481
Views
20
CrossRef citations to date
0
Altmetric
Reviews

DNA vaccines against tuberculosis

, &

Bibliography

  • Global Tuberculosis Report. World Health Organization; 2013
  • Dye C, Glaziou P, Floyd K, Raviglione M. Prospects for tuberculosis elimination. Annu Rev Public Health 2013;34:271-86
  • Corbett EL, Watt CJ, Walker N, et al. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med 2003;163(9):1009-21
  • Colditz GA, Berkey CS, Mosteller F, et al. The efficacy of bacillus Calmette-Guerin vaccination of newborns and infants in the prevention of tuberculosis: meta-analyses of the published literature. Pediatrics 1995;96(1 Pt 1):29-35
  • Brewer TF. Preventing tuberculosis with bacillus Calmette-Guerin vaccine: a meta-analysis of the literature. Clin Infect Dis 2000;31(Suppl 3):S64-7
  • Comas I, Chakravartti J, Small PM, et al. Human T cell epitopes of mycobacterium tuberculosis are evolutionarily hyperconserved. Nat Genet 2010;42(6):498-503
  • Woodworth JS, Aagaard CS, Hansen PR, et al. Protective CD4 T cells targeting cryptic epitopes of mycobacterium tuberculosis resist infection-driven terminal differentiation. J Immunol 2014;192(7):3247-58
  • Aagaard C, Hoang T, Dietrich J, et al. A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nat Med 2011;17(2):189-94
  • Nunes-Alves C, Booty MG, Carpenter SM, et al. In search of a new paradigm for protective immunity to TB. Nat Rev Microbiol 2014;12(4):289-99
  • Ulmer JB, Donnelly JJ, Parker SE, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 1993;259(5102):1745-9
  • Kutzler MA, Weiner DB. DNA vaccines: ready for prime time? Nat Rev Genet 2008;9(10):776-88
  • Geiben-Lynn R, Greenland JR, Frimpong-Boateng K, Letvin NL. Non-classical natural killer T cells modulate plasmid DNA vaccine antigen expression and vaccine-elicited immune responses by MCP-1 secretion after interaction with a beta2-microglobulin-independent CD1d. J Biol Chem 2009;284(49):33800-6
  • Geiben-Lynn R, Greenland JR, Frimpong-Boateng K, et al. CD4+ T lymphocytes mediate in vivo clearance of plasmid DNA vaccine antigen expression and potentiate CD8+ T-cell immune responses. Blood 2008;112(12):4585-90
  • Cai Y, Rodriguez S, Hebel H. DNA vaccine manufacture: scale and quality. Expert Rev Vaccines 2009;8(9):1277-91
  • Wang Z, Troilo PJ, Wang X, et al. Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Ther 2004;11(8):711-21
  • Liu MA. DNA vaccines: an historical perspective and view to the future. Immunol Rev 2011;239(1):62-84
  • Johnson JA, Barouch DH, Baden LR. Nonreplicating vectors in HIV vaccines. Curr Opin HIV AIDS 2013;September;8(5):412-20
  • Doimo NT, Zarate-Blades CR, Rodrigues RF, et al. Immunotherapy of tuberculosis with Hsp65 as a DNA vaccine triggers cross-reactive antibodies against mammalian Hsp60 but not pathological autoimmunity. Hum Vaccin Immunother 2014;10(5):1238-43
  • van Pinxteren LA, Cassidy JP, Smedegaard BH, et al. Control of latent Mycobacterium tuberculosis infection is dependent on CD8 T cells. Eur J Immunol 2000;30(12):3689-98
  • Bruns H, Meinken C, Schauenberg P, et al. Anti-TNF immunotherapy reduces CD8+ T cell-mediated antimicrobial activity against Mycobacterium tuberculosis in humans. J Clin Invest 2009;119(5):1167-77
  • Bold TD, Ernst JD. CD4+ T cell-dependent IFN-gamma production by CD8+ effector T cells in Mycobacterium tuberculosis infection. J Immunol 2012;189(5):2530-6
