154
Views
22
CrossRef citations to date
0
Altmetric
Reviews

Novel HIV-1 therapeutics through targeting altered host cell pathways

, , &
Pages 1369-1382 | Published online: 07 Sep 2009

Bibliography

  • Shafer RW, Schapiro JM. HIV-1 drug resistance mutations: an updated framework for the second decade of HAART. AIDS Rev 2008;10(2):67-84
  • Chen R, Quinones-Mateu ME, Mansky LM. Drug resistance, virus fitness and HIV-1 mutagenesis. Curr Pharm Des 2004;10(32):4065-70
  • Mansky LM, Temin HM. Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J Virol 1995;69(8):5087-94
  • Yu Q. Restoring p53-mediated apoptosis in cancer cells: new opportunities for cancer therapy. Drug Resist Updat 2006;9(1-2):19-25
  • Ammosova T, Berro R, Jerebtsova M, Phosphorylation of HIV-1 Tat by CDK2 in HIV-1 transcription. Retrovirology 2006;3:78. Published online 3 November 2006, doi:10.1186/1742-4690-3-78
  • Price DH. P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol Cell Biol 2000;20(8):2629-34
  • Li MJ, Kim J, Li S, Long-term inhibition of HIV-1 infection in primary hematopoietic cells by lentiviral vector delivery of a triple combination of anti-HIV shRNA, anti-CCR5 ribozyme, and a nucleolar-localizing TAR decoy. Mol Ther 2005;12(5):900-9
  • Bushman FD, Malani N, Fernandes J, Host cell factors in HIV replication: meta-analysis of genome-wide studies. PLoS Pathog 2009;5(5):p. e1000437. Published online 29 May 2009, doi:10.1371/journal.ppat.1000437
  • Lane DP. Cancer. p53, guardian of the genome. Nature 1992;358(6381):15-6
  • Janus F, Albrechtsen N, Dornreiter I, The dual role model for p53 in maintaining genomic integrity. Cell Mol Life Sci 1999;55(1):12-27
  • Albrechtsen N, Dornreiter I, Grosse F, Maintenance of genomic integrity by p53: complementary roles for activated and non-activated p53. Oncogene 1999;18(53):7706-17
  • Somasundaram K. Tumor suppressor p53: regulation and function. Front Biosci 2000;5:D424-37
  • Striteska D. The tumor supressor gene p53. Acta Medica (Hradec Kralove) Suppl 2005;48(1):21-5 [in Czech]
  • Rezacova M, Vavrova J, Cerman J. A cell and genotoxic stress: a reaction to double strand breaks of DNA. Cas Lek Cesk 2005;144(Suppl 3):13-7 [in Czech]
  • Attardi LD. The role of p53-mediated apoptosis as a crucial anti-tumor response to genomic instability: lessons from mouse models. Mutat Res 2005;569(1-2):145-57
  • Yu J, Zhang L. The transcriptional targets of p53 in apoptosis control. Biochem Biophys Res Commun 2005;331(3):851-8
  • Liu Y, Kulesz-Martin M. P53 regulation and function in normal cells and tumors. Medicina 2000;60(Suppl 2):9-11
  • Erster S, Mihara M, Kim RH, In vivo mitochondrial p53 translocation triggers a rapid first wave of cell death in response to DNA damage that can precede p53 target gene activation. Mol Cell Biol 2004;24(15):6728-41
  • Kojima K, Konopleva M, McQueen T, Mdm2 inhibitor Nutlin-3a induces p53-mediated apoptosis by transcription-dependent and transcription-independent mechanisms and may overcome Atm-mediated resistance to fludarabine in chronic lymphocytic leukemia. Blood 2006;108(3):993-1000
  • Kelley ST, Coppola D, Yeatman T, Marcet J. Tumor response to neoadjuvant chemoradiation therapy for rectal adenocarcinoma is mediated by p53-dependent and caspase 8-dependent apoptotic pathways. Clin Colorectal Cancer 2005;5(2):114-8
  • Strachan GD, Koike MA, Siman R, E2F1 induces cell death, calpain activation, and MDMX degradation in a transcription independent manner implicating a novel role for E2F1 in neuronal loss in SIV encephalitis. J Cell Biochem 2005;96(4):728-40
  • Meek DW. The role of p53 in the response to mitotic spindle damage. Pathol Biol (Paris) 2000;48(3):246-54
