302
Views
19
CrossRef citations to date
0
Altmetric
Reviews

Recombinant AAV-directed gene therapy for type I glycogen storage diseases

&
Pages 1011-1024 | Published online: 20 Apr 2011

Bibliography

  • Chou JY, Matern D, Mansfield BC, Type I glycogen storage diseases: disorders of the glucose-6-phosphatase complex. Curr Mol Med 2002;2:121-43
  • Chou JY, Jun HS, Mansfield BC. Glycogen storage disease type I and G6Pase-beta deficiency: etiology and therapy. Nat Rev Endocrinol 2010;6:676-88
  • Lei K-J, Pan C-J, Shelly LL, Identification of mutations in the gene for glucose-6-phosphatase, the enzyme deficient in glycogen storage disease type 1a. J Clin Invest 1994;93:1994-9
  • Lei K-J, Shelly LL, Pan C-J, Mutations in the glucose-6-phosphatase gene that cause glycogen storage disease type 1a. Science 1993;262:580-3
  • Pan C-J, Lei K-J, Annabi B, Transmembrane topology of glucose-6-phosphatase. J Biol Chem 1998;273:6144-8
  • Annabi B, Hiraiwa H, Mansfield BC, The gene for glycogen storage disease type 1b maps to chromosome 11q23. Am J Hum Genet 1998;62:400-5
  • Gerin I, Veiga-da-Cunha M, Achouri Y, Human L-3-phosphoserine phosphatase: sequence, expression and evidence for a phosphoenzyme intermediate. FEBS Lett 1997;419:235-8
  • Pan C-J, Lin B, Chou JY. Transmembrane topology of human glucose-6-phosphate transporter. J Biol Chem 1999;274:13865-9
  • Ghosh A, Shieh J-J, Pan C-J, The catalytic center of glucose-6-phosphatase: His176 is the nucleophile forming the phosphohistidine-enzyme intermediate during catalysis. J Biol Chem 2002;277:32837-42
  • Chen SY, Pan CJ, Nandigama K, The glucose-6-phosphate transporter is a phosphate-linked antiporter deficient in glycogen storage disease type Ib and Ic. FASEB J 2008;22:2206-13
  • Pan C-J, Kei K-J, Chen H, Ontogeny of the murine glucose-6-phosphatase system. Arch Biochem Biophys 1998;358:17-24
  • Lin B, Annabi B, Hiraiwa H, Cloning and characterization of cDNAs encoding a candidate glycogen storage disease type 1b protein in rodents. J Biol Chem 1998;273:31656-70
  • Kim SY, Jun HS, Mead PA, Neutrophil stress and apoptosis underlie myeloid dysfunction in glycogen storage disease type Ib. Blood 2008;111:5704-11
  • Chen YT, Cornblath M, Sidbury JB. Cornstarch therapy in type I glycogen storage disease. N Engl J Med 1984;310:171-5
  • Greene HL, Slonim AE, O'Neill JA Jr, Continuous nocturnal intragastric feeding for management of type 1 glycogen-storage disease. N Engl J Med 1976;294:423-5
  • Visser G, Rake JP, Labrune P, Granulocyte colony-stimulating factor in glycogen storage disease type 1b. Results of the European Study on Glycogen Storage Disease Type 1. Eur J Pediatr 2002;161(Suppl 1):S83-7
  • Calderwood S, Kilpatrick L, Douglas SD, Recombinant human granulocyte colony-stimulating factor therapy for patients with neutropenia and/or neutrophil dysfunction secondary to glycogen storage disease type 1b. Blood 2001;97:376-82
  • Weinstein DA, Somers MJ, Wolfsdorf JI. Decreased urinary citrate excretion in type 1a glycogen storage disease. J Pediatr 2001;138:378-82
  • Rake JP, Visser G, Labrune P, Glycogen storage disease type I: diagnosis, management, clinical course and outcome. Results of the European Study on Glycogen Storage Disease Type I (ESGSD I). Eur J Pediatr 2002;161(Suppl 1):S20-34
  • Donadieu J, Leblanc T, Bader Meunier B, French Severe Chronic Neutropenia Study Group. Analysis of risk factors for myelodysplasias, leukemias and death from infection among patients with congenital neutropenia. Experience of the French Severe Chronic Neutropenia Study Group. Haematologica 2005;90:45-53