  • Serbina NV, Lazarevic V, Flynn JL. CD4(+) T cells are required for the development of cytotoxic CD8(+) T cells during Mycobacterium tuberculosis infection. J Immunol 2001;167(12):6991-7000
  • D’Souza S, Romano M, Korf J, et al. Partial reconstitution of the CD4+-T-cell compartment in CD4 gene knockout mice restores responses to tuberculosis DNA vaccines. Infect Immun 2006;74(5):2751-9
  • Coelho-Castelo AA, Santos Junior RR, Bonato VL, et al. B-lymphocytes in bone marrow or lymph nodes can take up plasmid DNA after intramuscular delivery. Hum Gene Ther 2003;14(13):1279-85
  • Zanetti M, Castiglioni P, Rizzi M, et al. B lymphocytes as antigen-presenting cell-based genetic vaccines. Immunol Rev 2004;199:264-78
  • Almeida LP, Trombone AP, Lorenzi JC, et al. B cells can modulate the CD8 memory T Cell after DNA vaccination against experimental tuberculosis. Genet Vaccines Ther 2011;9:5
  • Hollister K, Chen Y, Wang S, et al. The role of follicular helper T cells and the germinal center in HIV-1 gp120 DNA prime and gp120 protein boost vaccination. Hum Vaccin Immunother 2014;10(7):1-8
  • Kumagai Y, Takeuchi O, Akira S. TLR9 as a key receptor for the recognition of DNA. Adv Drug Deliv Rev 2008;60(7):795-804
  • Zarate-Blades CR, Rodrigues RF, Souza PR, et al. Evaluation of the overall IFN-gamma and IL-17 pro-inflammatory responses after DNA therapy of tuberculosis. Hum Vaccin Immunother 2013;9(5):1093-103
  • Zarate-Blades CR, Bonato VL, da Silveira EL, et al. Comprehensive gene expression profiling in lungs of mice infected with Mycobacterium tuberculosis following DNAhsp65 immunotherapy. J Gene Med 2009;11(1):66-78
  • Frantz FG, Rosada RS, Peres-Buzalaf C, et al. Helminth coinfection does not affect therapeutic effect of a DNA vaccine in mice harboring tuberculosis. PLoS Negl Trop Dis 2010;4(6):e700
  • Tascon RE, Colston MJ, Ragno S, et al. Vaccination against tuberculosis by DNA injection. Nat Med 1996;2(8):888-92
  • Huygen K, Content J, Denis O, et al. Immunogenicity and protective efficacy of a tuberculosis DNA vaccine. Nat Med 1996;2(8):893-8
  • Li Z, Howard A, Kelley C, et al. Immunogenicity of DNA vaccines expressing tuberculosis proteins fused to tissue plasminogen activator signal sequences. Infect Immun 1999;67(9):4780-6
  • D’Souza S, Rosseels V, Romano M, et al. Mapping of murine Th1 helper T-Cell epitopes of mycolyl transferases Ag85A, Ag85B, and Ag85C from mycobacterium tuberculosis. Infect Immun 2003;71(1):483-93
  • Takamura S, Matsuo K, Takebe Y, Yasutomi Y. Ag85B of mycobacteria elicits effective CTL responses through activation of robust Th1 immunity as a novel adjuvant in DNA vaccine. J Immunol 2005;175(4):2541-7
  • Denis O, Tanghe A, Palfliet K, et al. Vaccination with plasmid DNA encoding mycobacterial antigen 85A stimulates a CD4+ and CD8+ T-cell epitopic repertoire broader than that stimulated by Mycobacterium tuberculosis H37Rv infection. Infect Immun 1998;66(4):1527-33
  • Zhu X, Venkataprasad N, Thangaraj HS, et al. Functions and specificity of T cells following nucleic acid vaccination of mice against mycobacterium tuberculosis infection. J Immunol 1997;158(12):5921-6
  • Romano M, Denis O, D’Souza S, et al. Induction of in vivo functional Db-restricted cytolytic T cell activity against a putative phosphate transport receptor of Mycobacterium tuberculosis. J Immunol 2004;172(11):6913-21
