649
Views
34
CrossRef citations to date
0
Altmetric
Reviews

Challenges in engineering osteochondral tissue grafts with hierarchical structures

(Assistant professor) & (Mikati Foundation Professor of Biomedical Engineering and Medical Sciences, Director)

Bibliography

  • Falah M, Nierenberg G, Soudry M, et al. Treatment of articular cartilage lesions of the knee. Int Orthop 2010;34(5):621-30
  • Jacobs JCJr, Archibald-Seiffer N, Grimm NL, et al. A review of arthroscopic classification systems for osteochondritis dissecans of the knee. The Orthop Clin North Am 2015;46(1):133-9
  • Millikan PD, Karas V, Wellman SS. Treatment of osteonecrosis of the femoral head with vascularized bone grafting. Curr Rev Musculoskelet Med 2015. [Epub ahead of print]
  • Glyn-Jones S, Palmer AJ, Agricola R, et al. Osteoarthritis. Lancet 2015. [ Epub ahead of print]
  • Bitton R. The economic burden of osteoarthritis. Am J Manag Care 2009;15(8 Suppl):S230-5
  • Lynch TS, Patel RM, Benedick A, et al. Systematic review of autogenous osteochondral transplant outcomes. Arthroscopy 2015;31(4):746-54
  • De Caro F, Bisicchia S, Amendola A, Ding L. Large fresh osteochondral allografts of the knee: a systematic clinical and basic science review of the literature. Arthroscopy 2015;31(4):757-65
  • Buda R, Vannini F, Castagnini F, et al. Regenerative treatment in osteochondral lesions of the talus: autologous chondrocyte implantation versus one-step bone marrow derived cells transplantation. Int Orthop 2015;39(5):893-900
  • Sherman SL, Garrity J, Bauer K, et al. Fresh osteochondral allograft transplantation for the knee: current concepts. J Am Acad Orthop Surg 2014;22(2):121-33
  • Vunjak-Novakovic G. Tissue engineering strategies for skeletal repair. HSS J 2012;8(1):57-8
  • Grayson WL, Chao PH, Marolt D, et al. Engineering custom-designed osteochondral tissue grafts. Trends biotechnol 2008;26(4):181-9
  • Kon E, Roffi A, Filardo G, et al. Scaffold-based cartilage treatments: with or without cells? a systematic review of preclinical and clinical evidence. Arthroscopy 2015;31(4):767-75
  • Lopa S, Madry H. Bioinspired scaffolds for osteochondral regeneration. Tissue Eng Part A 2014;20(15-16):2052-76
  • Mosher TJ. Functional anatomy and structure of the “osteochondral unit”. In: Bruno MA, Gold GE, Mosher TJ, editors. Arthritis in color: advanced imaging of arthritis. Elsevier Saunders, Philadelphia PA; 2009. p. 23-32
  • Athanasiou KA, Darling EM, Hu JC. Articular cartilage tissue engineering. Synthesis Lectures On Tissue Engineering 2009;1(1):1-182
  • Yang PJ, Temenoff JS. Engineering orthopedic tissue interfaces. Tissue Eng Part B Rev 2009;15(2):127-41
  • Nukavarapu SP, Dorcemus DL. Osteochondral tissue engineering: current strategies and challenges. Biotechnol Advan 2013;31(5):706-21
  • Lories RJ, Luyten FP. The bone-cartilage unit in osteoarthritis. Nat Rev Rheumatol 2011;7(1):43-9
  • Madry H, Cucchiarini M. Signalling pathways in osteochondral defect regeneration. In: Zreiqat H, Dunstan CR, Rosen V, editors. A tissue regeneration approach to bone and cartilage repai. Springer International Publishing, Heidelberg, Germany; 2015. p. 219-28
  • Hoemann CD, Lafantaisie-Favreau CH, Lascau-Coman V, et al. The cartilage-bone interface. J Knee Surg 2012;25(2):85-97
  • Vunjak-Novakovic G, Scadden DT. Biomimetic platforms for human stem cell research. Cell Stem Cell 2011;8(3):252-61
  • Alexander PG, Gottardi R, Lin H, et al. Three-dimensional osteogenic and chondrogenic systems to model osteochondral physiology and degenerative joint diseases. Exp Biol Med 2014;239(9):1080-95