  • Bartek J, Lukas J. Pathways governing G1/S transition and their response to DNA damage. FEBS Lett 2001;490(3):117-22
  • Bartek J, Lukas J. Mammalian G1- and S-phase checkpoints in response to DNA damage. Curr Opin Cell Biol 2001;13(6):738-47
  • Bartkova J, Rajpert-De Meyts E, Skakkebaek NE, Deregulation of the G1/S-phase control in human testicular germ cell tumours. APMIS 2003;111(1):252-65; discussion 265-6
  • Honma M. Generation of loss of heterozygosity and its dependency on p53 status in human lymphoblastoid cells. Environ Mol Mutagen 2005;45(2-3):162-76
  • Taylor WR, Stark GR. Regulation of the G2/M transition by p53. Oncogene 2001;20(15):1803-15
  • Stark GR, Taylor WR. Analyzing the G2/M checkpoint. Methods Mol Biol 2004;280:51-82
  • Stark GR, Taylor WR. Control of the G2/M transition. Mol Biotechnol 2006;32(3):227-48
  • Houtgraaf JH, Versmissen J, van der Giessen WJ. A concise review of DNA damage checkpoints and repair in mammalian cells. Cardiovasc Revasc Med 2006;7(3):165-72
  • Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 2004;73:39-85
  • Ashcroft M, Vousden KH. Regulation of p53 stability. Oncogene 1999;18(53):7637-43
  • Ashcroft M, Kubbutat MH, Vousden KH. Regulation of p53 function and stability by phosphorylation. Mol Cell Biol 1999;19(3):1751-8
  • el-Deiry WS. Regulation of p53 downstream genes. Semin Cancer Biol 1998;8(5):345-57
  • Oda Y, Sakamoto A, Satio T, Molecular abnormalities of p53, MDM2, and H-ras in synovial sarcoma. Mod Pathol 2000;13(9):994-1004
  • Tanaka H, Arakawa H, Yamaguchi T, A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature 2000;404(6773):42-9
  • Alarcon-Vargas D, Ronai Z. p53-Mdm2–the affair that never ends. Carcinogenesis 2002;23(4):541-7
  • Kruse JP, Gu W. Modes of p53 regulation. Cell 2009;137(4):609-22
  • Olsson A, Manzl C, Strasser A, Villunger A. How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression? Cell Death Differ 2007;14(9):1561-75
  • Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops. Oncogene 2005;24(17):2899-908
  • Khanna KK, Keating KE, Kozlov S, ATM associates with and phosphorylates p53: mapping the region of interaction. Nat Genet 1998;20(4):398-400
  • Banin S, Moyal L, Shieh S, Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 1998;281(5383):1674-7
  • Canman CE, Lim DS, Cimprich KA, Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 1998;281(5383):1677-9
  • Saito S, Yamaguchi H, Higashimoto Y, Phosphorylation site interdependence of human p53 post-translational modifications in response to stress. J Biol Chem 2003;278(39):37536-44
  • Lee JH, Kim HS, Lee SJ, Kim KT. Stabilization and activation of p53 induced by Cdk5 contributes to neuronal cell death. J Cell Sci 2007;120(Pt 13):2259-71
  • Lavin MF, Gueven N. The complexity of p53 stabilization and activation. Cell Death Differ 2006;13(6):941-50
  • Michael D, Oren M. The p53-Mdm2 module and the ubiquitin system. Semin Cancer Biol 2003;13(1):49-58
  • Yang Y, Li CC, Weissman AM. Regulating the p53 system through ubiquitination. Oncogene 2004;23(11):2096-106
  • Brooks CL, Gu W. Dynamics in the p53-Mdm2 ubiquitination pathway. Cell Cycle 2004;3(7):895-9
  • Brooks CL, Gu W. p53 ubiquitination: Mdm2 and beyond. Mol Cell 2006;21(3):307-15
  • Marchenko ND, Moll UM. The role of ubiquitination in the direct mitochondrial death program of p53. Cell Cycle 2007;6(14):1718-23
  • Garden GA, Morrison RS. The multiple roles of p53 in the pathogenesis of HIV associated dementia. Biochem Biophys Res Commun 2005;331(3):799-809
  • Castedo M, Perfettini JL, Piacentini M, Kroemer G. p53-A pro-apoptotic signal transducer involved in AIDS. Biochem Biophys Res Commun 2005;331(3):701-6