  • Skeiky YA, Alderson MR, Ovendale PJ, et al. Differential immune responses and protective efficacy induced by components of a tuberculosis polyprotein vaccine, Mtb72F, delivered as naked DNA or recombinant protein. J Immunol 2004;172(12):7618-28
  • Roupie V, Romano M, Zhang L, et al. Immunogenicity of eight dormancy regulon-encoded proteins of Mycobacterium tuberculosis in DNA-vaccinated and tuberculosis-infected mice. Infect Immun 2007;75(2):941-9
  • Romano M, Rindi L, Korf H, et al. Immunogenicity and protective efficacy of tuberculosis subunit vaccines expressing PPE44 (Rv2770c). Vaccine 2008;26(48):6053-63
  • Suzuki D, Nagata T, Eweda G, et al. Characterization of murine T-cell epitopes on mycobacterial DNA-binding protein 1 (MDP1) using DNA vaccination. Vaccine 2010;28(8):2020-5
  • Kao FF, Mahmuda S, Pinto R, et al. The secreted lipoprotein, MPT83, of Mycobacterium tuberculosis is recognized during human tuberculosis and stimulates protective immunity in mice. PLoS One 2012;7(5):e34991
  • Geluk A, van Meijgaarden KE, Franken KL, et al. Identification of major epitopes of mycobacterium tuberculosis AG85B that are recognized by HLA-A*0201-restricted CD8+ T cells in HLA-transgenic mice and humans. J Immunol 2000;165(11):6463-71
  • Rindi L, Lari N, Garzelli C. Search for genes potentially involved in mycobacterium tuberculosis virulence by mRNA differential display. Biochem Biophys Res Commun 1999;258(1):94-101
  • Chaitra MG, Shaila MS, Nayak R. Characterization of T-cell immunogenicity of two PE/PPE proteins of mycobacterium tuberculosis. J Med Microbiol 2008;57(Pt 9):1079-86
  • Singh PP, Parra M, Cadieux N, Brennan MJ. A comparative study of host response to three mycobacterium tuberculosis PE_PGRS proteins. Microbiology 2008;154(Pt 11):3469-79
  • Kamath AT, Feng CG, Macdonald M, et al. Differential protective efficacy of DNA vaccines expressing secreted proteins of mycobacterium tuberculosis. Infect Immun 1999;67(4):1702-7
  • Delogu G, Li A, Repique C, et al. DNA vaccine combinations expressing either tissue plasminogen activator signal sequence fusion proteins or ubiquitin-conjugated antigens induce sustained protective immunity in a mouse model of pulmonary tuberculosis. Infect Immun 2002;70(1):292-302
  • Sedegah M, Charoenvit Y, Minh L, et al. Reduced immunogenicity of DNA vaccine plasmids in mixtures. Gene Ther 2004;11(5):448-56
  • Romano M, Roupie V, Hamard M, Huygen K. Evaluation of the immunogenicity of pBudCE4.1 plasmids encoding mycolyl-transferase Ag85A and phosphate transport receptor PstS-3 from mycobacterium tuberculosis. Vaccine 2006;24(21):4640-3
  • Romano M, Roupie V, Wang XM, et al. Immunogenicity and protective efficacy of tuberculosis DNA vaccines combining mycolyl-transferase Ag85A and phosphate transport receptor PstS-3. Immunology 2006;118(3):321-32
  • Mir FA, Kaufmann SH, Eddine AN. A multicistronic DNA vaccine induces significant protection against tuberculosis in mice and offers flexibility in the expressed antigen repertoire. Clin Vaccine Immunol 2009;16(10):1467-75
  • Sali M, Clarizio S, Pusceddu C, et al. Evaluation of the anti-tuberculosis activity generated by different multigene DNA vaccine constructs. Microbes Infect 2008;10(6):605-12
  • Leyten EM, Lin MY, Franken KL, et al. Human T-cell responses to 25 novel antigens encoded by genes of the dormancy regulon of mycobacterium tuberculosis. Microbes Infect 2006;8(8):2052-60
  • Lin MY, Geluk A, Smith SG, et al. Lack of immune responses to mycobacterium tuberculosis DosR regulon proteins following Mycobacterium bovis BCG vaccination. Infect Immun 2007;75(7):3523-30
