virus infection. Gastroenterology 2006;131(5):1584-91
  • Waterhouse PM, Wang MB, Lough T. Gene silencing as an adaptive defence against viruses. Nature 2001;411(6839):834-42
  • Voinnet O. RNA silencing as a plant immune system against viruses. Trends Genet 2001;17(8):449-59
  • Wilkins C, Dishongh R, Moore SC, et al. RNA interference is an antiviral defence mechanism in Caenorhabditis elegans. Nature 2005;436(7053):1044-7
  • Wang XH, Aliyari R, Li WX, et al. RNA interference directs innate immunity against viruses in adult Drosophila. Science 2006;312(5772):452-4
  • Segers GC, Zhang X, Deng F, et al. Evidence that RNA silencing functions as an antiviral defense mechanism in fungi. Proc Natl Acad Sci USA 2007;104(31):12902-6
  • Cullen BR. Is RNA interference involved in intrinsic antiviral immunity in mammals? Nat Immunol 2006;7(6):563-7
  • de Vries W, Berkhout B. RNAi suppressors encoded by pathogenic human viruses. Int J Biochem Cell Biol 2008;40(10):2007-12
  • Wang Y, Kato N, Jazag A, et al. Hepatitis C virus core protein is a potent inhibitor of RNA silencing-based antiviral response. Gastroenterology 2006;130(3):883-92
  • Ji J, Glaser A, Wernli M, et al. Suppression of short interfering RNA-mediated gene silencing by the structural proteins of hepatitis C virus. J Gen Virol 2008;89(Pt 11):2761-6
  • Chen W, Zhang Z, Chen J, et al. HCV core protein interacts with Dicer to antagonize RNA silencing. Virus Res 2008;133(2):250-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.