  • Li CY, Suardet L, Little JB. Potential role of WAF1/Cip1/p21 as a mediator of TGF-β cytoinhibitory effect. J Biol Chem 1995;270(10):4971-4
  • Duan L, Ozaki I, Oakes JW, The tumor suppressor protein p53 strongly alters human immunodeficiency virus type 1 replication. J Virol 1994;68(7):4302-13
  • Subler MA, Martin DW, Deb S. Activation of the human immunodeficiency virus type 1 long terminal repeat by transforming mutants of human p53. J Virol 1994;68(1):103-10
  • Longo F, Marchetti MA, Castagnoli L, A novel approach to protein-protein interaction: complex formation between the p53 tumor suppressor and the HIV Tat proteins. Biochem Biophys Res Commun 1995;206(1):326-34
  • Li CJ, Wang C, Friedman DJ, Pardee AB. Reciprocal modulations between p53 and Tat of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 1995;92(12):5461-4
  • Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 1997;90(4):595-606
  • Liu L, Scolnick DM, Trievel RC, p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol 1999;19(2):1202-9
  • Sakaguchi K, Herrera JE, Saito S, DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev 1998;12(18):2831-41
  • Harrod R, Nacsa J, Van Lint C, Human immunodeficiency virus type-1 Tat/co-activator acetyltransferase interactions inhibit p53Lys-320 acetylation and p53-responsive transcription. J Biol Chem 2003;278(14):12310-8
  • Ohata M, Nakamura S, Fujita H, Isemura M. Prognostic implications of p21 (Waf1/Cip1) immunolocalization in multiple myeloma. Biomed Res 2005;26(3):91-8
  • de Oliveira RM. Klotho RNAi induces premature senescence of human cells via a p53/p21 dependent pathway. FEBS Lett 2006;580(24):5753-8
  • Child ES, Mann DJ. The intricacies of p21 phosphorylation: protein/protein interactions, subcellular localization and stability. Cell Cycle 2006;5(12):1313-9
  • LaBaer J, Garrett MD, Stevenson LF, New functional activities for the p21 family of CDK inhibitors. Genes Dev 1997;11(7):847-62
  • Cheng M, Olivier P, Diehl JA, The p21Cip1 and p27Kip1 CDK ‘inhibitors’ are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J 1999;18(6):1571-83
  • Alt JR, Gladden AB, Diehl JA. p21Cip1 Promotes cyclin D1 nuclear accumulation via direct inhibition of nuclear export. J Biol Chem 2002;277(10):8517-23
  • Suzuki A, Tsutomi Y, Akahane K, Resistance to Fas-mediated apoptosis: activation of caspase 3 is regulated by cell cycle regulator p21WAF1 and IAP gene family ILP. Oncogene 1998;17(8):931-9
  • Suzuki A, Tsutomi Y, Yamamoto N, Mitochondrial regulation of cell death: mitochondria are essential for procaspase 3-p21 complex formation to resist Fas-mediated cell death. Mol Cell Biol 1999;19(5):3842-7
  • Chuang LS, Ian HI, Koh TW, Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 1997;277(5334):1996-2000
  • Perkins ND. Not just a CDK inhibitor: regulation of transcription by p21WAF1/CIP1/SDI1. Cell Cycle 2002;1(1):39-41
  • Clark E, Santiago F, Deng L, Loss of G1/S checkpoint in human immunodeficiency virus type 1-infected cells is associated with a lack of cyclin-dependent kinase inhibitor p21/Waf1. J Virol 2000;74(11):5040-52
  • Wang X, Hung NJ, Costa RH. Earlier expression of the transcription factor HFH-11B diminishes induction of p21CIP1/WAF1 levels and accelerates mouse hepatocyte entry into S-phase following carbon tetrachloride liver injury. Hepatology 2001;33(6):1404-14
  • de la Fuente C, Maddukuri A, Kehn K, Pharmacological cyclin-dependent kinase inhibitors as HIV-1 antiviral therapeutics. Curr HIV Res 2003;1(2):131-52
  • Zhang J, Scadden DT, Crumpacker CS. Primitive hematopoietic cells resist HIV-1 infection via p21. J Clin Invest 2007;117(2):473-81
