205
Views
2
CrossRef citations to date
0
Altmetric
Review

Evolving targeted therapies for right ventricular failure

, MD MPH MBA (Associate Professor of Medicine)

Bibliography

  • Burns KM, Byrne BJ, Gelb BD, et al. New mechanistic and therapeutic targets for pediatric heart failure: Report from a National Heart, Lung, and Blood Institute working group. Circulation 2014;130:79-86
  • Simon MA. Assessment and treatment of right ventricular failure. Nat Rev Cardiol 2013;10:204-18
  • Di Salvo T, Mathier M, Semigran M, Dec G. Preserved right ventricular ejection fraction predicts exercise capacity and survival in advanced heart failure. J Am Coll Cardiol 1995;25:1143-53
  • Ryan JJ, Archer SL. The right ventricle in pulmonary arterial hypertension: Disorders of metabolism, angiogenesis and adrenergic signaling in right ventricular failure. Circ Res 2014;115:176-88
  • Patlolla B, Beygui R, Haddad F. Right-ventricular failure following left ventricle assist device implantation. Curr Opin Cardiol 2013;28:223-33
  • Di Salvo TG. Pulmonary hypertension and right ventricular failure in left ventricular systolic dysfunction. Curr Opin Cardiol 2012;27:262-72
  • Haddad F, Doyle R, Murphy D, Hunt S. Right ventricular function in cardiovascular disease part ii: Pathophysiology, clinical importance and management of right ventricular failure. Circulation 2008;117:1717-31
  • Haddad F, Hung S, Rosenthal D, Murphy D. Right ventricular function in cardiovascular disease, part i: Anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation 2008;117:1436-48
  • Dell’Italia L. Anatomy and physiology of the right ventricle. Cardiol Clin 2012;30:167-87
  • Friedberg MK, Redington AN. Right versus left ventricular failure: Differences, similarities, and interactions. Circulation 2014;129:1033-44
  • Mann DL, Barger PM, Burkhoff D. Myocardial recovery and the failing heart: Myth, magic, or molecular target? J Am Coll Cardiol 2012;60(24):2465-72
  • Archer SL, Fang YH, Ryan JJ, Piao L. Metabolism and bioenergetics in the right ventricle and pulmonary vasculature in pulmonary hypertension. Pulm Circ 2013;3:144-52
  • Taylor JT, Chidsey G, Disalvo TG, et al. Contemporary management of tricuspid regurgitation: An updated clinical review. Cardiol Rev 2013;21:174-83
  • Deal BJ, Jacobs ML. Management of the failing Fontan circulation. Heart 2012;98:1098-104
  • Fukamachi K, Shiose A, Massiello AL, et al. Implantable continuous-flow right ventricular assist device: Lessons learned in the development of a Cleveland Clinic device. Ann Thorac Surg 2012;93:1746-52
  • Di Salvo TG, Haldar SM. Epigenetic mechanisms in heart failure pathogenesis. Circ Heart Fail 2014;7:850-63
  • Vacchi-Suzzi C, Hahne F, Scheubel P, et al. Heart structure-specific transcriptomic atlas reveals conserved microrna-mrna interactions. PLoS ONE 2013;8:e52442
  • Small E, Frost R, Olson E. Micrornas add a new dimension to cardiovascular disease. Circulation 2010;121:1022-32
  • Thum T, Batkai S. Micrornas in right ventricular (dys)function (2013 grover conference series). Pulm Circ 2014;4:185-90
  • Thum T, Gross C, Fiedler J, et al. Microrna-21 contributes to myocardial disease by stimulating map kinase signalling in fibroblasts. Nature 2008;456:980-4
  • Karakikes I, Chaanine AH, Kang S, et al. Therapeutic cardiac-targeted delivery of mir-1 reverses pressure overload-induced cardiac hypertrophy and attenuates pathological remodeling. J Am Heart Assoc 2013;2:e000078
  • Thum T. Noncoding rnas and myocardial fibrosis. Nat Rev Cardiol 2014;11(11):655-63
  • O’Brien J, Kibiryeva N, Zhou X, et al. Noncoding rna expression in myocardium from infants with Tetralogy of Fallot. Circ Cardiovasc Genet 2012;5:279-86
