319
Views
30
CrossRef citations to date
0
Altmetric
Reviews

Strategies for short hairpin RNA delivery in cancer gene therapy

, &
Pages 1357-1368 | Published online: 18 Sep 2009

Bibliography

  • Caplen NJ. Gene therapy progress and prospects. Downregulating gene expression: the impact of RNA interference. Gene Ther 2004;11:1241-8
  • Fuchs U, Borkhardt A. The application of siRNA technology to cancer biology discovery. Adv Cancer Res 2007;96:75-102
  • Dykxhoorn DM, Lieberman J. The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu Rev Med 2005;56:401-23
  • Folini M, Pennati M, Zaffaroni N. RNA interference-mediated validation of genes involved in telomere maintenance and evasion of apoptosis as cancer therapeutic targets. Methods Mol Biol 2009;487:303-30
  • Micklem DR, Lorens JB. RNAi screening for therapeutic targets in human malignancies. Curr Pharm Biotechnol 2007;8:337-43
  • Sumimoto H, Kawakami Y. Lentiviral vector-mediated RNAi and its use for cancer research. Future Oncol 2007;3:655-64
  • Haney SA. Expanding the repertoire of RNA interference screens for developing new anticancer drug targets. Expert Opin Ther Targets 2007;11:1429-41
  • Takeshita F, Ochiya T. Therapeutic potential of RNA interference against cancer. Cancer Sci 2006;97:689-96
  • Vorhies JS, Nemunaitis J. Nonviral delivery vehicles for use in short hairpin RNA-based cancer therapies. Expert Rev Anticancer Ther 2007;7:373-82
  • Azkur AK, Kim B, Suvas S, Blocking mouse MMP-9 production in tumor cells and mouse cornea by short hairpin (sh) RNA encoding plasmids. Oligonucleotides 2005;15:72-84
  • Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science 2002;296:550-3
  • Martinez J, Patkaniowska A, Urlaub H, Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 2002;110:563-74
  • Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell 2003;115:209-16
  • Schwarz DS, Hutvagner G, Haley B, Zamore PD. Evidence that siRNAs function as guides, not primers, in the drosophila and human RNAi pathways. Mol Cell 2002;10:537-48
  • Elbashir SM, Harborth J, Lendeckel W, Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411:494-8
  • Lee NS, Dohjima T, Bauer G, Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 2002;20:500-5
  • Paul CP, Good PD, Winer I, Engelke DR. Effective expression of small interfering RNA in human cells. Nat Biotechnol 2002;20:505-8
  • Brummelkamp TR, Bernards R, Agami R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2002;2:243-7
  • Omi K, Tokunaga K, Hohjoh H. Long-lasting RNAi activity in mammalian neurons. FEBS Lett 2004;558:89-95
  • Harborth J, Elbashir SM, Vandenburgh K, Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid Drug Dev 2003;13:83-105
  • Paddison PJ, Caudy AA, Bernstein E, Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 2002;16:948-58
  • Miyagishi M, Taira K. Strategies for generation of an siRNA expression library directed against the human genome. Oligonucleotides 2003;13:325-33
  • Siolas D, Lerner C, Burchard J, Synthetic shRNAs as potent RNAi triggers. Nat Biotechnol 2005;23:227-31
  • Xu J, Li L, Hong J, Huang W. Effects of small interference RNA against PTP1B and TCPTP on insulin signaling pathway in mouse liver: evidence for non-synergetic cooperation. Cell Biol Int 2007;31:88-91
  • Behlke MA. Progress towards in vivo use of siRNAs. Mol Ther 2006;13:644-70
  • Wolff JA, Budker V. The mechanism of naked DNA uptake and expression. Adv Genet 2005;54:3-20
  • DiFiglia M, Sena-Esteves M, Chase K, Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc Natl Acad Sci USA 2007;104:17204-9
  • de Fougerolles A, Novobrantseva T. siRNA and the lung: research tool or therapeutic drug? Curr Opin Pharmacol 2008;8:280-5