  • Rosenberg PS, Alter BP, Bolyard AA, Severe Chronic Neutropenia International Registry. The incidence of leukemia and mortality from sepsis in patients with severe congenital neutropenia receiving long-term G-CSF therapy. Blood 2006;107:4628-35
  • Carter BJ. Adeno-associated virus vectors. Curr Opin Biotechnol 1992;3:533-9
  • Carter PJ, Samulski RJ. Adeno-associated viral vectors as gene delivery vehicles. Int J Mol Med 2000;6:17-27
  • Tenenbaum L, Lehtonen E, Monahan PE. Evaluation of risks related to the use of adeno-associated virus-based vectors. Curr Gene Ther 2003;3:545-65
  • McCarty DM, Young SM Jr, Samulski RJ. Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu Rev Genet 2004;38:819-45
  • Flotte TR. Gene therapy progress and prospects: recombinant adeno-associated virus (rAAV) vectors. Gene Ther 2004;11:805-10
  • Samulski RJ, Berns KI, Tan M, Cloning of infectious adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells. Proc Natl Acad Sci USA 1982;79:2077-81
  • Muramatsu S, Mizukami H, Young NS, Nucleotide sequencing and generation of an infectious clone of adeno-associated virus 3. Virology 1996;221:208-17
  • Chiorini JA, Yang L, Liu Y, Cloning of adeno-associated virus type 4 (AAV4) and generation of recombinant AAV4 particles. J Virol 1997;71:6823-33
  • Chiorini JA, Kim F, Yang L, Cloning and characterization of adeno-associated virus type 5. J Virol 1999;73:1309-19
  • Rutledge EA, Halbert CL, Russell DW. Infectious clones and vectors derived from adeno-associated virus (AAV) serotypes other than AAV type 2. J Virol 1998;72:309-19
  • Gao GP, Alvira MR, Wang L, Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 2002;99:11854-9
  • Gao G, Alvira MR, Somanathan S, Adeno-associated viruses undergo substantial evolution in primates during natural infections. Proc Natl Acad Sci USA 2003;100:6081-6
  • Gao G, Vandenberghe LH, Alvira MR, Clades of Adeno-associated viruses are widely disseminated in human tissues. J Virol 2004;78:6381-8
  • Mori S, Wang L, Takeuchi T, Two novel adeno-associated viruses from cynomolgus monkey: pseudotyping characterization of capsid protein. Virology 2004;330:375-83
  • Xie Q, Bu W, Bhatia S, The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc Natl Acad Sci USA 2002;99:10405-10
  • Govindasamy L, Padron E, McKenna R, Structurally mapping the diverse phenotype of adeno-associated virus serotype 4. J Virol 2006;80:11556-70
  • Nam HJ, Lane MD, Padron E, Structure of adeno-associated virus serotype 8, a gene therapy vector. J Virol 2007;81:12260-71
  • Xie Q, Ongley HM, Hare J, Crystallization and preliminary X-ray structural studies of adeno-associated virus serotype 6. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008;64:1074-8
  • Mitchell M, Nam HJ, Carter A, Production, purification and preliminary X-ray crystallographic studies of adeno-associated virus serotype 9. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009;65:715-18
  • Muzyczka N, Warrington KH Jr. Custom adeno-associated virus capsids: the next generation of recombinant vectors with novel tropism. Hum Gene Ther 2005;16:408-16
  • Choi VW, McCarty DM, Samulski RJ. AAV hybrid serotypes: improved vectors for gene delivery. Curr Gene Ther 2005;5:299-310
  • Wang J, Faust SM, Rabinowitz JE. The next step in gene delivery: Molecular engineering of adeno-associated virus serotypes. Mol Cell Cardiol 2010: published online 26 October 2010, doi:10.1016/j.yjmcc.2010.10.017