  • Melman YF, Shah R, Das S. Micrornas in heart failure: Is the picture becoming less mirky? Circ Heart Fail 2014;7:203-14
  • Ruiz-Lozano, Care A, Catalucci D, Felicetti F, et al. Microrna-133 controls cardiac hypertrophy. Nat Med 2007;13:613-18
  • Bernardo BC, Gao XM, Winbanks CE, et al. Therapeutic inhibition of the mir-34 family attenuates pathological cardiac remodeling and improves heart function. Proc Natl Acad Sci USA 2012;109:17615-20
  • Boon RA, Iekushi K, Lechner S, et al. Microrna-34a regulates cardiac ageing and function. Nature 2013;495:107-10
  • Pan Z, Sun X, Shan H, et al. Microrna-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the fbj osteosarcoma oncogene/transforming growth factor-beta1 pathway. Circulation 2012;126:840-50
  • Wahlquist C, Jeong D, Rojas-Munoz A, et al. Inhibition of mir-25 improves cardiac contractility in the failing heart. Nature 2014;508:531-5
  • Harada M, Luo X, Murohara T, et al. Microrna regulation and cardiac calcium signaling: Role in cardiac disease and therapeutic potential. Circ Res 2014;114:689-705
  • Dirkx E, Gladka MM, Philippen LE, et al. Nfat and mir-25 cooperate to reactivate the transcription factor hand2 in heart failure. Nat Cell Biol 2013;15:1282-93
  • Bush EW, van Rooij E. Mir-25 in heart failure. Circ Res 2014;115:610-12
  • van Rooij E, Purcell AL, Levin AA. Developing microrna therapeutics. Circ Res 2012;110:496-507
  • Lee TI, Young RA. Transcriptional regulation and its misregulation in disease. Cell 2013;152:1237-51
  • Badeaux AI, Shi Y. Emerging roles for chromatin as a signal integration and storage platform. Nat Rev Mol Cell Biol 2013;14:211-24
  • Haldar SM, McKinsey TA. Bet-ting on chromatin-based therapeutics for heart failure. J Mol Cell Cardiol 2014;74:98-102
  • Filippakopoulos P, Picaud S, Mangos M, et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 2012;149:214-31
  • Zhou Q, Li T, Price DH. Rna Polymerase II elongation control. Annu Rev Biochem 2012;81:119-43
  • Anand P, Brown JD, Lin CY, et al. Bet bromodomains mediate transcriptional pause release in heart failure. Cell 2013;154:569-82
  • Spiltoir JI, Stratton MS, Cavasin MA, et al. Bet acetyl-lysine binding proteins control pathological cardiac hypertrophy. J Mol Cell Cardiol 2013;63:175-9
  • Arrowsmith CH, Bountra C, Fish PV, et al. Epigenetic protein families: A new frontier for drug discovery. Nat Rev Drug Discov 2012;11:384-400
  • Cech TR, Steitz JA, The noncoding rna revolution-trashing old rules to forge new ones. Cell 2014;157:77-94
  • Sabin LR, Delas MJ, Hannon GJ. Dogma derailed: The many influences of rna on the genome. Mol cell 2013;49:783-94
  • Mercer TR, Mattick JS. Structure and function of long noncoding rnas in epigenetic regulation. Nat Struct Mol Biol 2013;20:300-7
  • Ulitsky I, Bartel DP. Lincrnas: Genomics, evolution, and mechanisms. Cell 2013;154:26-46
  • Batista PJ, Chang HY. Long noncoding rnas: Cellular address codes in development and disease. Cell 2013;152:1298-307
  • Kung JT, Colognori D, Lee JT. Long noncoding rnas: Past, present, and future. Genetics 2013;193:651-69
  • Rinn JL, Chang HY. Genome regulation by long noncoding rnas. Annu Rev Biochem 2012;81:145-66
  • Wahlestedt C. Targeting long non-coding rna to therapeutically upregulate gene expression. Nat Rev Drug Discov 2013;12:433-46
  • Peters T, Schroen B. Missing links in cardiology: Long non-coding rnas enter the arena. Pflugers Arch 2014;466(6):1177-87
  • Matkovich SJ, Edwards JR, Grossenheider TC, et al. Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding rnas. Proc Natl Acad Sci USA 2014;111:12264-9
