536
Views
32
CrossRef citations to date
0
Altmetric
Review

Cell therapy in muscular dystrophies: many promises in mice and dogs, few facts in patients

, MD & , PhD

Bibliography

  • Skuk D, Goulet M, Roy B, et al. Dystrophin expression in muscles of Duchenne muscular dystrophy patients after high-density injections of normal myogenic cells. J Neuropathol Exp Neurol 2006;65:371-86
  • Skuk D, Goulet M, Roy B, et al. First test of a “high-density injection” protocol for myogenic cell transplantation throughout large volumes of muscles in a Duchenne muscular dystrophy patient: eighteen months follow-up. Neuromuscul Disord 2007;17:38-46
  • Skuk D, Roy B, Goulet M, et al. Dystrophin expression in myofibers of Duchenne muscular dystrophy patients following intramuscular injections of normal myogenic cells. Mol Ther 2004;9:475-82
  • Perie S, Trollet C, Mouly V, et al. Autologous myoblast transplantation for oculopharyngeal muscular dystrophy: a phase I/IIa clinical study. Mol Ther 2014;22:219-25
  • Quenneville SP, Tremblay JP. Ex vivo modification of cells to induce a muscle-based expression. Curr Gene Ther 2006;6:625-32
  • Skuk D. Myoblast transplantation for inherited myopathies: a clinical approach. Expert Opin Biol Ther 2004;4:1871-85
  • Yaffe D, Feldman M. The Formation of Hybrid Multinucleated Muscle Fibers from Myoblasts of Different Genetic Origin. Dev Biol 1965;11:300-17
  • Watt DJ, Lambert K, Morgan JE, et al. Incorporation of donor muscle precursor cells into an area of muscle regeneration in the host mouse. J Neurol Sci 1982;57:319-31
  • Mendell JR, Kissel JT, Amato AA, et al. Myoblast transfer in the treatment of Duchenne’s muscular dystrophy. New England Journal of Medicine 1995;333:832-8
  • Pavlath GK, Rich K, Webster SG, et al. Localization of muscle gene products in nuclear domains. Nature 1989;337:570-3
  • Alameddine HS, Louboutin JP, Dehaupas M, et al. Functional recovery induced by satellite cell grafts in irreversibly injured muscles. Cell Transplant 1994;3:3-14
  • Wernig A, Zweyer M, Irintchev A. Function of skeletal muscle tissue formed after myoblast transplantation into irradiated mouse muscles. J Physiol (Lond) 2000;522:333-45
  • Wernig A, Irintchev A, Lange G. Functional effects of myoblast implantation into histoincompatible mice with or without immunosuppression. J Physiol (Lond) 1995;484:493-504
  • Irintchev A, Langer M, Zweyer M, et al. Functional improvement of damaged adult mouse muscle by implantation of primary myoblasts. J Physiol (Lond) 1997;500:775-85
  • Irintchev A, Rosenblatt JD, Cullen MJ, et al. Ectopic skeletal muscles derived from myoblasts implanted under the skin. J Cell Sci 1998;111:3287-97
  • Kinoshita I, Vilquin JT, Tremblay JP. Mechanism of increasing dystrophin-positive myofibers by myoblast transplantation: study using mdx/beta-galactosidase transgenic mice. Acta Neuropathol 1996;91:489-93
  • Hagege AA, Carrion C, Menasche P, et al. Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy. Lancet 2003;361:491-2
  • Yokota T, Lu QL, Morgan JE, et al. Expansion of revertant fibers in dystrophic mdx muscles reflects activity of muscle precursor cells and serves as an index of muscle regeneration. J Cell Sci 2006;119:2679-87
  • Yao SN, Kurachi K. Implanted myoblasts not only fuse with myofibers but also survive as muscle precursor cells. J Cell Sci 1993;105:957-63
  • Gross JG, Morgan JE. Muscle precursor cells injected into irradiated mdx mouse muscle persist after serial injury. Muscle Nerve 1999;22:174-85
  • Xu X, Yang Z, Liu Q, et al. In vivo fluorescence imaging of muscle cell regeneration by transplanted EGFP-labeled myoblasts. Mol Ther 2010;18:835-42
  • Heslop L, Beauchamp JR, Tajbakhsh S, et al. Transplanted primary neonatal myoblasts can give rise to functional satellite cells as identified using the Myf5(nlacZl+) mouse. Gene Ther 2001;8:778-83