  • Lozito TP, Alexander PG, Lin H, et al. Three-dimensional osteochondral microtissue to model pathogenesis of osteoarthritis. Stem Cell Res Ther 2013;4(Suppl 1):S6
  • Makris EA, Gomoll AH, Malizos KN, et al. Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol 2015;11(1):21-34
  • Dunkin BS, Lattermann C. New and Emerging Techniques in Cartilage Repair: MACI. Oper Tech Sports Med 2013;21(2):100-7
  • Bornes TD, Adesida AB, Jomha NM. Mesenchymal stem cells in the treatment of traumatic articular cartilage defects: a comprehensive review. Arth Res Ther 2014;16(5):432
  • Veronesi F, Maglio M, Tschon M, et al. Adipose-derived mesenchymal stem cells for cartilage tissue engineering: state-of-the-art in in vivo studies. J Biomed Mater Res Part A 2014;102(7):2448-66
  • Preitschopf A, Zwickl H, Li K, et al. Chondrogenic differentiation of amniotic fluid stem cells and their potential for regenerative therapy. Stem Cell Rev 2012;8(4):1267-74
  • Kim YS, Lee HJ, Yeo JE, et al. Isolation and characterization of human mesenchymal stem cells derived from synovial fluid in patients with osteochondral lesion of the talus. Am J Sports Med 2015;43(2):399-406
  • Suzuki S, Muneta T, Tsuji K, et al. Properties and usefulness of aggregates of synovial mesenchymal stem cells as a source for cartilage regeneration. Arth Res Ther 2012;14(3):R136
  • Roberts SJ, van Gastel N, Carmeliet G, Luyten FP. Uncovering the periosteum for skeletal regeneration: the stem cell that lies beneath. Bone 2015;70:10-18
  • Saw KY, Anz A, Siew-Yoke Jee C, et al. Articular cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: a randomized controlled trial. Arthroscopy 2013;29(4):684-94
  • Chang NJ, Lam CF, Lin CC, et al. Transplantation of autologous endothelial progenitor cells in porous PLGA scaffolds create a microenvironment for the regeneration of hyaline cartilage in rabbits. Osteoarthritis Cartilage 2013;21(10):1613-22
  • Yu L, Weng Y, Shui X, et al. Multipotent Adult Progenitor Cells from Bone Marrow Differentiate into Chondrocyte-Like Cells. J Arthroplasty 2015;30(7):1273-6
  • Solchaga LA, Penick K, Goldberg VM, et al. Fibroblast growth factor-2 enhances proliferation and delays loss of chondrogenic potential in human adult bone-marrow-derived mesenchymal stem cells. Tissue Eng Part A 2010;16(3):1009-19
  • Nejadnik H, Diecke S, Lenkov OD, et al. Improved approach for chondrogenic differentiation of human induced pluripotent stem cells. Stem Cell Rev 2015;11(2):242-53
  • de Peppo GM, Vunjak-Novakovic G, Marolt D. Cultivation of human bone-like tissue from pluripotent stem cell-derived osteogenic progenitors in perfusion bioreactors. Methods Mol Biol 2014;1202:173-84
  • Ko JY, Kim KI, Park S, Im GI. In vitro chondrogenesis and in vivo repair of osteochondral defect with human induced pluripotent stem cells. Biomaterials 2014;35(11):3571-81
  • Bigdeli N, Karlsson C, Strehl R, et al. Coculture of human embryonic stem cells and human articular chondrocytes results in significantly altered phenotype and improved chondrogenic differentiation. Stem Cells 2009;27(8):1812-21
  • Lee TJ, Jang J, Kang S, et al. Mesenchymal stem cell-conditioned medium enhances osteogenic and chondrogenic differentiation of human embryonic stem cells and human induced pluripotent stem cells by mesodermal lineage induction. Tissue Eng Part A 2014;20(7-8):1306-13
  • Marolt D, Campos IM, Bhumiratana S, et al. Engineering bone tissue from human embryonic stem cells. Proc Natl Acad Sci USA 2012;109(22):8705-9
  • Cheng A, Hardingham TE, Kimber SJ. Generating cartilage repair from pluripotent stem cells. Tissue Eng Part B Rev 2014;20(4):257-66