  • Ounzain S, Micheletti R, Beckmann T, et al. Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding rnas. Eur Heart J 2015;36(6):353-68a
  • Scheuermann JC, Boyer LA. Getting to the heart of the matter: Long non-coding rnas in cardiac development and disease. EMBO J 2013;32:1805-16
  • Wang K, Liu F, Zhou LY, et al. The long noncoding rna chrf regulates cardiac hypertrophy by targeting mir-489. Circ Res 2014;114:1377-88
  • Michalik KM, You X, Manavski Y, et al. Long noncoding rna malat1 regulates endothelial cell function and vessel growth. Circ Res 2014;114:1389-97
  • Han P, Li W, Lin CH, et al. A long noncoding rna protects the heart from pathological hypertrophy. Nature 2014;514(7520):102-6
  • Kim H, Kim JS. A guide to genome engineering with programmable nucleases. Nat Rev Genet 2014;15:321-34
  • Lian X, Xu J, Li J, Chien KR. Next-generation models of human cardiogenesis via genome editing. Cold Spring Harb Perspect Med 2014;4:a013920
  • Mali P, Yang L, Esvelt KM, et al. Rna-guided human genome engineering via cas9. Science 2013;339:823-6
  • Hajjar RJ. Potential of gene therapy as a treatment for heart failure. J Clin Invest 2013;123:53-61
  • Wolfram JA, Donahue JK. Gene therapy to treat cardiovascular disease. J Am Heart Assoc 2013;2:e000119
  • Bristow MR, Ginsburg R, Minobe W, et al. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med 1982;307:205-11
  • Koch WJ, Rockman HA, Samama P, et al. Cardiac function in mice overexpressing the beta-adrenergic receptor kinase or a beta ark inhibitor. Science 1995;268:1350-3
  • Williams ML, Hata JA, Schroder J, et al. Targeted beta-adrenergic receptor kinase (betaark1) inhibition by gene transfer in failing human hearts. Circulation 2004;109:1590-3
  • Scimia MC, Gumpert AM, Koch WJ. Cardiovascular gene therapy for myocardial infarction. Expert Opin Biol Ther 2014;14:183-95
  • Gao MH, Bayat H, Roth DM, et al. Controlled expression of cardiac-directed adenylylcyclase type vi provides increased contractile function. Cardiovasc Res 2002;56:197-204
  • Lai NC, Roth DM, Gao MH, et al. Intracoronary adenovirus encoding adenylyl cyclase vi increases left ventricular function in heart failure. Circulation 2004;110:330-6
  • Hasenfuss G, Reinecke H, Studer R, et al. Relation between myocardial function and expression of sarcoplasmic reticulum ca(2+)-atpase in failing and nonfailing human myocardium. Circ Res 1994;75:434-42
  • del Monte F, Harding SE, Schmidt U, et al. Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of serca2a. Circulation 1999;100:2308-11
  • Kawase Y, Ly HQ, Prunier F, et al. Reversal of cardiac dysfunction after long-term expression of serca2a by gene transfer in a pre-clinical model of heart failure. J Am Coll Cardiol 2008;51:1112-19
  • Jessup M, Greenberg B, Mancini D, et al. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (cupid): A phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum ca2+-atpase in patients with advanced heart failure. Circulation 2011;124:304-13
  • Zsebo K, Yaroshinsky A, Rudy JJ, et al. Long-term effects of aav1/serca2a gene transfer in patients with severe heart failure: Analysis of recurrent cardiovascular events and mortality. Circ Res 2014;114:101-8
  • Greenberg B, Yaroshinsky A, Zsebo KM, et al. Design of a phase 2b trial of intracoronary administration of aav1/serca2a in patients with advanced heart failure: The cupid 2 trial (calcium up-regulation by percutaneous administration of gene therapy in cardiac disease phase 2b). JACC Heart Fail 2014;2:84-92
  • Hajjar RJ, Hulot JS. Modeling cvd in human pluripotent cells by genome editing. J Am Coll Cardiol 2014;64:460-2