  • Ferrari FK, Samulski T, Shenk T, Second-strand synthesis is a rate limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol 1996;70:3227-34
  • Fisher KJ, Gao GP, Weitzman MD, Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. J Virol 1996;70:520-32
  • Mccarty DM, Monahan PE, Samulski RJ. Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther 2001;8:1248-54
  • Wang Z, Ma HI, Li J. Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo. Gene Ther 2003;10:2105-11
  • McCarty DM. Self-complementary AAV vectors; advances and applications. Mol Ther 2008;16:1648-56
  • McCarty DM, Fu H, Monahan PE, Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene Ther 2003;10:2112-18
  • Wang Z, Ma HI, Li J, Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo. Gene Ther 2003;10:2105-11
  • Grieger JC Samulski RJ. Packaging capacity of adeno-associated virus serotypes: impact of larger genomes on infectivity and postentry steps. J Virol 2005;79:9933-44
  • Allocca M, Doria M, Petrillo M, Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice. J Clin Invest 2008;118:1955-64
  • Wu Z, Yang H, Colosi P. Effect of genome size on AAV vector packaging. Mol Ther 2010;18:80-6
  • Dong B, Nakai H, Xiao W. Characterization of genome integrity for oversized recombinant AAV vector. Mol Ther 2010;18:87-92
  • Lai Y, Yue Y, Duan D. Evidence for the failure of adeno-associated virus serotype 5 to package a viral genome > or = 8.2 kb. Mol Ther 2010;18:75-9
  • Nathwani AC, Gray JT, Ng CY, Self-complementary adeno-associated virus vectors containing a novel liver-specific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver. Blood 2006;107:2653-61
  • Nathwani AC, Gray JT, McIntosh J, Safe and efficient transduction of the liver after peripheral vein infusion of self-complementary AAV vector results in stable therapeutic expression of human FIX in nonhuman primates. Blood 2007;109:1414-21
  • Gao GP, Lu Y, Sun X, High-level transgene expression in nonhuman primate liver with novel adeno-associated virus serotypes containing self-complementary genomes. J Virol 2006;80:6192-4
  • Michelfelder S, Trepel M. Adeno-associated viral vectors and their redirection to cell-type specific receptors. Adv Genet 2009;67:29-60
  • Wu Z, Asokan A, Samulski RJ. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther 2006;14:316-27
  • Kwon I, Schaffer DV. Designer gene delivery vectors: Molecular engineering and evolution of adeno-associated viral vectors for enhanced gene transfer. Pharm Res 2008;25:489-99
  • Ghosh A, Allamarvdasht M, Pan C-J, Long-term correction of murine glycogen storage disease type Ia by recombinant adeno-associated virus-1-mediated gene transfer. Gene Ther 2006;13:321-9
  • Koeberl DD, Sun BD, Damodaran TV, Early, sustained efficacy of adeno-associated virus vector-mediated gene therapy in glycogen storage disease type Ia. Gene Ther 2006;13:1281-9
  • Koeberl DD, Pinto C, Sun B, AAV vector-mediated reversal of hypoglycemia in canine and murine glycogen storage disease type Ia. Mol Ther 2008;16:665-72
  • Yiu WH, Lee YM, Peng WT, Complete normalization of hepatic G6PC deficiency in murine glycogen storage disease type Ia using gene therapy. Mol Ther 2010;18:1076-84
  • Yiu WH, Pan CJ, Mead PA, Normoglycemia alone is insufficient to prevent long term complications of hepatocellular adenoma in glycogen storage disease type Ib mice. J Hepatol 2009;51:909-17