  • Skuk D, Paradis M, Goulet M, et al. Intramuscular transplantation of human postnatal myoblasts generates functional donor-derived satellite cells. Mol Ther 2010;18:1689-97
  • Collins CA, Olsen I, Zammit PS, et al. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 2005;122:289-301
  • Sacco A, Doyonnas R, Kraft P, et al. Self-renewal and expansion of single transplanted muscle stem cells. Nature 2008
  • Montarras D, Morgan J, Collins C, et al. Direct isolation of satellite cells for skeletal muscle regeneration. Science 2005;309:2064-7
  • Kuang S, Kuroda K, Le Grand F, et al. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 2007;129:999-1010
  • Cerletti M, Jurga S, Witczak CA, et al. Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles. Cell 2008;134:37-47
  • Asakura A, Seale P, Girgis-Gabardo A, et al. Myogenic specification of side population cells in skeletal muscle. J Cell Biol 2002;159:123-34
  • Mitchell KJ, Pannerec A, Cadot B, et al. Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development. Nat Cell Biol 2010;12:257-66
  • Vauchez K, Marolleau JP, Schmid M, et al. Aldehyde dehydrogenase activity identifies a population of human skeletal muscle cells with high myogenic capacities. Mol Ther 2009;17:1948-58
  • Negroni E, Riederer I, Chaouch S, et al. In vivo myogenic potential of human CD133+ muscle-derived stem cells: a quantitative study. Mol Ther 2009;17:1771-8
  • Dellavalle A, Sampaolesi M, Tonlorenzi R, et al. Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 2007;9:255-67
  • Carlson BM. Muscle regeneration in amphibians and mammals: passing the torch. Dev Dyn 2003;226:167-81
  • Sambasivan R, Yao R, Kissenpfennig A, et al. Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 2011;138:3647-56
  • Lepper C, Partridge TA, Fan CM. An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 2011;138:3639-46
  • Murphy MM, Lawson JA, Mathew SJ, et al. Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 2011;138:3625-37
  • Zammit PS, Golding JP, Nagata Y, et al. Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol 2004
  • Skuk D, Tremblay JP. Myoblast transplantation: the current status of a potential therapeutic tool for myopathies. J Muscle Res Cell Motil 2003;24:285-300
  • Pin CL, Merrifield PA. Developmental potential of rat L6 myoblasts in vivo following injection into regenerating muscles. Dev Biol 1997;188:147-66
  • Cantini M, Massimino ML, Catani C, et al. Gene transfer into satellite cell from regenerating muscle: bupivacaine allows beta-Gal transfection and expression in vitro and in vivo. In Vitro Cell Dev Biol Anim 1994;30A:131-3
  • Kornegay JN, Prattis SM, Bogan DJ, et al. Results of myoblast transplantation in a canine model of muscle injury. In: Kakulas BA, Howell JM, Roses AD, editors. Duchenne muscular dystrophy: Animal models and genetic manipulation. Raven Press, Ltd; New York: 1992. p. 203-12
  • Ito H, Vilquin JT, Skuk D, et al. Myoblast transplantation in non-dystrophic dog. Neuromuscul Disord 1998;8:95-110
  • Skuk D, Goulet M, Paradis M, et al. Myoblast transplantation: techniques in nonhuman primates as a bridge to clinical trials. In: Soto-Gutierrez A, Navarro-Alvarez N, Fox IJ, editors. Methods in bioengineering: cell transplantation. Artech House; Boston: 2011. p. 219-36
  • Coulet B, Lacombe F, Lazerges C, et al. Short- or long-term effects of adult myoblast transfer on properties of reinnervated skeletal muscles. Muscle Nerve 2006;33:254-64
  • Cesar M, Roussanne-Domergue S, Coulet B, et al. Transplantation of adult myoblasts or adipose tissue precursor cells by high-density injection failed to improve reinnervated skeletal muscles. Muscle Nerve 2008;37:219-30
  • Holzer N, Hogendoorn S, Zurcher L, et al. Autologous transplantation of porcine myogenic precursor cells in skeletal muscle. Neuromuscul Disord 2005;15:237-44