  • Nishikawa M, Huang L. Nonviral vectors in the new millennium: delivery barriers in gene transfer. Hum Gene Ther 2001;12:861-70
  • Li CX, Parker A, Menocal E, Delivery of RNA interference. Cell Cycle 2006;5:2103-9
  • Takahashi Y, Yamaoka K, Nishikawa M, Takakura Y. Quantitative and temporal analysis of gene silencing in tumor cells induced by small interfering RNA or short hairpin RNA expressed from plasmid vectors. J Pharm Sci 2009;98:74-80
  • Lage H. Potential applications of RNA interference technology in the treatment of cancer. Future Oncol 2005;1:103-13
  • Grimm D, Streetz KL, Jopling CL, Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006;441:537-41
  • Denti MA, Rosa A, Sthandier O, A new vector, based on the PolII promoter of the U1 snRNA gene, for the expression of siRNAs in mammalian cells. Mol Ther 2004;10:191-9
  • Giering JC, Grimm D, Storm TA, Kay MA. Expression of shRNA from a tissue-specific pol II promoter is an effective and safe RNAi therapeutic. Mol Ther 2008;16:1630-6
  • Xing Y, Liu M, Du Y, Tumor cell-specific blockade of CXCR4/SDF-1 interactions in prostate cancer cells by hTERT promoter induced CXCR4 knockdown: a possible metastasis preventing and minimizing approach. Cancer Biol Ther 2008;7:1839-48
  • Zhao W, Xu Y, Kong D, Tissue-selective RNA interference in prostate cancer cell using prostate specific membrane antigen promoter/enhancer. Urol Oncol 2008:27:539-47
  • Hassani Z, Francois JC, Alfama G, A hybrid CMV-H1 construct improves efficiency of PEI-delivered shRNA in the mouse brain. Nucleic Acids Res 2007;35:e65. Published online 27 February 2007, doi:10.1093/nar/gkm152
  • Li L, Lin X, Khvorova A, Defining the optimal parameters for hairpin-based knockdown constructs. RNA 2007;13:1765-74
  • Rossi JJ. Expression strategies for short hairpin RNA interference triggers. Hum Gene Ther 2008;19:313-7
  • Scherer LJ, Frank R, Rossi JJ. Optimization and characterization of tRNA–shRNA expression constructs. Nucleic Acids Res 2007;35:2620-8
  • Sun D, Melegari M, Sridhar S, Multi-miRNA hairpin method that improves gene knockdown efficiency and provides linked multi-gene knockdown. Biotechniques 2006;41:59-63
  • Zhou H, Huang C, Xia XG. A tightly regulated Pol III promoter for synthesis of miRNA genes in tandem. Biochim Biophys Acta 2008;1779:773-9
  • Boden D, Pusch O, Lee F, Promoter choice affects the potency of HIV-1 specific RNA interference. Nucleic Acids Res 2003;31:5033-8
  • Hacein-Bey-Abina S, Von Kalle C, Schmidt M, LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003;302:415-9
  • Lufino MM, Edser PA, Wade-Martins R. Advances in high-capacity extrachromosomal vector technology: episomal maintenance, vector delivery, and transgene expression. Mol Ther 2008;16:1525-38
  • Kuhn R, Streif S, Wurst W. RNA interference in mice. Handb Exp Pharmacol 2007:149-76
  • Singer O, Verma IM. Applications of lentiviral vectors for shRNA delivery and transgenesis. Curr Gene Ther 2008;8:483-8
  • Grimm D, Pandey K, Kay MA. Adeno-associated virus vectors for short hairpin RNA expression. Methods Enzymol 2005;392:381-405
  • Yoo JY, Kim JH, Kwon YG, VEGF-specific short hairpin RNA-expressing oncolytic adenovirus elicits potent inhibition of angiogenesis and tumor growth. Mol Ther 2007;15:295-302
  • Kaszubiak A, Holm PS, Lage H. Overcoming the classical multidrug resistance phenotype by adenoviral delivery of anti-MDR1 short hairpin RNAs and ribozymes. Int J Oncol 2007;31:419-30
  • Pan Q, Liu B, Liu J, Synergistic antitumor activity of XIAP-shRNA and TRAIL expressed by oncolytic adenoviruses in experimental HCC. Acta Oncol 2008;47:135-44