  • Romano M, Aryan E, Korf H, et al. Potential of mycobacterium tuberculosis resuscitation-promoting factors as antigens in novel TB sub-unit vaccines. Microbes Infect 2012;14(1):86-95
  • Desmet CJ, Ishii KJ. Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination. Nat Rev Immunol 2012;12(7):479-91
  • Pavlenko M, Leder C, Moreno S, et al. Priming of CD8+ T-cell responses after DNA immunization is impaired in TLR9- and MyD88-deficient mice. Vaccine 2007;25(34):6341-7
  • Coban C, Ishii KJ, Gursel M, et al. Effect of plasmid backbone modification by different human CpG motifs on the immunogenicity of DNA vaccine vectors. J Leukoc Biol 2005;78(3):647-55
  • Bode C, Zhao G, Steinhagen F, et al. CpG DNA as a vaccine adjuvant. Expert Rev Vaccines 2011;10(4):499-511
  • Coban C, Koyama S, Takeshita F, et al. Molecular and cellular mechanisms of DNA vaccines. Hum Vaccin 2008;4(6):453-6
  • Okada M, Kita Y, Nakajima T, et al. Evaluation of a novel vaccine (HVJ-liposome/HSP65 DNA+IL-12 DNA) against tuberculosis using the cynomolgus monkey model of TB. Vaccine 2007;25(16):2990-3
  • Jeon BY, Eoh H, Ha SJ, et al. Co-immunization of plasmid DNA encoding IL-12 and IL-18 with Bacillus Calmette-Guerin vaccine against progressive tuberculosis. Yonsei Med J 2011;52(6):1008-15
  • Dou J, Wang Y, Yu F, et al. Protection against mycobacterium tuberculosis challenge in mice by DNA vaccine Ag85A-ESAT-6-IL-21 priming and BCG boosting. Int J Immunogenet 2012;39(2):183-90
  • Wozniak TM, Ryan AA, Triccas JA, Britton WJ. Plasmid interleukin-23 (IL-23), but not plasmid IL-27, enhances the protective efficacy of a DNA vaccine against mycobacterium tuberculosis infection. Infect Immun 2006;74(1):557-65
  • Wozniak TM, Ryan AA, Britton WJ. Interleukin-23 restores immunity to mycobacterium tuberculosis infection in IL-12p40-deficient mice and is not required for the development of IL-17-secreting T cell responses. J Immunol 2006;177(12):8684-92
  • Kutzler MA, Robinson TM, Chattergoon MA, et al. Coimmunization with an optimized IL-15 plasmid results in enhanced function and longevity of CD8 T cells that are partially independent of CD4 T cell help. J Immunol 2005;175(1):112-23
  • Hu K, Luo S, Tong L, et al. CCL19 and CCL28 augment mucosal and systemic immune responses to HIV-1 gp140 by mobilizing responsive immunocytes into secondary lymph nodes and mucosal tissue. J Immunol 2013;191(4):1935-47
  • Kamath AT, Hanke T, Briscoe H, Britton WJ. Co-immunization with DNA vaccines expressing granulocyte-macrophage colony-stimulating factor and mycobacterial secreted proteins enhances T-cell immunity, but not protective efficacy against Mycobacterium tuberculosis. Immunology 1999;96(4):511-16
  • Yao W, Liu S, Qu X, et al. Enhanced immune response and protection efficacy of a DNA vaccine constructed by linkage of the mycobacterium tuberculosis Ag85B-encoding gene with the BVP22-encoding gene. J Med Microbiol 2009;58(Pt 4):462-8
  • Zhou J, Cheung AK, Liu H, et al. Potentiating functional antigen-specific CD8(+) T cell immunity by a novel PD1 isoform-based fusion DNA vaccine. Mol Ther 2013;21(7):1445-55
  • Cervantes-Villagrana AR, Hernandez-Pando R, Biragyn A, et al. Prime-boost BCG vaccination with DNA vaccines based in beta-defensin-2 and mycobacterial antigens ESAT6 or Ag85B improve protection in a tuberculosis experimental model. Vaccine 2013;31(4):676-84