  • Zincarelli C, Soltys S, Rengo G, Rabinowitz JE. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 2008;16:1073-80
  • Schievenbusch S, Strack I, Scheffler M, Combined paracrine and endocrine AAV9 mediated expression of hepatocyte growth factor for the treatment of renal fibrosis. Mol Ther 2010;18:1302-9
  • Zhong L, Li B, Mah CS, Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc Natl Acad Sci USA 2008;105:7827-32
  • Jayandharan GR, Zhong L, Sack BK, Optimized adeno-associated virus (AAV)-protein phosphatase-5 helper viruses for efficient liver transduction by single-stranded AAV vectors: therapeutic expression of factor IX at reduced vector doses. Hum Gene Ther 2010;21:271-83
  • Markusic DM, Herzog RW, Aslanidi GV, High-efficiency transduction and correction of murine hemophilia B using AAV2 vectors devoid of multiple surface-exposed tyrosines. Mol Ther 2010;18:2048-56
  • Mays LE, Wilson JM. The complex and evolving story of T cell activation to AAV vector-encoded transgene products. Mol Ther 2011;19:16-27
  • Manno CS, Pierce GF, Arruda VR, Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 2006;12:342-7
  • Mingozzi F, Maus MV, Hui DJ, CD8+ T-cell responses to adeno-associated virus capsid in humans. Nat Med 2007;13:419-22
  • Mingozzi F, High KA. Immune responses to AAV in clinical trials. Curr Gene Ther 2007;7:316-24
  • Gao G, Wang Q, Calcedo R, Adeno-associated virus-mediated gene transfer to nonhuman primate liver can elicit destructive transgene-specific T cell responses. Hum Gene Ther 2009;20:930-42
  • Hurlbut GD, Ziegler RJ, Nietupski JB, Preexisting immunity and low expression in primates highlight translational challenges for liver-directed AAV8-mediated gene therapy. Mol Ther 2010;18:1983-94
  • Wang L, Cao O, Swalm B, Major role of local immune responses in antibody formation to factor IX in AAV gene transfer. Gene Ther 2005;12:1453-64
  • Ziegler RJ, Cherry M, Barbon CM, Correction of the biochemical and functional deficits in fabry mice following AAV8-mediated hepatic expression of alpha-galactosidase A. Mol Ther 2007;15:492-500
  • Franco LM, Sun B, Yang X, Evasion of immune responses to introduced human acid alpha-glucosidase by liver-restricted expression in glycogen storage disease type II. Mol Ther 2005;12:876-84
  • Nakai H, Yant SR, Storm TA, Extrachromosomal recombinant adeno-associated virus vector genomes are primarily responsible for stable liver transduction in vivo. J Virol 2001;75:6969-76
  • McCarty DM, Young SM Jr, Samulski RJ. Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu Rev Genet 2004;38:819-45
  • Smith RH. Adeno-associated virus integration: virus versus vector. Gene Ther 2008;15:817-22
  • Deyle DR, Russell DW. Adeno-associated virus vector integration. Curr Opin Mol Ther 2009;11:442-7
  • Donsante A, Miller DG, Li Y, AAV vector integration sites in mouse hepatocellular carcinoma. Science 2007;317:477
  • Lei K-J, Chen H, Pan C-J, Glucose-6-phosphatase dependent substrate transport in the glycogen storage disease type 1a mouse. Nat Genet 1996;13:203-9
  • Kim SY, Weinstein DA, Starost MF, Necrotic foci, elevated chemokines and infiltrating neutrophils in the liver of glycogen storage disease type Ia. J Hepatol 2008;48:479-85
  • Kishnani PS, Faulkner E, VanCamp S, Canine model and genomic structural organization of glycogen storage disease type Ia (GSD Ia). Vet Pathol 2001;38:83-91
  • Weinstein DA, Correia CE, Conlon T, Adeno-associated virus-mediated correction of a canine model of glycogen storage disease type Ia. Hum Gene Ther 2010;21:903-10