  • Shen H, Cheng T, Preffer FI, Intrinsic human immunodeficiency virus type 1 resistance of hematopoietic stem cells despite coreceptor expression. J Virol 1999;73(1):728-37
  • Weichold FF, Bryant JL, Pati S, HIV-1 protease inhibitor ritonavir modulates susceptibility to apoptosis of uninfected T cells. J Hum Virol 1999;2(5):261-9
  • Lee B, Ratajczak J, Doms RW, Coreceptor/chemokine receptor expression on human hematopoietic cells: biological implications for human immunodeficiency virus-type 1 infection. Blood 1999;93(4):1145-56
  • Perron MJ, Stremlau M, Song B, TRIM5α mediates the postentry block to N-tropic murine leukemia viruses in human cells. Proc Natl Acad Sci USA 2004;101(32):11827-32
  • Keckesova Z, Ylinen LM, Towers GJ. The human and African green monkey TRIM5α genes encode Ref1 and Lv1 retroviral restriction factor activities. Proc Natl Acad Sci USA 2004;101(29):10780-5
  • Owens CM, Song B, Perron MJ, Binding and susceptibility to postentry restriction factors in monkey cells are specified by distinct regions of the human immunodeficiency virus type 1 capsid. J Virol 2004;78(10):5423-37
  • Stremlau M, Owens CM, Perron MJ, The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. Nature 2004;427(6977):848-53
  • Sheehy AM, Gaddis NC, Choi JD, Malim MH. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 2002;418(6898):646-50
  • Hietanen S, Lain S, Krausz E, Activation of p53 in cervical carcinoma cells by small molecules. Proc Natl Acad Sci USA 2000;97(15):8501-6
  • Shiraishi T, Nielsen PE. Down-regulation of MDM2 and activation of p53 in human cancer cells by antisense 9-aminoacridine-PNA (peptide nucleic acid) conjugates. Nucleic Acids Res 2004;32(16):4893-902
  • Gurova KV, Hill JE, Guo C, Small molecules that reactivate p53 in renal cell carcinoma reveal a NF-κB-dependent mechanism of p53 suppression in tumors. Proc Natl Acad Sci USA 2005;102(48):17448-53
  • Beraza N, Trautwein C. Restoration of p53 function: a new therapeutic strategy to induce tumor regression? Hepatology 2007;45(6):1578-9
  • Kastan MB, Berkovich E. p53: a two-faced cancer gene. Nat Cell Biol 2007;9(5):489-91
  • Bykov VJ, Selivanova G, Wiman KG. Small molecules that reactivate mutant p53. Eur J Cancer 2003;39(13):1828-34
  • Klein C, Vassilev LT. Targeting the p53-MDM2 interaction to treat cancer. Br J Cancer 2004;91(8):1415-9
  • Vassilev LT. Small-molecule antagonists of p53-MDM2 binding: research tools and potential therapeutics. Cell Cycle 2004;3(4):419-21
  • Vassilev LT, Vu BT, Graves B, In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004;303(5659):844-8
  • Wu W, Kehn-Hall K, Pedati C, Drug 9AA reactivates p21/Waf1 and Inhibits HIV-1 progeny formation. Virol J 2008;5:41. Published online 18 March 2008, doi:10.1186/1743-422X-5-41
  • Sebestik J, Hlavacek J, Stibor I. A role of the 9-aminoacridines and their conjugates in a life science. Curr Protein Pept Sci 2007;8(5):471-83
  • Phuan PW, Zorn JA, Safar J, Discriminating between cellular and misfolded prion protein by using affinity to 9-aminoacridine compounds. J Gen Virol 2007;88(Pt 4):1392-401
  • Zwelling LA. Topoisomerase II as a target of antileukemia drugs: a review of controversial areas. Hematol Pathol 1989;3(3):101-12
  • Zwelling LA, Hinds M, Chan D, Characterization of an amsacrine-resistant line of human leukemia cells. Evidence for a drug-resistant form of topoisomerase II. J Biol Chem 1989;264(28):16411-20
  • Sohn TA, Bansal R, Su GH, High-throughput measurement of the Tp53 response to anticancer drugs and random compounds using a stably integrated Tp53-responsive luciferase reporter. Carcinogenesis 2002;23(6):949-57