  • Penn MS, Mendelsohn FO, Schaer GL, et al. An open-label dose escalation study to evaluate the safety of administration of nonviral stromal cell-derived factor-1 plasmid to treat symptomatic ischemic heart failure. Circ Res 2013;112:816-25
  • Zacchigna S, Zentilin L, Giacca M. Adeno-associated virus vectors as therapeutic and investigational tools in the cardiovascular system. Circ Res 2014;114:1827-46
  • Louis Jeune V, Joergensen JA, Hajjar RJ, Weber T. Pre-existing anti-adeno-associated virus antibodies as a challenge in aav gene therapy. Hum Gene Ther Methods 2013;24:59-67
  • Manno CS, Pierce GF, Arruda VR, et al. Successful transduction of liver in hemophilia by aav-factor ix and limitations imposed by the host immune response. Nat Med 2006;12:342-7
  • Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science 2002;298:2188-90
  • Porrello ER, Mahmoud AI, Simpson E, et al. Transient regenerative potential of the neonatal mouse heart. Science 2011;331:1078-80
  • Ali SR, Hippenmeyer S, Saadat LV, et al. Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice. Proc Natl Acad Sci USA 2014;111:8850-5
  • Hsieh PC, Segers VF, Davis ME, et al. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med 2007;13:970-4
  • Bergmann O, Bhardwaj RD, Bernard S, et al. Evidence for cardiomyocyte renewal in humans. Science 2009;324:98-102
  • Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003;114:763-76
  • Smith RR, Barile L, Cho HC, et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 2007;115:896-908
  • Kikuchi K, Poss KD. Cardiac regenerative capacity and mechanisms. Annu Rev Cell Dev Biol 2012;28:719-41
  • White AJ, Arasaratnam D, Elliott DA, Kaye DM. Cellular reprogramming: A new avenue to cardiac regeneration? Circ Heart Fail 2013;6:1102-7
  • Marban E. Breakthroughs in cell therapy for heart disease: Focus on cardiosphere-derived cells. Mayo Clin Proc 2014;89:850-8
  • Clifford DM, Fisher SA, Brunskill SJ, et al. Stem cell treatment for acute myocardial infarction. Cochrane Database Syst Rev 2012;2:CD006536
  • Delewi R, Hirsch A, Tijssen JG, et al. Impact of intracoronary bone marrow cell therapy on left ventricular function in the setting of ST-segment elevation myocardial infarction: A collaborative meta-analysis. Eur Heart J 2014;35:989-98
  • Fisher SA, Brunskill SJ, Doree C, et al. Stem cell therapy for chronic ischaemic heart disease and congestive heart failure. Cochrane Database Syst Rev 2014;4:CD007888
  • Sanganalmath SK, Bolli R. Cell therapy for heart failure: A comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ Res 2013;113:810-34
  • Sahoo S, Losordo DW. Exosomes and cardiac repair after myocardial infarction. Circ Res 2014;114:333-44
  • Forbes SJ, Rosenthal N. Preparing the ground for tissue regeneration: From mechanism to therapy. Nat Med 2014;20:857-69
  • Behfar A, Crespo-Diaz R, Terzic A, Gersh BJ. Cell therapy for cardiac repair--lessons from clinical trials. Nat Rev Cardiol 2014;11:232-46
  • Lambert V, Gouadon E, Capderou A, et al. Right ventricular failure secondary to chronic overload in congenital heart diseases: Benefits of cell therapy using human embryonic stem cell-derived cardiac progenitors. J Thorac Cardiovasc Surg 2015;149(3):708-15
  • Menasche P, Hagege AA, Scorsin M, et al. Myoblast transplantation for heart failure. Lancet 2001;357:279-80
  • Menasche P, Alfieri O, Janssens S, et al. The myoblast autologous grafting in ischemic cardiomyopathy (magic) trial: First randomized placebo-controlled study of myoblast transplantation. Circulation 2008;117:1189-200
  • Deutsch MA, Sturzu A, Wu SM. At a crossroad: Cell therapy for cardiac repair. Circ Res 2013;112:884-90
