298
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Nanocarriers: a tool to overcome biological barriers in siRNA delivery

, &
Pages 1327-1339 | Published online: 20 Jun 2011

Bibliography

  • Dykxhoorn DM, Novina CD, Sharp PA. Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 2003;11:457-67
  • Huang C, Li M, Chen C, Yao Q. Small interfering RNA therapy in cancer: mechanism, potential targets, and clinical applications. Expert Opin Ther Targets 2008;12:637-45
  • Cheng K, Mahato RI. siRNA delivery and targeting. Mol Pharm 2009;6:649-50
  • Jeong JH, Kim SW, Park TG. Molecular design of functional polymers for gene therapy. Prog Polym Sci 2007;32:1239-74
  • Behlke MA. Progress towards in vivo use of siRNAs. Mol Ther 2006;13:644-70
  • Wang XL, Xu R, Wu X, Targeted systemic delivery of a therapeutic siRNA with a multifunctional carrier controls tumor proliferation in mice. Mol Pharm 2009;6:738-46
  • Aagaard L, Rossi JJ. RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev 2007;59:75-86
  • Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature 2003;422:37-44
  • Panyam J, Zhou WZ, Prabha S, Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. Faseb J 2002;16:1217-26
  • Vasir JK, Reddy MK, Labhasetwar VD. Nanosystems in drug targeting: opportunities and challenges. Current Nanoscience 2005;1:47-64
  • Chakraborty C. Potentiality of small interfering RNAs (siRNA) as recent therapeutic targets for gene-silencing. Curr Drug Targets 2007;8:469-82
  • Wilson JA, Richardson CD. Future promise of siRNA and other nucleic acid based therapeutics for the treatment of chronic HCV. Infect Disord Drug Targets 2006;6:43-56
  • Storvold GL, Andersen TI, Perou CM, siRNA: a potential tool for future breast cancer therapy? Crit Rev Oncog 2006;12:127-50
  • Khaled A, Guo S, Li F, Guo P. Controllable self-assembly of nanoparticles for specific delivery of multiple therapeutic molecules to cancer cells using RNA nanotechnology. Nano Lett 2005;5:1797-08
  • Blackburn WH, Dickerson EB, Smith MH, Peptide-functionalized nanogels for targeted siRNA delivery. Bioconjug Chem 2009;20:960-8
  • Sinha R, Kim GJ, Nie S, Shin DM. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 2006;5:1909-17
  • Ikeda Y, Taira K. Ligand-targeted delivery of therapeutic siRNA. Pharm Res 2006;23:1631-40
  • Davis ME. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm 2009;6:659-68
  • Zhang S, Zhao B, Jiang H, Cationic lipids and polymers mediated vectors for delivery of siRNA. J Control Release 2007;123:1-10
  • Neu M, Fischer D, Kissel T. Recent advances in rational gene transfer vector design based on poly(ethylene imine) and its derivatives. J Gene Med 2005;7:992-1009
  • Gao K, Huang L. Nonviral methods for siRNA delivery. Mol Pharm 2009;6:651-8
  • Gary DJ, Puri N, Won YY. Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. J Control Release 2007;121:64-73
  • Dash PR, Read ML, Barrett LB, Factors affecting blood clearance and in vivo distribution of polyelectrolyte complexes for gene delivery. Gene Ther 1999;6:643-50
  • Davis ME, Zuckerman JE, Choi CHJ, Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 2010;464:1067-70
  • Vornlocher H-P. Antibody-directed cell-type-specific delivery of siRNA. Trends Mol Med 2006;12:1-3
  • Elbakry A, Zaky A, Liebl R, Layer-by-layer assembled gold nanoparticles for siRNA delivery. Nano Lett 2009;9:2059-64
  • Juliano R, Bauman J, Kang H, Ming X. Biological barriers to therapy with antisense and siRNA oligonucleotides. Mol Pharm 2009;6:686-95