  • Gargett T, Grubor-Bauk B, Garrod TJ, et al. Induction of antigen-positive cell death by the expression of Perforin, but not DTa, from a DNA vaccine enhances the immune response. Immunol Cell Biol 2014;92(4):359-67
  • Kim TW, Hung CF, Boyd D, et al. Enhancing DNA vaccine potency by combining a strategy to prolong dendritic cell life with intracellular targeting strategies. J Immunol 2003;171(6):2970-6
  • Kim TW, Hung CF, Zheng M, et al. A DNA vaccine co-expressing antigen and an anti-apoptotic molecule further enhances the antigen-specific CD8+ T-cell immune response. J Biomed Sci 2004;11(4):493-9
  • Kojima Y, Jounai N, Takeshita F, et al. The degree of apoptosis as an immunostimulant for a DNA vaccine against HIV-1 infection. Vaccine 2007;25(3):438-45
  • Chattergoon MA, Kim JJ, Yang JS, et al. Targeted antigen delivery to antigen-presenting cells including dendritic cells by engineered Fas-mediated apoptosis. Nat Biotechnol 2000;18(9):974-9
  • Gartner T, Romano M, Suin V, et al. Immunogenicity and protective efficacy of a tuberculosis DNA vaccine co-expressing pro-apoptotic caspase-3. Vaccine 2008;26(11):1458-70
  • Ko HJ, Ko SY, Kim YJ, et al. Optimization of codon usage enhances the immunogenicity of a DNA vaccine encoding mycobacterial antigen Ag85B. Infect Immun 2005;73(9):5666-74
  • Bruffaerts N, Pedersen LE, Vandermeulen G, et al. Improved immunogenicity of M. bovis BCG in pigs co-vaccinated with pDNA encoding a prototype tuberculosis antigen. Submitted for publication
  • Hartmann G, Krieg AM. Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J Immunol 2000;164(2):944-53
  • Wang D, Robinson DR, Kwon GS, Samuel J. Encapsulation of plasmid DNA in biodegradable poly(D, L-lactic-co-glycolic acid) microspheres as a novel approach for immunogene delivery. J Control Release 1999;57(1):9-18
  • Griffiths G, Nystrom B, Sable SB, Khuller GK. Nanobead-based interventions for the treatment and prevention of tuberculosis. Nat Rev Microbiol 2010;8(11):827-34
  • Lima KM, Santos SA, Lima VM, et al. Single dose of a vaccine based on DNA encoding mycobacterial hsp65 protein plus TDM-loaded PLGA microspheres protects mice against a virulent strain of Mycobacterium tuberculosis. Gene Ther 2003;10(8):678-85
  • Carletti D, Morais da FD, Gembre AF, et al. A single dose of a DNA vaccine encoding apa coencapsulated with 6,6’-trehalose dimycolate in microspheres confers long-term protection against tuberculosis in Mycobacterium bovis BCG-primed mice. Clin Vaccine Immunol 2013;20(8):1162-9
  • D’Souza S, Rosseels V, Denis O, et al. Improved tuberculosis DNA vaccines by formulation in cationic lipids. Infect Immun 2002;70(7):3681-8
  • Feng G, Jiang Q, Xia M, et al. Enhanced immune response and protective effects of nano-chitosan-based DNA vaccine encoding T cell epitopes of Esat-6 and FL against Mycobacterium tuberculosis infection. PLoS One 2013;8(4):e61135
  • Ai W, Yue Y, Xiong S, Xu W. Enhanced protection against pulmonary mycobacterial challenge by chitosan-formulated polyepitope gene vaccine is associated with increased pulmonary secretory IgA and gamma-interferon(+) T cell responses. Microbiol Immunol 2013;57(3):224-35
  • Bivas-Benita M, van Meijgaarden KE, Franken KL, et al. Pulmonary delivery of chitosan-DNA nanoparticles enhances the immunogenicity of a DNA vaccine encoding HLA-A*0201-restricted T-cell epitopes of mycobacterium tuberculosis. Vaccine 2004;22(13-14):1609-15