  • Assmus B, Leistner DM, Schachinger V, et al. Long-term clinical outcome after intracoronary application of bone marrow-derived mononuclear cells for acute myocardial infarction: Migratory capacity of administered cells determines event-free survival. Eur Heart J 2014;35:1275-83
  • Park KE, Moye LA, Henry TD, et al. Implementation of cardovascular cell therapy network trials: Challenges, innovation and lessons learned from experience in the cctrn. Expert Rev Cardiovasc Ther 2013;11:1495-502
  • Traverse JH, Henry TD, Pepine CJ, et al. Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: The time randomized trial. JAMA: Am J Emerg Med 2012;308:2380-9
  • Traverse JH, Henry TD, Ellis SG, et al. Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: The latetime randomized trial. JAMA: Am J Emerg Med 2011;306:2110-19
  • Perin EC, Willerson JT, Pepine CJ, et al. Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: The focus-cctrn trial. JAMA: Am J Emerg Med 2012;307:1717-26
  • Rosen MR, Myerburg RJ, Francis DP, et al. Translating stem cell research to cardiac disease therapies: Pitfalls and prospects for improvement. J Am Coll Cardiol 2014;64:922-37
  • Menasche P. Stem cells in the management of advanced heart failure. Curr Opin Cardiol 2014;30:179-85
  • Vrtovec B, Poglajen G, Sever M, et al. CD34+ stem cell therapy in nonischemic dilated cardiomyopathy patients. Clin Pharmacol Ther 2013;94:452-8
  • Losordo DW, Henry TD, Davidson C, et al. Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circ Res 2011;109:428-36
  • Vrtovec B, Poglajen G, Lezaic L, et al. Effects of intracoronary CD34+ stem cell transplantation in nonischemic dilated cardiomyopathy patients: 5-year follow-up. Circ Res 2013;112:165-73
  • Vrtovec B, Poglajen G, Lezaic L, et al. Comparison of transendocardial and intracoronary CD34+ cell transplantation in patients with nonischemic dilated cardiomyopathy. Circulation 2013;128:S42-9
  • Chou SH, Lin SZ, Kuo WW, et al. Mesenchymal stem cell insights: Prospects in cardiovascular therapy. Cell transplant 2014;23:513-29
  • Behfar A, Yamada S, Crespo-Diaz R, et al. Guided cardiopoiesis enhances therapeutic benefit of bone marrow human mesenchymal stem cells in chronic myocardial infarction. J Am Coll Cardiol 2010;56:721-34
  • Anversa P, Kajstura J, Rota M, Leri A. Regenerating new heart with stem cells. J clin invest 2013;123:62-70
  • Quijada P, Sussman MA. Making it stick: Chasing the optimal stem cells for cardiac regeneration. Expert Rev Cardiovasc Ther 2014;12:1275-88
  • van Berlo JH, Kanisicak O, Maillet M, et al. C-kit+ cells minimally contribute cardiomyocytes to the heart. Nature 2014;509:337-41
  • Bolli R, Chugh AR, D’Amario D, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (scipio): Initial results of a randomised phase 1 trial. Lancet 2011;378:1847-57
  • Chugh AR, Beache GM, Loughran JH, et al. Administration of cardiac stem cells in patients with ischemic cardiomyopathy: The SCIPIO trial: Surgical aspects and interim analysis of myocardial function and viability by magnetic resonance. Circulation 2012;126:S54-64
  • Hong KU, Bolli R. Cardiac stem cell therapy for cardiac repair. Curr Treat Options Cardiovasc Med 2014;16:324
  • Makkar RR, Smith RR, Cheng K, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): A prospective, randomised phase 1 trial. Lancet 2012;379:895-904
  • Malliaras K, Makkar RR, Smith RR, et al. Intracoronary cardiosphere-derived cells after myocardial infarction: Evidence of therapeutic regeneration in the final 1-year results of the caduceus trial (cardiosphere-derived autologous stem cells to reverse ventricular dysfunction). J Am Coll Cardiol 2014;63:110-22