  • Skuk D, Goulet M, Roy B, et al. Myoblast transplantation in whole muscle of nonhuman primates. J Neuropathol Exp Neurol 2000;59:197-206
  • Skuk D, Goulet M, Roy B, et al. Efficacy of myoblast transplantation in nonhuman primates following simple intramuscular cell injections: toward defining strategies applicable to humans. Exp Neurol 2002;175:112-26
  • Skuk D, Roy B, Goulet M, et al. Successful myoblast transplantation in primates depends on appropriate cell delivery and induction of regeneration in the host muscle. Exp Neurol 1999;155:22-30
  • Webster C, Blau HM. Accelerated age-related decline in replicative life-span of Duchenne muscular dystrophy myoblasts: implications for cell and gene therapy. Somat Cell Mol Genet 1990;16:557-65
  • Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 2007;448:318-24
  • Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131:861-72
  • Mizuno Y, Chang H, Umeda K, et al. Generation of skeletal muscle stem/progenitor cells from murine induced pluripotent stem cells. Faseb J 2010;24:2245-53
  • Darabi R, Pan W, Bosnakovski D, et al. Functional myogenic engraftment from mouse iPS cells. Stem Cell Rev 2011;7:948-57
  • Darabi R, Arpke RW, Irion S, et al. Human ES- and iPS-derived myogenic progenitors restore dystrophin and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell 2012;10:610-19
  • Filareto A, Parker S, Darabi R, et al. An ex vivo gene therapy approach to treat muscular dystrophy using inducible pluripotent stem cells. Nat Commun 2013;4:1549
  • Chang H, Yoshimoto M, Umeda K, et al. Generation of transplantable, functional satellite-like cells from mouse embryonic stem cells. FASEB J 2009;23:1907-19
  • Goudenege S, Lebel C, Huot NB, et al. Myoblasts derived from normal hESCs and dystrophic hiPSCs efficiently fuse with existing muscle fibers following transplantation. Mol Ther 2012;20:2153-67
  • Barberi T, Bradbury M, Dincer Z, et al. Derivation of engraftable skeletal myoblasts from human embryonic stem cells. Nat Med 2007;13:642-8
  • Negroni E, Gidaro T, Bigot A, et al. Invited review: Stem cells and muscle diseases: advances in cell therapy strategies. Neuropathol Appl Neurobiol 2015;41:270-87
  • Zammit PS, Heslop L, Hudon V, et al. Kinetics of myoblast proliferation show that resident satellite cells are competent to fully regenerate skeletal muscle fibers. Exp Cell Res 2002;281:39-49
  • Pannerec A, Marazzi G, Sassoon D. Stem cells in the hood: the skeletal muscle niche. Trends Mol Med 2012;18:599-606
  • Crisan M, Yap S, Casteilla L, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008;3:301-13
  • Zheng B, Cao B, Crisan M, et al. Prospective identification of myogenic endothelial cells in human skeletal muscle. Nat Biotechnol 2007;25:1025-34
  • Qu-Petersen Z, Deasy B, Jankowski R, et al. Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol 2002;157:851-64
  • Sarig R, Baruchi Z, Fuchs O, et al. Regeneration and transdifferentiation potential of muscle-derived stem cells propagated as myospheres. Stem Cells 2006;24:1769-78
  • Rouger K, Larcher T, Dubreil L, et al. Systemic delivery of allogenic muscle stem cells induces long-term muscle repair and clinical efficacy in duchenne muscular dystrophy dogs. Am J Pathol 2011;179:2501-18
  • Yin AH, Miraglia S, Zanjani ED, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 1997;90:5002-12
  • Benchaouir R, Meregalli M, Farini A, et al. Restoration of human dystrophin following transplantation of exon-skipping-engineered DMD patient stem cells into dystrophic mice. Cell Stem Cell 2007;1:646-57
  • Torrente Y, Belicchi M, Marchesi C, et al. Autologous transplantation of muscle-derived CD133+ stem cells in Duchenne muscle patients. Cell Transplant 2007;16:563-77