  • Oldershaw RA, Baxter MA, Lowe ET, et al. Directed differentiation of human embryonic stem cells toward chondrocytes. Nat Biotechnol 2010;28(11):1187-94
  • Yodmuang S, Marolt D, Marcos-Campos I, et al. Synergistic effects of hypoxia and morphogenetic factors on early chondrogenic commitment of human embryonic stem cells in embryoid body culture. Stem Cell Rev 2015;11(2):228-41
  • Gadjanski I, Spiller K, Vunjak-Novakovic G. Time-dependent processes in stem cell-based tissue engineering of articular cartilage. Stem Cell Rev 2012;8(3):863-81
  • Bhumiratana S, Vunjak-Novakovic G. Engineering physiologically stiff and stratified human cartilage by fusing condensed mesenchymal stem cells. Methods 2015. [ Epub ahead of print]
  • Bhumiratana S, Eton RE, Oungoulian SR, et al. Large, stratified, and mechanically functional human cartilage grown in vitro by mesenchymal condensation. Proc Natl Acad Sci USA 2014;111(19):6940-5
  • Athanasiou KA, Eswaramoorthy R, Hadidi P, Hu JC. Self-organization and the self-assembling process in tissue engineering. Ann Rev Biomed Eng 2013;15:115-36
  • Seo SJ, Mahapatra C, Singh RK, et al. Strategies for osteochondral repair: Focus on scaffolds. J Tissue Eng 2014;5:2041731414541850
  • Yodmuang S, McNamara SL, Nover AB, et al. Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta biomater 2015;11:27-36
  • Carter AJ. Implants for soft and hard tissue regeneration. Google Patents 2014
  • Malafaya PB, Silva GA, Reis RL. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 2007;59(4-5):207-33
  • Cosson S, Otte EA, Hezaveh H, Cooper-White JJ. Concise review: tailoring bioengineered scaffolds for stem cell applications in tissue engineering and regenerative medicine. Stem Cells Transl Med 2015;4(2):156-64
  • Place ES, George JH, Williams CK, Stevens MM. Synthetic polymer scaffolds for tissue engineering. Chem Soc Rev 2009;38(4):1139-51
  • Oh SH, Lee JH. Hydrophilization of synthetic biodegradable polymer scaffolds for improved cell/tissue compatibility. Biomed Mater 2013;8(1):014101
  • Mohan N, Nair PD. Polyvinyl alcohol-poly(caprolactone) semi IPN scaffold with implication for cartilage tissue engineering. J Biomed Mater Res Part B Appl Biomater 2008;84(2):584-94
  • Shafiee A, Soleimani M, Chamheidari GA, et al. Electrospun nanofiber-based regeneration of cartilage enhanced by mesenchymal stem cells. J Biomed Mater Res Part A 2011;99(3):467-78
  • Oliveira JM, Rodrigues MT, Silva SS, et al. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials 2006;27(36):6123-37
  • Xia Z, Villa MM, Wei M. A biomimetic collagen-apatite scaffold with a multi-level lamellar structure for bone tissue engineering. J Materials Chem B Mater Biol Med 2014;2(14):1998-2007
  • Harley BA, Lynn AK, Wissner-Gross Z, et al. Design of a multiphase osteochondral scaffold. II. Fabrication of a mineralized collagen-glycosaminoglycan scaffold. J Biomed Mater Res Part A 2010;92(3):1066-77
  • Grigolo B, Cavallo C, Desando G, et al. Novel nano-composite biomimetic biomaterial allows chondrogenic and osteogenic differentiation of bone marrow concentrate derived cells. J Mater Sci Mater Med 2015;26(4):5500
  • Perez RA, Won JE, Knowles JC, Kim HW. Naturally and synthetic smart composite biomaterials for tissue regeneration. Adv Drug Deliv Rev 2013;65(4):471-96
  • Tampieri A, Landi E, Valentini F, et al. A conceptually new type of bio-hybrid scaffold for bone regeneration. Nanotechnology 2011;22(1):015104
  • Jeon JE, Vaquette C, Theodoropoulos C, et al. Multiphasic construct studied in an ectopic osteochondral defect model. J R Soc Interface 2014;11(95):20140184