  • Bartunek J, Behfar A, Dolatabadi D, et al. Cardiopoietic stem cell therapy in heart failure: The c-cure (cardiopoietic stem cell therapy in heart failure) multicenter randomized trial with lineage-specified biologics. J Am Coll Cardiol 2013;61:2329-38
  • Assmus B, Walter DH, Seeger FH, et al. Effect of shock wave-facilitated intracoronary cell therapy on lvef in patients with chronic heart failure: The Cellwave randomized clinical trial. JAMA: Am J Emerg Med 2013;309:1622-31
  • Tang YL, Zhu W, Cheng M, et al. Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing cxcr4 expression. Circ Res 2009;104:1209-16
  • Madonna R, Ferdinandy P, De Caterina R, et al. Recent developments in cardiovascular stem cells. Circ Res 2014;115:e71-8
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663-76
  • Xin M, Olson EN, Bassel-Duby R. Mending broken hearts: Cardiac development as a basis for adult heart regeneration and repair. Nat Rev Mol Cell Biol 2013;14:529-41
  • Yamanaka S. Induced pluripotent stem cells: Past, present, and future. Cell Stem Cell 2012;10:678-84
  • Mercola M, Colas A, Willems E. Induced pluripotent stem cells in cardiovascular drug discovery. Circ Res 2013;112:534-48
  • Sallam K, Kodo K, Wu JC. Modeling inherited cardiac disorders. Circ J 2014;78:784-94
  • Tapscott SJ, Davis RL, Thayer MJ, et al. Myod1: A nuclear phosphoprotein requiring a myc homology region to convert fibroblasts to myoblasts. Science 1988;242:405-11
  • Willems E, Mercola M. Reprogramming the cardiac field. Circ Res 2014;114:409-11
  • Ieda M, Fu JD, Delgado-Olguin P, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 2010;142:375-86
  • Inagawa K, Miyamoto K, Yamakawa H, et al. Induction of cardiomyocyte-like cells in infarct hearts by gene transfer of gata4, mef2c, and tbx5. Circ Res 2012;111:1147-56
  • Wada R, Muraoka N, Inagawa K, et al. Induction of human cardiomyocyte-like cells from fibroblasts by defined factors. Proc Natl Acad Sci USA 2013;110:12667-72
  • Qian L, Huang Y, Spencer CI, et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 2012;485:593-8
  • Song K, Nam YJ, Luo X, et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 2012;485:599-604
  • Protze S, Khattak S, Poulet C, et al. A new approach to transcription factor screening for reprogramming of fibroblasts to cardiomyocyte-like cells. J Mol Cell Cardiol 2012;53:323-32
  • Eulalio A, Mano M, Dal Ferro M, et al. Functional screening identifies mirnas inducing cardiac regeneration. Nature 2012;492:376-81
  • Jayawardena TM, Egemnazarov B, Finch EA, et al. Microrna-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res 2012;110:1465-73
  • Nam YJ, Song K, Luo X, et al. Reprogramming of human fibroblasts toward a cardiac fate. Proc Natl Acad Sci USA 2013;110:5588-93
  • Papp B, Plath K. Epigenetics of reprogramming to induced pluripotency. Cell 2013;152:1324-43
  • Onder TT, Kara N, Cherry A, et al. Chromatin-modifying enzymes as modulators of reprogramming. Nature 2012;483:598-602
  • Hou P, Li Y, Zhang X, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 2013;341:651-4
  • Abad M, Mosteiro L, Pantoja C, et al. Reprogramming in vivo produces teratomas and ips cells with totipotency features. Nature 2013;502:340-5
  • Fu JD, Stone NR, Liu L, et al. Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state. Stem Cell Reports 2013;1:235-47
  • Islas JF, Liu Y, Weng KC, et al. Transcription factors ets2 and mesp1 transdifferentiate human dermal fibroblasts into cardiac progenitors. Proc Natl Acad Sci USA 2012;109:13016-21
  • Yang X, Pabon L, Murry CE. Engineering adolescence: Maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Res 2014;114:511-23