  • Jung KJ, Dasgupta A, Huang K, Small-molecule inhibitor which reactivates p53 in human T-cell leukemia virus type 1-transformed cells. J Virol 2008;82(17):8537-47
  • Guo C, Gasparian AV, Zhuang Z, 9-Aminoacridine-based anticancer drugs target the PI3K/AKT/mTOR, NF-κB and p53 pathways. Oncogene 2009;28(8):1151-61
  • Guiffant D, Tribouillard D, Gug F, Identification of intracellular targets of small molecular weight chemical compounds using affinity chromatography. Biotechnol J 2007;2(1):68-75
  • Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 2009;9(3):153-66
  • Ewen ME. Where the cell cycle and histones meet. Genes Dev 2000;14(18):2265-70
  • Petersen BO, Lukas J, Sørensen CS, Phosphorylation of mammalian CDC6 by cyclin A/CDK2 regulates its subcellular localization. EMBO J 1999;18(2):396-410
  • Fisher RP, Morgan DO. A novel cyclin associates with MO15/CDK7 to form the CDK-activating kinase. Cell 1994;78(4):713-24
  • Malumbres M. Revisiting the “Cdk-centric” view of the mammalian cell cycle. Cell Cycle 2005;4(2):206-10
  • Canepa ET, Scassa ME, Ceruti JM, INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions. IUBMB Life 2007;59(7):419-26
  • Denicourt C, Dowdy SF. Cip/Kip proteins: more than just CDKs inhibitors. Genes Dev 2004;18(8):851-5
  • Baumli S, Lolli G, Lowe ED, The structure of P-TEFb (CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphorylation. EMBO J 2008;27(13):1907-18
  • Demidenko ZN, Blagosklonny MV. Flavopiridol induces p53 via initial inhibition of Mdm2 and p21 and, independently of p53, sensitizes apoptosis-reluctant cells to tumor necrosis factor. Cancer Res 2004;64(10):3653-60
  • Schang LM, Bantly A, Knockaert M, Pharmacological cyclin-dependent kinase inhibitors inhibit replication of wild-type and drug-resistant strains of herpes simplex virus and human immunodeficiency virus type 1 by targeting cellular, not viral, proteins. J Virol 2002;76(15):7874-82
  • Knockaert M, Gray N, Damiens E, Intracellular targets of cyclin-dependent kinase inhibitors: identification by affinity chromatography using immobilised inhibitors. Chem Biol 2000;7(6):411-22
  • Knockaert M, Greengard P, Meijer L. Pharmacological inhibitors of cyclin-dependent kinases. Trends Pharmacol Sci 2002;23(9):417-25
  • Chao SH, Fujinaga K, Marion JE, Flavopiridol inhibits P-TEFb and blocks HIV-1 replication. J Biol Chem 2000;275(37):28345-8
  • Nekhai S, Zhou M, Fernandez A, HIV-1 Tat-associated RNA polymerase C-terminal domain kinase, CDK2, phosphorylates CDK7 and stimulates Tat-mediated transcription. Biochem J 2002;364(Pt 3):649-57
  • Zhou M, Halanski MA, Radonovich MF, Tat modifies the activity of CDK9 to phosphorylate serine 5 of the RNA polymerase II carboxyl-terminal domain during human immunodeficiency virus type 1 transcription. Mol Cell Biol 2000;20(14):5077-86
  • Yik JH, Chen R, Nishimura R, Inhibition of P-TEFb (CDK9/Cyclin T) kinase and RNA polymerase II transcription by the coordinated actions of HEXIM1 and 7SK snRNA. Mol Cell 2003;12(4):971-82
  • Sabo A, Lusic M, Cereseto A, Giacca M. Acetylation of conserved lysines in the catalytic core of cyclin-dependent kinase 9 inhibits kinase activity and regulates transcription. Mol Cell Biol 2008;28(7):2201-12
  • Zhou M, Deng L, Lacoste V, Coordination of transcription factor phosphorylation and histone methylation by the P-TEFb kinase during human immunodeficiency virus type 1 transcription. J Virol 2004;78(24):13522-33
  • Chiu YL, Cao H, Jacque JM, Inhibition of human immunodeficiency virus type 1 replication by RNA interference directed against human transcription elongation factor P-TEFb (CDK9/CyclinT1). J Virol 2004;78(5):2517-29