  • Sampaolesi M, Torrente Y, Innocenzi A, et al. Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 2003;301:487-92
  • Sampaolesi M, Blot S, D’Antona G, et al. Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 2006;444:574-9
  • Davies KE, Grounds MD. Treating muscular dystrophy with stem cells? Cell 2006;127:1304-6
  • Grounds MD, Davies KE. The allure of stem cell therapy for muscular dystrophy. Neuromuscul Disord 2007;17:206-8
  • Bretag AH. Stem cell treatment of dystrophic dogs. Nature 2007;450:E23; discussion E-5
  • Tedesco FS, Dellavalle A, Diaz-Manera J, et al. Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J Clin Invest 2010;120:11-19
  • Tonlorenzi R, Dellavalle A, Schnapp E, et al. Isolation and characterization of mesoangioblasts from mouse, dog, and human tissues. Curr Protoc Stem Cell Biol 2007; Chapter 2:Unit 2B 1
  • Puchtler H, Sweat F, Terry MS, et al. Investigation of staining, polarization and fluorescence-microscopic properties of myoendothelial cells. J Microsc 1969;89:95-104
  • Tamaki T, Akatsuka A, Ando K, et al. Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle. J Cell Biol 2002;157:571-7
  • Liadaki K, Casar JC, Wessen M, et al. beta4 integrin marks interstitial myogenic progenitor cells in adult murine skeletal muscle. J Histochem Cytochem 2012;60:31-44
  • Lewis FC, Henning BJ, Marazzi G, et al. Porcine skeletal muscle-derived multipotent PW1pos/Pax7neg interstitial cells: isolation, characterization, and long-term culture. Stem Cells Translat Med 2014;3:702-12
  • Grounds MD. Skeletal muscle precursors do not arise from bone marrow cells. Cell Tissue Res 1983;234:713-22
  • Schultz E, Jaryszak DL, Gibson MC, et al. Absence of exogenous satellite cell contribution to regeneration of frozen skeletal muscle. J Muscle Res Cell Motil 1986;7:361-7
  • Wakeford S, Watt DJ, Partridge TA. X-irradiation improves mdx mouse muscle as a model of myofiber loss in DMD. Muscle Nerve 1991;14:42-50
  • Weller B, Karpati G, Lehnert S, et al. Inhibition of myosatellite cell proliferation by gamma irradiation does not prevent the age-related increase of the number of dystrophin- positive fibers in soleus muscles of mdx female heterozygote mice. Am J Pathol 1991;138:1497-502
  • Rosenblatt JD, Parry DJ. Gamma irradiation prevents compensatory hypertrophy of overloaded mouse extensor digitorum longus muscle. J Appl Physiol 1992;73:2538-43
  • Robertson TA, Grounds MD, Papadimitriou JM. Elucidation of aspects of murine skeletal muscle regeneration using local and whole body irradiation. J Anat 1992;181(Pt 2):265-76
  • Ferrari G, Cusella-De Angelis G, Coletta M, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998;279:1528-30
  • Gussoni E, Soneoka Y, Strickland CD, et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 1999;401:390-4
  • Ferrari G, Stornaiuolo A, Mavilio F. Failure to correct murine muscular dystrophy. Nature 2001;411:1014-15
  • Dell’Agnola C, Wang Z, Storb R, et al. Hematopoietic stem cell transplantation does not restore dystrophin expression in Duchenne muscular dystrophy dogs. Blood 2004;104:4311-18
  • Gussoni E, Bennett RR, Muskiewicz KR, et al. Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow transplantation. J Clin Invest 2002;110:807-14
  • Kang PB, Lidov HG, White AJ, et al. Inefficient dystrophin expression after cord blood transplantation in Duchenne muscular dystrophy. Muscle Nerve 2010;41:746-50
  • Luth ES, Jun SJ, Wessen MK, et al. Bone marrow side population cells are enriched for progenitors capable of myogenic differentiation. J Cell Sci 2008;121:1426-34
  • Rodriguez AM, Pisani D, Dechesne CA, et al. Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. J Exp Med 2005;201:1397-405
  • Vieira NM, Valadares M, Zucconi E, et al. Human adipose-derived mesenchymal stromal cells injected systemically into GRMD dogs without immunosuppression are able to reach the host muscle and express human dystrophin. Cell Transplant 2012;21:1407-17