  • Lalit PA, Hei DJ, Raval AN, Kamp TJ. Induced pluripotent stem cells for post-myocardial infarction repair: Remarkable opportunities and challenges. Circ Res 2014;114:1328-45
  • Addis RC, Epstein JA. Induced regeneration--the progress and promise of direct reprogramming for heart repair. Nat Med 2013;19:829-36
  • Burridge PW, Keller G, Gold JD, Wu JC. Production of de novo cardiomyocytes: Human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell 2012;10:16-28
  • Nam YJ, Song K, Olson EN. Heart repair by cardiac reprogramming. Nat Med 2013;19:413-15
  • Qian L, Srivastava D. Direct cardiac reprogramming: From developmental biology to cardiac regeneration. Circ Res 2013;113:915-21
  • Fujiu K, Nagai R. Fibroblast-mediated pathways in cardiac hypertrophy. J Mol Cell Cardiol 2014;70:64-73
  • Mathison M, Gersch RP, Nasser A, et al. In vivo cardiac cellular reprogramming efficacy is enhanced by angiogenic preconditioning of the infarcted myocardium with vascular endothelial growth factor. J Am Heart Assoc 2012;1:e005652
  • Kurian L, Sancho-Martinez I, Nivet E, et al. Conversion of human fibroblasts to angioblast-like progenitor cells. Nat Methods 2013;10:77-83
  • Rentschler S, Yen AH, Lu J, et al. notch signaling reprograms cardiomyocytes to a conduction-like phenotype. Circulation 2012;126:1058-66
  • Kapoor N, Liang W, Marban E, Cho HC. Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of tbx18. Nat Biotechnol 2013;31:54-62
  • Hirt MN, Hansen A, Eschenhagen T. Cardiac tissue engineering: State of the art. Circ Res 2014;114:354-67
  • Badylak SF, Taylor D, Uygun K. Whole-organ tissue engineering: Decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 2011;13:27-53
  • Jay SM, Lee RT. Protein engineering for cardiovascular therapeutics: Untapped potential for cardiac repair. Circ Res 2013;113:933-43
  • Segers VF, Lee RT. Biomaterials to enhance stem cell function in the heart. Circ Res 2011;109:910-22
  • Vunjak-Novakovic G, Lui KO, Tandon N, Chien KR. Bioengineering heart muscle: A paradigm for regenerative medicine. Annu Rev Biomed Eng 2011;13:245-67
  • Ye L, Zimmermann WH, Garry DJ, Zhang J. Patching the heart: Cardiac repair from within and outside. Circ Res 2013;113:922-32
  • Tulloch NL, Muskheli V, Razumova MV, et al. Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 2011;109:47-59
  • Nunes SS, Miklas JW, Liu J, et al. Biowire: A platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat Methods 2013;10:781-7
  • Kim C, Majdi M, Xia P, et al. Non-cardiomyocytes influence the electrophysiological maturation of human embryonic stem cell-derived cardiomyocytes during differentiation. Stem Cells Dev 2010;19:783-95
  • Kim C, Wong J, Wen J, et al. Studying arrhythmogenic right ventricular dysplasia with patient-specific ipscs. Nature 2013;494:105-10
  • Bogaard H, Abe K, Noordegraaf A, Voelkel N. The right ventricle under pressure: Cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest 2009;135:794-804
  • Voelkel NF, Gomez-Arroyo J, Abbate A, et al. Pathobiology of pulmonary arterial hypertension and right ventricular failure. Eur Respir J 2012;40:1555-65
  • Vonk-Noordegraaf A, Haddad F, Chin KM, et al. Right heart adaptation to pulmonary arterial hypertension: Physiology and pathobiology. J Am Coll Cardiol 2013;62:D22-33
  • Voelkel N, Quaife R, Leinwand L, et al. Right ventricular function and failure: Report of a national heart, lung, blood institute working group on cellular and molecular mechanisms of right heart failure. Circulation 2006;114:1883-91
  • Pleger ST, Brinks H, Ritterhoff J, et al. Heart failure gene therapy: The path to clinical practice. Circ Res 2013;113:792-809

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.