  • Zheng JN, Pei DS, Sun FH, Inhibition of renal cancer cell growth by oncolytic adenovirus armed short hairpin RNA targeting hTERT gene. Cancer Biol Ther 2009;8:84-91
  • Lee YJ, Imsumran A, Park MY, Adenovirus expressing shRNA to IGF-1R enhances the chemosensitivity of lung cancer cell lines by blocking IGF-1 pathway. Lung Cancer 2007;55:279-86
  • Bousarghin L, Touze A, Gaud G, Inhibition of cervical cancer cell growth by human papillomavirus virus-like particles packaged with human papillomavirus oncoprotein short hairpin RNAs. Mol Cancer Ther 2009;8:357-65
  • Rampias T, Sasaki C, Weinberger P, Psyrri A. E6 and E7 gene silencing and transformed phenotype of human papillomavirus 16-positive oropharyngeal cancer cells. J Natl Cancer Inst 2009;101:412-23
  • Chen Y, Lin MC, Yao H, Lentivirus-mediated RNA interference targeting enhancer of zeste homolog 2 inhibits hepatocellular carcinoma growth through down-regulation of stathmin. Hepatology 2007;46:200-8
  • Donsante A, Miller DG, Li Y, AAV vector integration sites in mouse hepatocellular carcinoma. Science 2007;317:477
  • Green JJ, Langer R, Anderson DG. A combinatorial polymer library approach yields insight into nonviral gene delivery. Acc Chem Res 2008;41:749-59
  • Gao X, Kim KS, Liu D. Nonviral gene delivery: what we know and what is next. AAPS J 2007;9:E92-104
  • Vorhies JS, Nemunaitis JJ. Synthetic vs. natural/biodegradable polymers for delivery of shRNA-based cancer therapies. Methods Mol Biol 2009;480:11-29
  • Khalil IA, Kogure K, Akita H, Harashima H. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev 2006;58:32-45
  • Wagstaff KM, Jans DA. Nucleocytoplasmic transport of DNA: enhancing non-viral gene transfer. Biochem J 2007;406:185-202
  • Eguchi A, Furusawa H, Yamamoto A, Optimization of nuclear localization signal for nuclear transport of DNA-encapsulating particles. J Control Release 2005;104:507-19
  • Lechardeur D, Lukacs GL. Nucleocytoplasmic transport of plasmid DNA: a perilous journey from the cytoplasm to the nucleus. Hum Gene Ther 2006;17:882-9
  • Greish K. Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J Drug Target 2007;15:457-64
  • Haley B, Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urol Oncol 2008;26:57-64
  • Zamecnik J, Vargova L, Homola A, Extracellular matrix glycoproteins and diffusion barriers in human astrocytic tumours. Neuropathol Appl Neurobiol 2004;30:338-50
  • Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 2008;5:505-15
  • Jiang G, Li J, Zeng Z, Xian L. Lentivirus-mediated gene therapy by suppressing survivin in BALB/c nude mice bearing oral squamous cell carcinoma. Cancer Biol Ther 2006;5:435-40
  • Xia G, Kumar SR, Masood R, EphB4 expression and biological significance in prostate cancer. Cancer Res 2005;65:4623-32
  • Ito T, Hashimoto Y, Tanaka E, An inducible short-hairpin RNA vector against osteopontin reduces metastatic potential of human esophageal squamous cell carcinoma in vitro and in vivo. Clin Cancer Res 2006;12:1308-16
  • Zhang S, Zhao B, Jiang H, Cationic lipids and polymers mediated vectors for delivery of siRNA. J Control Release 2007;123:1-10
  • Tseng YC, Mozumdar S, Huang L. Lipid-based systemic delivery of siRNA. Adv Drug Deliv Rev 2009;61:721-31
  • Pardridge WM. shRNA and siRNA delivery to the brain. Adv Drug Deliv Rev 2007;59:141-52
  • Nagasaki T, Myohoji T, Tachibana T, Can nuclear localization signals enhance nuclear localization of plasmid DNA? Bioconjug Chem 2003;14:282-6
  • Pardridge WM. Intravenous, non-viral RNAi gene therapy of brain cancer. Expert Opin Biol Ther 2004;4:1103-13
  • Wagner E, Kircheis R, Walker GF. Targeted nucleic acid delivery into tumors: new avenues for cancer therapy. Biomed Pharmacother 2004;58:152-61