  • Chen L-Y, Shieh J-J, Lin B, Impaired glucose homeostasis, neutrophil trafficking and function in mice lacking the glucose-6-phosphate transporter. Hum Mol Genet 2003;12:2547-58
  • Zingone A, Hiraiwa H, Pan C-J, Correction of glycogen storage disease type 1a in a mouse model by gene therapy. J Biol Chem 2000;275:828-32
  • Koeberl DD, Sun B, Bird A, Efficacy of helper-dependent adenovirus vector-mediated gene therapy in murine glycogen storage disease type Ia. Mol Ther 2007;15:1253-8
  • Sun M-S, Pan C-J, Shieh J-J, Sustained hepatic and renal glucose-6-phosphatase expression corrects glycogen storage disease type Ia in mice. Hum Mol Genet 2003;11:2155-64
  • Thomas CE, Storm TA, Huang Z, Rapid uncoating of vector genomes is the key to efficient liver transduction with pseudotyped adeno-associated virus vectors. J Virol 2004;78:3110-22
  • Benihoud K, Yeh P, Perricaudet M. Adenovirus vectors for gene delivery. Curr Opin Biotechnol 1999;10:440-7
  • Wilson JM. Adenovirus-mediated gene transfer to liver. Adv Drug Deliv Rev 2001;46:205-9
  • Cunningham SC, Dane AP, Spinoulas A, Gene delivery to the juvenile mouse liver using AAV2/8 vectors. Mol Ther 2008;16:1081-8
  • Beaty RM, Jackson M, Peterson D, Delivery of glucose-6-phosphatase in a canine model for glycogen storage disease, type Ia, with adeno-associated virus (AAV) vectors. Gene Ther 2002;9:1015-22
  • Cumano A, Godin I. Ontogeny of the hematopoietic system. Annu Rev Immunol 2007;25:745-85
  • Iwasaki H, Akashi K. Myeloid lineage commitment from the hematopoietic stem cell. Immunity 2007;26:726-40
  • Han Z, Zhong L, Maina N, Stable integration of recombinant adeno-associated virus vector genomes after transduction of murine hematopoietic stem cells. Hum Gene Ther 2008;19:267-78
  • Srivastava A. Adeno-associated virus-mediated gene transfer. J Cell Biochem 2008;105:17-24
  • Faivre L, Houssin D, Valayer J, Long-term outcome of liver transplantation in patients with glycogen storage disease type Ia. J Inherit Metab Dis 1999;22:723-32
  • Matern D, Starzl TE, Arnaout W, Liver transplantation for glycogen storage disease types I, III, and IV. Eur J Pediatr 1999;158(Suppl 2):S43-8
  • Davis MK, Weinstein DA. Liver transplantation in children with glycogen storage disease: controversies and evaluation of the risk/benefit of this procedure. Pediatr Transplant 2008;12:137-45
  • Reddy SK, Austin SL, Spencer-Manzon M, Liver transplantation for glycogen storage disease type Ia. J Hepatol 2009;51:483-90
  • Takeda S, Takahashi M, Mizukami H. Successful gene transfer using adeno-associated virus vectors into the kidney: comparison among adeno-associated virus serotype 1-5 vectors in vitro and in vivo. Nephron Exp Nephrol 2004;96:e119-26
  • Pierre G, Chakupurakal G, McKiernan P, Bone marrow transplantation in glycogen storage disease type 1b. J Pediatr 2008;152:286-8
  • Kim SY, Nguyen ATD, Gao J-L, Bone-marrow derived cells require a functional glucose-6-phosphate transporter for normal myeloid functions. J Biol Chem 2006;281:28794-801
  • Grinshpun A, Condiotti R, Waddington SN, Neonatal gene therapy of glycogen storage disease type Ia using a feline immunodeficiency virus-based vector. Mol Ther 2010;18:1592-8
  • Valori CF, Ning K, Wyles M, Azzouz M. Development and applications of non-HIV-based lentiviral vectors in neurological disorders. Curr Gene Ther 2008;8:406-18

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.