  • Flores O, Lee G, Kessler J, Host-cell positive transcription elongation factor b kinase activity is essential and limiting for HIV type 1 replication. Proc Natl Acad Sci USA 1999;96(13):7208-13
  • Salerno D, Hasham MG, Marshall R, Direct inhibition of CDK9 blocks HIV-1 replication without preventing T-cell activation in primary human peripheral blood lymphocytes. Gene 2007;405(1-2):65-78
  • Agbottah E, de La Fuente C, Nekhai S, Antiviral activity of CYC202 in HIV-1-infected cells. J Biol Chem 2005;280(4):3029-42
  • Agbottah E, Zhang N, Dadgar S, Inhibition of HIV-1 virus replication using small soluble Tat peptides. Virology 2006;345(2):373-89
  • Van Duyne R, Cardenas J, Easley R, Effect of transcription peptide inhibitors on HIV-1 replication. Virology 2008;376(2):308-22
  • Castanotto D, Rossi JJ. The promises and pitfalls of RNA-interference-based therapeutics. Nature 2009;457(7228):426-33
  • He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004;5(7):522-31
  • Ouellet DL, Perron MP, Gobeil LA, MicroRNAs in gene regulation: when the smallest governs it all. J Biomed Biotechnol 2006;2006(4):69616-20. Published online 17 April 2006, doi:10.1155/JBB/2006/69616
  • Perron MP, Provost P. Protein components of the microRNA pathway and human diseases. Methods Mol Biol 2009;487:369-85
  • Zender L, Hutker S, Liedtke C, Caspase 8 small interfering RNA prevents acute liver failure in mice. Proc Natl Acad Sci USA 2003;100(13):7797-802
  • Song E, Lee SK, Wang J, RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med 2003;9(3):347-51
  • Giladi H, Ketzinel-Gilad M, Rivkin L, Small interfering RNA inhibits hepatitis B virus replication in mice. Mol Ther 2003;8(5):769-76
  • Zimmermann TS, Lee AC, Akinc A, RNAi-mediated gene silencing in non-human primates. Nature 2006;441(7089):111-4
  • Yokota T, Iijima S, Kubodera T, Efficient regulation of viral replication by siRNA in a non-human primate surrogate model for hepatitis C. Biochem Biophys Res Commun 2007;361(2):294-300
  • Agrawal S, Kandimalla ER. Role of Toll-like receptors in antisense and siRNA [corrected]. Nat Biotechnol 2004;22(12):1533-7
  • Gorina R, Santalucia T, Petegnief V, Astrocytes are very sensitive to develop innate immune responses to lipid-carried short interfering RNA. Glia 2009;57(1):93-107
  • Grimm D, Streetz KL, Jopling CL, Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006;441(7092):537-41
  • Baek D, Villén J, Shin C, The impact of microRNAs on protein output. Nature 2008;455(7209):64-71
  • Scacheri PC, Rozenblatt-Rosen O, Caplen NJ, Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci USA 2004;101(7):1892-7
  • Schlee M, Hornung V, Hartmann G. siRNA and isRNA: two edges of one sword. Mol Ther 2006;14(4):463-70
  • Engels BM, Hutvagner G. Principles and effects of microRNA-mediated post-transcriptional gene regulation. Oncogene 2006;25(46):6163-9
  • Palliser D, Chowdhury D, Wang QY, An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature 2006;439(7072):89-94
  • Sabariegos R, Giménez-Barcons M, Tàpia N, Sequence homology required by human immunodeficiency virus type 1 to escape from short interfering RNAs. J Virol 2006;80(2):571-7
  • Das AT, Brummelkamp TR, Westerhout EM, Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J Virol 2004;78(5):2601-5
  • Westerhout EM, Ooms M, Vink M, HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome. Nucleic Acids Res 2005;33(2):796-804
  • Boden D, Pusch O, Ramratnam B. Overcoming HIV-1 resistance to RNA interference. Front Biosci 2007;12:3104-16
  • Aagaard LA, Zhang J, von Eije KJ, Engineering and optimization of the miR-106b cluster for ectopic expression of multiplexed anti-HIV RNAs. Gene Ther 2008;15(23):1536-49