  • Kim SH, Jeong JH, Lee SH, Local and systemic delivery of VEGF siRNA using polyelectrolyte complex micelles for effective treatment of cancer. J Control Release 2008;129:107-16
  • Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 2010;75:1-18
  • Baigude H, Rana TM. Delivery of therapeutic RNAi by nanovehicles. Chembiochem 2009;10:2449-54
  • Yezhelyev MV, Qi L, O'Regan RM, Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging. J Am Chem Soc 2008;130:9006-12
  • Buyens K, Demeester J, De Smedt SS, Sanders NN. Elucidating the encapsulation of short interfering RNA in PEGylated cationic liposomes. Langmuir 2009;25:4886-91
  • Jeong JH, Mok H, Oh YK, Park TG. siRNA conjugate delivery systems. Bioconjug Chem 2009;20:5-14
  • Kam NW, Liu Z, Dai H. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J Am Chem Soc 2005;127:12492-3
  • Derfus AM, Chen AA, Min DH, Targeted quantum dot conjugates for siRNA delivery. Bioconjug Chem 2007;18:1391-6
  • Hermanson GT. Heterobifunctional crosslinkers. In: Bioconjugate techniques, Illinois, USA: Elsevier; 2008
  • Giljohann DA, Seferos DS, Prigodich AE, Gene regulation with polyvalent siRNA-nanoparticle conjugates. J Am Chem Soc 2009;131:2072-3
  • Medarova Z, Pham W, Farrar C, In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 2007;13:372-7
  • Xia CF, Zhang Y, Zhang Y, Intravenous siRNA of brain cancer with receptor targeting and avidin-biotin technology. Pharm Res 2007;24:2309-16
  • Wu D, Pardridge WM. Central nervous system pharmacologic effect in conscious rats after intravenous injection of a biotinylated vasoactive intestinal peptide analog coupled to a blood-brain barrier drug delivery system. J Pharmacol Exp Ther 1996;279:77-83
  • Akhtar S, Benter IF. Nonviral delivery of synthetic siRNAs in vivo. J Clin Invest 2007;117:3623-32
  • Kim SH, Jeong JH, Lee SH, LHRH receptor-mediated delivery of siRNA using polyelectrolyte complex micelles self-assembled from siRNA-PEG-LHRH conjugate and PEI. Bioconjug Chem 2008;19:2156-62
  • Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 2004;104:293-346
  • Shukla R, Bansal V, Chaudhary M, Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 2005;21:10644-54
  • Lee JS, Green JJ, Love KT, Gold, poly(beta-amino ester) nanoparticles for small interfering RNA delivery. Nano Lett 2009;9:2402-6
  • Kim HR, Kim IK, Bae KH, Cationic solid lipid nanoparticles reconstituted from low density lipoprotein components for delivery of siRNA. Mol Pharm 2008;5(4):622-31
  • Bouclier C, Moine L, Hillaireau H, Physicochemical characteristics and preliminary in vivo biological evaluation of nanocapsules loaded with siRNA targeting estrogen receptor alpha. Biomacromolecules 2008;9:2881-90
  • Li SD, Huang L. Surface-modified LPD nanoparticles for tumor targeting. Ann N Y Acad Sci 2006;1082:1-8
  • Xu Y, Szoka FC Jr. Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry 1996;35:5616-23
  • Li SD, Huang L. Targeted delivery of antisense oligodeoxynucleotide and small interference RNA into lung cancer cells. Mol Pharm 2006;3:579-88
  • Akerman ME, Chan WC, Laakkonen P, Nanocrystal targeting in vivo. Proc Natl Acad Sci USA 2002;99:12617-21
  • Gao X, Cui Y, Levenson RM, In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004;22:969-76
  • Derfus AM, Chan WCW, Bhatia SN. Intracellular delivery of quantumdots for live cell labeling and organelle tracking. Adv Mater 2004;16:961-6
  • Boussif O, Lezoualc'h F, Zanta MA, A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 1995;92:7297-301