  • Spankuch B, Matthess Y, Knecht R, Cancer inhibition in nude mice after systemic application of U6 promoter-driven short hairpin RNAs against PLK1. J Natl Cancer Inst 2004;96:862-72
  • Gondi CS, Lakka SS, Dinh DH, RNAi-mediated inhibition of cathepsin B and uPAR leads to decreased cell invasion, angiogenesis and tumor growth in gliomas. Oncogene 2004;23:8486-96
  • Dass CR, Choong PF. Selective gene delivery for cancer therapy using cationic liposomes: in vivo proof of applicability. J Control Release 2006;113:155-63
  • Zhang Y, Zhang YF, Bryant J, Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin Cancer Res 2004;10:3667-77
  • Chen Z, Liang K, Liu J, Enhancement of survivin gene downregulation and cell apoptosis by a novel combination: liposome microbubbles and ultrasound exposure. Med Oncol 2009; published online 7 January 2009, doi: 10.1007/s12032-008-9161-0
  • Moghimi SM, Symonds P, Murray JC, A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol Ther 2005;11:990-5
  • Wightman L, Kircheis R, Rossler V, Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J Gene Med 2001;3:362-72
  • Fang L, Hu QG, Hua ZC, Li SF. Construction of targeting-Skp2 shRNA plasmids and observation of their inhibitory effect on Tca8113 cells. Zhonghua Kou Qiang Yi Xue Za Zhi 2007;42:624-8
  • Lee MK, Chun SK, Choi WJ, The use of chitosan as a condensing agent to enhance emulsion-mediated gene transfer. Biomaterials 2005;26:2147-56
  • Katas H, Alpar HO. Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release 2006;115:216-25
  • Liu X, Howard KA, Dong M, The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing. Biomaterials 2007;28:1280-8
  • de Martimprey H, Bertrand JR, Fusco A, siRNA nanoformulation against the ret/PTC1 junction oncogene is efficient in an in vivo model of papillary thyroid carcinoma. Nucleic Acids Res 2008;36:e2. Published online 13 December 2007, doi:10.1093/nar/gkm1094
  • Wang SL, Yao HH, Guo LL, Selection of optimal sites for TGFB1 gene silencing by chitosan-TPP nanoparticle-mediated delivery of shRNA. Cancer Genet Cytogenet 2009;190:8-14
  • Jere D, Xu CX, Arote R, Poly(beta-amino ester) as a carrier for si/shRNA delivery in lung cancer cells. Biomaterials 2008;29:2535-47
  • van der Aa MA, Mastrobattista E, Oosting RS, The nuclear pore complex: the gateway to successful nonviral gene delivery. Pharm Res 2006;23:447-59
  • Nagasaki T, Kawazu T, Tachibana T, Enhanced nuclear import and transfection efficiency of plasmid DNA using streptavidin-fused importin-beta. J Control Release 2005;103:199-207
  • Liu Y, Tao J, Li Y, Targeting hypoxia-inducible factor-1alpha with Tf-PEI-shRNA complex via transferrin receptor-mediated endocytosis inhibits melanoma growth. Mol Ther 2009;17:269-77
  • Misra S, Hascall VC, De Giovanni C, Delivery of CD44 shRNA/nanoparticles within cancer cells: perturbation of hyaluronan/CD44v6 interactions and reduction in adenoma growth in Apc Min/+ mice. J Biol Chem 2009;284:12432-46
  • Xu DQ, Zhang L, Kopecko DJ, Bacterial delivery of siRNAs: a new approach to solid tumor therapy. Methods Mol Biol 2009;487:161-87
  • Uren AG, Kool J, Berns A, van Lohuizen M. Retroviral insertional mutagenesis: past, present and future. Oncogene 2005;24:7656-72
  • Collier LS, Carlson CM, Ravimohan S, Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature 2005;436:272-6
  • Rahrmann EP, Collier LS, Knutson TP, Identification of PDE4D as a proliferation promoting factor in prostate cancer using a sleeping beauty transposon-based somatic mutagenesis screen. Cancer Res 2009;69:4388-97
  • Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 2009;8:129-38

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.