  • Leonard JN, Shah PS, Burnett JC, Schaffer DV. HIV evades RNA interference directed at TAR by an indirect compensatory mechanism. Cell Host Microbe 2008;4(5):484-94
  • Klase Z, Kale P, Winograd R, HIV-1 TAR element is processed by Dicer to yield a viral micro-RNA involved in chromatin remodeling of the viral LTR. BMC Mol Biol 2007;8:63. Published online 30 July 2007, doi:10.1186/1471-2199-8-63
  • Ouellet DL, Plante I, Landry P, Identification of functional microRNAs released through asymmetrical processing of HIV-1 TAR element. Nucleic Acids Res 2008;36(7):2353-65
  • Klase Z, Winograd R, Davis J, HIV-1 TAR miRNA protects against apoptosis by altering cellular gene expression. Retrovirology 2009;6:18. Published online 16 February 2009, doi:10.1186/1742-4690-6-18
  • Kaul D, Ahlawat A, Gupta SD. HIV-1 genome-encoded hiv1-mir-H1 impairs cellular responses to infection. Mol Cell Biochem 2009;323(1-2):143-8
  • Omoto S, Ito M, Tsutsumi Y, HIV-1 nef suppression by virally encoded microRNA. Retrovirology 2004;1:44. Published online 15 December 2004, doi:10.1186/1742-4690-1-44
  • Bennasser Y, Le SY, Benkirane M, Jeang KT. Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing. Immunity 2005;22(5):607-19
  • Triboulet R, Mari B, Lin YL, Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science 2007;315(5818):1579-82
  • Bennasser Y, Jeang KT. HIV-1 Tat interaction with Dicer: requirement for RNA. Retrovirology 2006;3:95. Published online 20 December 2006, doi:10.1186/1742-4690-3-95
  • de Vries W, Berkhout B. RNAi suppressors encoded by pathogenic human viruses. Int J Biochem Cell Biol 2008;40(10):2007-12
  • Liu YP, ter Haasnoot J, Brake O, Inhibition of HIV-1 by multiple siRNAs expressed from a single microRNA polycistron. Nucleic Acids Res 2008;36(9):2811-24
  • Dolan MJ, Kulkarni H, Camargo JF, CCL3L1 and CCR5 influence cell-mediated immunity and affect HIV-AIDS pathogenesis via viral entry-independent mechanisms. Nat Immunol 2007;8(12):1324-36
  • Anderson J, Akkina R. HIV-1 resistance conferred by siRNA cosuppression of CXCR4 and CCR5 coreceptors by a bispecific lentiviral vector. AIDS Res Ther 2005;2(1):1. Published online 13 January 2005, doi:10.1186/1742-6405-2-1
  • Li MJ, Bauer G, Michienzi A, Inhibition of HIV-1 infection by lentiviral vectors expressing Pol III-promoted anti-HIV RNAs. Mol Ther 2003;8(2):196-206
  • Anderson J, Li MJ, Palmer B, Safety and efficacy of a lentiviral vector containing three anti-HIV genes–CCR5 ribozyme, tat-rev siRNA, and TAR decoy–in SCID-hu mouse-derived T cells. Mol Ther 2007;15(6):1182-8
  • Zhou H, Xu M, Huang Q, Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe 2008;4(5):495-504
  • Brass AL, Dykxhoorn DM, Benita Y, Identification of host proteins required for HIV infection through a functional genomic screen. Science 2008;319(5865):921-6
  • König R, Zhou Y, Elleder D, Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 2008;135(1):49-60
  • Chen WS, Xu PZ, Gottlob K, Growth retardation and increased apoptosis in mice with homozygous disruption of the akt1 gene. Genes Dev 2001;15(17):2203-8
  • Rodig SJ, Meraz MA, White JM, Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell 1998;93(3):373-83
  • Zambrowicz BP, Abuin A, Ramirez-Solis R, Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention. Proc Natl Acad Sci USA 2003;100(24):14109-14
  • Beg AA, Sha WC, Bronson RT, Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-κB. Nature 1995;376(6536):167-70
  • Anderson J, Banerjea A, Akkina R. Bispecific short hairpin siRNA constructs targeted to CD4, CXCR4, and CCR5 confer HIV-1 resistance. Oligonucleotides 2003;13(5):303-12

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.