  • Sonawane ND, Szoka FC Jr, Verkman AS. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J Biol Chem 2003;278:44826-31
  • Bianco A, Kostarelos K, Prato M. Opportunities and challenges of carbon-based nanomaterials for cancer therapy. Expert Opin Drug Deliv 2008;5:331-42
  • Peer D, Karp JM, Hong S, Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007;2:751-60
  • McCarroll J, Baigude H, Yang CS, Rana TM. Nanotubes functionalized with lipids and natural amino acid dendrimers: a new strategy to create nanomaterials for delivering systemic RNAi. Bioconjug Chem 2009;21:56-63
  • Herrero MA, Toma FM, Al-Jamal KT, Synthesis and characterization of a carbon nanotube-dendron series for efficient siRNA delivery. J Am Chem Soc 2009;131:9843-8
  • Liu Z, Winters M, Holodniy M, Dai H. siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew Chem Int Ed Engl 2007;46:2023-7
  • Liu Z, Tabakman S, Welsher K, Dai H. Carbon Nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res 2009;2:85-120
  • Stanton MG, Colletti SL. Medicinal chemistry of siRNA delivery. J Med Chem 2010;53:7887-901
  • Mendonca LS, Firmino F, Moreira JN, Transferrin receptor-targeted liposomes encapsulating anti-BCR-ABL siRNA or asODN for chronic myeloid leukemia treatment. Bioconjug Chem 2010;21:157-68
  • Gillies ER, Frechet JM. Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 2005;10:35-43
  • Patil ML, Zhang M, Betigeri S, Surface-modified and internally cationic polyamidoamine dendrimers for efficient siRNA delivery. Bioconjug Chem 2008;19:1396-03
  • Agrawal A, Min DH, Singh N, Functional delivery of siRNA in mice using dendriworms. ACS Nano 2009;3:2495-504
  • Saad M, Garbuzenko OB, Minko T. Co-delivery of siRNA and an anticancer drug for treatment of multidrug-resistant cancer. Nanomedicine 2008;3:761-76
  • Chen Y, Bathula SR, Li J, Huang L. Multi-functional nanoparticles delivering siRNA and doxorubicin overcome drug resistance in cancer. J Biol Chem 2010;285:22639-50
  • Taratula1 O, Garbuzenko O, Savla R, Multifunctional nanomedicine platform for cancer specific delivery of siRNA by superparamagnetic iron oxide nanoparticles-dendrimer complexes. Curr Drug Delivery 2011;8:59-69
  • Benoit DSW, Henry SM, Shubin AD, pH-Responsive polymeric siRNA carriers sensitize multidrug resistant ovarian cancer cells to doxorubicin via knockdown of Polo-like Kinase 1. Mol Pharm 2010;7:442-55
  • Huang HY, Kuo WT, Huang YY. Combining gene and chemo therapy using multifunctional polymeric micelles. World Acad Sci Eng Technol 2010;65:1142-5
  • Convertine AJ, Diab C, Prieve M, pH-Responsive polymeric micelle carriers for siRNA drugs. Biomacromolecules 2010;11:2904-11
  • Musacchio T, Vaze O, D'Souza G, Torchilin VP. Effective Stabilization and delivery of siRNA: reversible siRNA-phospholipid conjugate in nanosized mixed polymeric micelles. Bioconjugate Chem 2010;21:1530-6
  • Fattal E, Barratt G. Nanotechnologies and controlled release systems for the delivery of antisense oligonucleotides and small interfering RNA. Br J Pharmacol 2009;157:179-94
  • Tokatlian T, Segura T. siRNA applications in nanomedicine. Nanomed Nanobiotechnol 2010;2:305-15
  • Bartlett DW, Davis ME. Impact of tumor-specific targeting and dosing schedule on tumor growth inhibition after intravenous administration of siRNA-containing nanoparticles. Biotechnol Bioeng 2008;99:975-85
  • Xia T, Kovochich M, Liong M, Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano 2009;3:3273-86

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.