  • Bivas-Benita M, Lin MY, Bal SM, et al. Pulmonary delivery of DNA encoding Mycobacterium tuberculosis latency antigen Rv1733c associated to PLGA-PEI nanoparticles enhances T cell responses in a DNA prime/protein boost vaccination regimen in mice. Vaccine 2009;27(30):4010-17
  • Liu H, Moynihan KD, Zheng Y, et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 2014;507(7493):519-22
  • Toke ER, Lorincz O, Csiszovszki Z, et al. Exploitation of Langerhans cells for in vivo DNA vaccine delivery into the lymph nodes. Gene Ther 2014;21(6):566-74
  • Brun P, Zumbo A, Castagliuolo I, et al. Intranasal delivery of DNA encoding antigens of mycobacterium tuberculosis by non-pathogenic invasive Escherichia coli. Vaccine 2008;26(16):1934-41
  • Huang JM, Sali M, Leckenby MW, et al. Oral delivery of a DNA vaccine against tuberculosis using operator-repressor titration in a Salmonella enterica vector. Vaccine 2010;28(47):7523-8
  • Tanghe A, Denis O, Lambrecht B, et al. Tuberculosis DNA vaccine encoding Ag85A is immunogenic and protective when administered by intramuscular needle injection but not by epidermal gene gun bombardment. Infect Immun 2000;68(7):3854-60
  • Wang S, Zhang C, Zhang L, et al. The relative immunogenicity of DNA vaccines delivered by the intramuscular needle injection, electroporation and gene gun methods. Vaccine 2008;26(17):2100-10
  • Kalams SA, Parker SD, Elizaga M, et al. Safety and comparative immunogenicity of an HIV-1 DNA vaccine in combination with plasmid interleukin 12 and impact of intramuscular electroporation for delivery. J Infect Dis 2013;208(5):818-29
  • Li Z, Zhang H, Fan X, et al. DNA electroporation prime and protein boost strategy enhances humoral immunity of tuberculosis DNA vaccines in mice and non-human primates. Vaccine 2006;24(21):4565-8
  • Zhang X, Divangahi M, Ngai P, et al. Intramuscular immunization with a monogenic plasmid DNA tuberculosis vaccine: enhanced immunogenicity by electroporation and co-expression of GM-CSF transgene. Vaccine 2007;25(7):1342-52
  • Tollefsen S, Vordermeier M, Olsen I, et al. DNA injection in combination with electroporation: a novel method for vaccination of farmed ruminants. Scand J Immunol 2003;57(3):229-38
  • Fedatto PF, Sergio CA, Paula MO, et al. Protection conferred by heterologous vaccination against tuberculosis is dependent on the ratio of CD4(+)/CD4(+) Foxp3(+) cells. Immunology 2012;137(3):239-48
  • Jaron B, Maranghi E, Leclerc C, Majlessi L. Effect of attenuation of Treg during BCG immunization on anti-mycobacterial Th1 responses and protection against mycobacterium tuberculosis. PLoS One 2008;3(7):e2833
  • Tanghe A, D’Souza S, Rosseels V, et al. Improved immunogenicity and protective efficacy of a tuberculosis DNA vaccine encoding Ag85 by protein boosting. Infect Immun 2001;69(5):3041-7
  • Palma C, Iona E, Giannoni F, et al. The LTK63 adjuvant improves protection conferred by Ag85B DNA-protein prime-boosting vaccination against mycobacterium tuberculosis infection by dampening IFN-gamma response. Vaccine 2008;26(33):4237-43
  • Cayabyab MJ, Kashino SS, Campos-Neto A. Robust immune response elicited by a novel and unique mycobacterium tuberculosis protein using an optimized DNA/protein heterologous prime/boost protocol. Immunology 2012;135(3):216-25
  • McShane H, Brookes R, Gilbert SC, Hill AV. Enhanced immunogenicity of CD4(+) t-cell responses and protective efficacy of a DNA-modified vaccinia virus Ankara prime-boost vaccination regimen for murine tuberculosis. Infect Immun 2001;69(2):681-6