  • Ichim TE, Alexandrescu DT, Solano F, et al. Mesenchymal stem cells as anti-inflammatories: implications for treatment of Duchenne muscular dystrophy. Cell Immunol 2010;260:75-82
  • Vilquin JT, Catelain C, Vauchez K. Cell therapy for muscular dystrophies: advances and challenges. Curr Opin Organ Transplant 2011;16:640-9
  • Perrin S. Make mouse studies work. Nature 2014;507:423-5
  • Mak IW, Evaniew N, Ghert M. Lost in translation: animal models and clinical trials in cancer treatment. Am J Translat Res 2014;6:114-18
  • Landis SC, Amara SG, Asadullah K, et al. A call for transparent reporting to optimize the predictive value of preclinical research. Nature 2012;490:187-91
  • Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology. J Immunol 2004;172:2731-8
  • Borisov AB. Regeneration of skeletal and cardiac muscle in mammals: do nonprimate models resemble human pathology? Wound Repair Regen 1999;7:26-35
  • Boldrin L, Muntoni F, Morgan JE. Are human and mouse satellite cells really the same? J Histochem Cytochem 2010;58:941-55
  • Carlson BM. The biology of muscle transplantation. In: Freilinger GJ, Holle J, Carlson BM, editors. Muscle transplantation. Springer-Verlag; Vienna: 1981. p. 3-18
  • Grounds MD, McGeachie JK. Myogenic cell replication in minced skeletal muscle isografts of Swiss and BALBc mice. Muscle Nerve 1990;13:305-13
  • Pichavant C, Chapdelaine P, Cerri DG, et al. Expression of dog microdystrophin in mouse and dog muscles by gene therapy. Mol Ther 2010;18:1002-9
  • Liu GE, Matukumalli LK, Sonstegard TS, et al. Genomic divergences among cattle, dog and human estimated from large-scale alignments of genomic sequences. BMC Genomics 2006;7:140
  • Kirk AD. Transplantation tolerance: a look at the nonhuman primate literature in the light of modern tolerance theories. Crit Rev Immunol 1999;19:349-88
  • Kirk AD. Crossing the bridge: large animal models in translational transplantation research. Immunol Rev 2003;196:176-96
  • Begley CG, Ellis LM. Drug development: Raise standards for preclinical cancer research. Nature 2012;483:531-3
  • Skuk D, Goulet M, Tremblay JP. Electroporation as a method to induce myofiber regeneration and increase the engraftment of myogenic cells in skeletal muscles of primates. J Neuropathol Exp Neurol 2013;72:723-34
  • Skuk D, Goulet M, Tremblay JP. Intramuscular transplantation of myogenic cells in primates: importance of needle size, cell number, and injection volume. Cell Transplant 2014;23:13-25
  • O’Brien L, Varadi R, Goldstein RS, et al. Cardiac management of ventilator-assisted individuals with Duchenne muscular dystrophy. Chron Respir Dis 2014;11:103-10
  • Lai Y, Duan D. Progress in gene therapy of dystrophic heart disease. Gene Ther 2012;19:678-85
  • Snow WM, Anderson JE, Jakobson LS. Neuropsychological and neurobehavioral functioning in Duchenne muscular dystrophy: a review. Neurosci Biobehav Rev 2013;37:743-52
  • Richard PL, Gosselin C, Laliberte T, et al. A first semimanual device for clinical intramuscular repetitive cell injections. Cell Transplant 2010;19:67-78
  • Skuk D, Goulet M, Tremblay JP. Use of repeating dispensers to increase the efficiency of the intramuscular myogenic cell injection procedure. Cell Transplant 2006;15:659-63
  • Skuk D, Tremblay JP. First study of intra-arterial delivery of myogenic mononuclear cells to skeletal muscles in primates. Cell Transplant 2014;23(Suppl 1):141-50
  • Brar JE, Nader ND. Immune minimization strategies in renal transplantation. Immunol Invest 2014;43:807-18
  • Saidi RF, Hejazii Kenari SK. Clinical transplantation and tolerance: are we there yet? Int J Organ Transplant Med 2014;5:137-45

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.