  • Wang J, Thorson L, Stokes RW, et al. Single mucosal, but not parenteral, immunization with recombinant adenoviral-based vaccine provides potent protection from pulmonary tuberculosis. J Immunol 2004;173(10):6357-65
  • Jeyanathan M, Mu J, Kugathasan K, et al. Airway delivery of soluble mycobacterial antigens restores protective mucosal immunity by single intramuscular plasmid DNA tuberculosis vaccination: role of proinflammatory signals in the lung. J Immunol 2008;181(8):5618-26
  • Schneider J, Gilbert SC, Blanchard TJ, et al. Enhanced immunogenicity for CD8+ T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara. Nat Med 1998;4(4):397-402
  • Chuang I, Sedegah M, Cicatelli S, et al. DNA prime/Adenovirus boost malaria vaccine encoding P. falciparum CSP and AMA1 induces sterile protection associated with cell-mediated immunity. PLoS One 2013;8(2):e55571
  • Graham BS, Enama ME, Nason MC, et al. DNA vaccine delivered by a needle-free injection device improves potency of priming for antibody and CD8+ T-cell responses after rAd5 boost in a randomized clinical trial. PLoS One 2013;8(4):e59340
  • de Mare A, Lambeck AJ, Regts J, et al. Viral vector-based prime-boost immunization regimens: a possible involvement of T-cell competition. Gene Ther 2008;15(6):393-403
  • Brennan MJ, Clagett B, Fitzgerald H, et al. Preclinical evidence for implementing a prime-boost vaccine strategy for tuberculosis. Vaccine 2012;30(18):2811-23
  • Ryan AA, Nambiar JK, Wozniak TM, et al. Antigen load governs the differential priming of CD8 T cells in response to the bacille calmette guerin vaccine or mycobacterium tuberculosis infection. J Immunol 2009;182(11):7172-7
  • Feng CG, Palendira U, Demangel C, et al. Priming by DNA immunization augments protective efficacy of Mycobacterium bovis bacille Calmette-Guerin against tuberculosis. Infect Immun 2001;69(6):4174-6
  • Ferraz JC, Stavropoulos E, Yang M, et al. A heterologous DNA priming-Mycobacterium bovis BCG boosting immunization strategy using mycobacterial Hsp70, Hsp65, and Apa antigens improves protection against tuberculosis in mice. Infect Immun 2004;72(12):6945-50
  • Skinner MA, Buddle BM, Wedlock DN, et al. A DNA prime-Mycobacterium bovis BCG boost vaccination strategy for cattle induces protection against bovine tuberculosis. Infect Immun 2003;71(9):4901-7
  • Skinner MA, Wedlock DN, de Lisle GW, et al. The order of prime-boost vaccination of neonatal calves with Mycobacterium bovis BCG and a DNA vaccine encoding mycobacterial proteins Hsp65, Hsp70, and Apa is not critical for enhancing protection against bovine tuberculosis. Infect Immun 2005;73(7):4441-4
  • Romano M, D’Souza S, Adnet PY, et al. Priming but not boosting with plasmid DNA encoding mycolyl-transferase Ag85A from mycobacterium tuberculosis increases the survival time of Mycobacterium bovis BCG vaccinated mice against low dose intravenous challenge with M. tuberculosis H37Rv. Vaccine 2006;24(16):3353-64
  • Bruffaerts N, Romano M, Denis O, et al. Increasing the vaccine potential of live M. bovis BCG by coadministration with plasmid DNA encoding a tuberculosis prototype antigen. Vaccine 2014;2(1):181-95
  • Tameris MD, Hatherill M, Landry BS, et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet 2013;381(9871):1021-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.