  • Yan L, Oliveira JM, Oliveira AL, Reis RL. Current concepts and challenges in osteochondral tissue engineering and regenerative medicine. ACS Biomater Sci Eng 2015. [ Epub ahead of print]
  • Ren K, He C, Xiao C, et al. Injectable glycopolypeptide hydrogels as biomimetic scaffolds for cartilage tissue engineering. Biomaterials 2015;51:238-49
  • Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater 2005;4(7):518-24
  • Singh M, Berkland C, Detamore MS. Strategies and applications for incorporating physical and chemical signal gradients in tissue engineering. Tissue Eng Part B Rev 2008;14(4):341-66
  • Jeon JE, Vaquette C, Klein TJ, Hutmacher DW. Perspectives in multiphasic osteochondral tissue engineering. Anatom Rec 2014;297(1):26-35
  • Grayson WL, Bhumiratana S, Grace Chao PH, et al. Spatial regulation of human mesenchymal stem cell differentiation in engineered osteochondral constructs: effects of pre-differentiation, soluble factors and medium perfusion. Osteoarthritis Cartilage 2010;18(5):714-23
  • Melton JT, Wilson AJ, Chapman-Sheath P, Cossey AJ. TruFit CB bone plug: chondral repair, scaffold design, surgical technique and early experiences. Expert Rev Med Dev 2010;7(3):333-41
  • Verhaegen J, Clockaerts S, Van Osch GJ, et al. TruFit plug for repair of osteochondral defects-where is the evidence? systematic review of literature. Cartilage 2015;6(1):12-19
  • Schaefer D, Martin I, Shastri P, et al. In vitro generation of osteochondral composites. Biomaterials 2000;21(24):2599-606
  • Yousefi AM, Hoque ME, Prasad RG, Uth N. Current strategies in multiphasic scaffold design for osteochondral tissue engineering: A review. J Biomed Mater Res Part A 2015;103(7):2460-81
  • Kon E, Delcogliano M, Filardo G, et al. Novel nano-composite multilayered biomaterial for osteochondral regeneration: a pilot clinical trial. Am J Sports Med 2011;39(6):1180-90
  • Kon E, Filardo G, Di Martino A, et al. Clinical results and MRI evolution of a nano-composite multilayered biomaterial for osteochondral regeneration at 5 years. Am J Sports Med 2014;42(1):158-65
  • Tampieri A, Sandri M, Landi E, et al. Design of graded biomimetic osteochondral composite scaffolds. Biomaterials 2008;29(26):3539-46
  • Christensen BB, Foldager CB, Jensen J, et al. Poor osteochondral repair by a biomimetic collagen scaffold: 1- to 3-year clinical and radiological follow-up. Knee Surg Sports Traumatol Arthrosc 2015. [ Epub ahead of print]
  • Di Luca A, Van Blitterswijk C, Moroni L. The osteochondral interface as a gradient tissue: From development to the fabrication of gradient scaffolds for regenerative medicine. Birth Defects Res Part C Embryo Today 2015;105(1):34-52
  • Garg T, Goyal AK. Biomaterial-based scaffolds--current status and future directions. Expert Opin Drug Deliv 2014;11(5):767-89
  • Dormer NH, Singh M, Wang L, et al. Osteochondral interface tissue engineering using macroscopic gradients of bioactive signals. Ann Biomed Eng 2010;38(6):2167-82
  • Mohan N, Gupta V, Sridharan B, et al. The potential of encapsulating “raw materials” in 3D osteochondral gradient scaffolds. Biotechnol Bioeng 2014;111(4):829-41
  • Qu D, Mosher CZ, Boushell MK, Lu HH. Engineering complex orthopaedic tissues via strategic biomimicry. Ann Biomed Eng 2015;43(3):697-717
  • Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005;26(27):5474-91
  • Mallick KK, Cox SC. Biomaterial scaffolds for tissue engineering. Front Biosci 2013;5:341-60
  • Goulet RW, Goldstein SA, Ciarelli MJ, et al. The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech 1994;27(4):375-89
  • Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 2013;19(6):485-502
  • Mikos AG, Temenoff JS. Formation of highly porous biodegradable scaffolds for tissue engineering. Elect J Biotechnol 2000;3(2):23-4
  • Wang X, Ding B, Li B. Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today 2013;16(6):229-41
  • Shi J, Wang L, Zhang F, et al. Incorporating protein gradient into electrospun nanofibers as scaffolds for tissue engineering. ACS Appl Mater Interfaces 2010;2(4):1025-30
  • Chen G, Lv Y. Immobilization and application of electrospun nanofiber scaffold-based growth factor in bone tissue engineering. Curr Pharm Des 2015;21(15):1967-78
  • Weng L, Xie J. Smart electrospun nanofibers for controlled drug release: recent advances and new perspectives. Curr Pharm Des 2015;21(15):1944-59
  • Amler E, Filova E, Buzgo M, et al. Functionalized nanofibers as drug-delivery systems for osteochondral regeneration. Nanomedicine 2014;9(7):1083-94
  • Vaquette C, Cooper-White J. A simple method for fabricating 3-D multilayered composite scaffolds. Acta Biomater 2013;9(1):4599-608
  • Yang W, Yang F, Wang Y, et al. In vivo bone generation via the endochondral pathway on three-dimensional electrospun fibers. Acta Biomater 2013;9(1):4505-12
  • Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol 2014;32(8):773-85
  • Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Mater Today 2013;16(12):496-504
  • Lee JY, Choi B, Wu B, Lee M. Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering. Biofabrication 2013;5(4):045003
  • Cui X, Gao G, Yonezawa T, Dai G. Human cartilage tissue fabrication using three-dimensional inkjet printing technology. J Vis Exp 2014;88
  • Cui X, Breitenkamp K, Finn MG, et al. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A 2012;18(11-12):1304-12
  • Zhang X, Zhang Y. Tissue Engineering Applications of Three-Dimensional Bioprinting. Cell Biochem Biophy 2015; Epub ahead of print
  • Xu T, Binder KW, Albanna MZ, et al. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 2013;5(1):015001
  • Roach BL, Hung CT, Cook JL, et al. Fabrication of tissue engineered osteochondral grafts for restoring the articular surface of diarthroidal joints. Methods 2015; Epub ahead of print
  • Lima EG, Mauck RL, Han SH, et al. Functional tissue engineering of chondral and osteochondral constructs. Biorheology 2004;41(3-4):577-90
  • Vunjak-Novakovic G, Martin I, Obradovic B, et al. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J Orthop Res 1999;17(1):130-8
  • Foster NC, Henstock JR, Reinwald Y, El Haj AJ. Dynamic 3D culture: Models of chondrogenesis and endochondral ossification. Birth Defects Res Part C Embryo Today 2015;105(1):19-33
  • Frohlich M, Grayson WL, Marolt D, et al. Bone grafts engineered from human adipose-derived stem cells in perfusion bioreactor culture. Tissue Eng Part A 2010;16(1):179-89
  • Grayson WL, Frohlich M, Yeager K, et al. Engineering anatomically shaped human bone grafts. Proc Natl Acad Sci USA 2010;107(8):3299-304
  • Temple JP, Yeager K, Bhumiratana S, et al. Bioreactor cultivation of anatomically shaped human bone grafts. Methods Mol Biol 2014;1202:57-78
  • Feinberg SE, Hollister SJ, Halloran JW, et al. Image-based biomimetic approach to reconstruction of the temporomandibular joint. Cells Tissues Organs 2001;169(3):309-21
  • Bancroft GN, Sikavitsas VI, van den Dolder J, et al. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc Natl Acad Sci USA 2002;99(20):12600-5
  • Cheng HW, Luk KD, Cheung KM, Chan BP. In vitro generation of an osteochondral interface from mesenchymal stem cell-collagen microspheres. Biomaterials 2011;32(6):1526-35
  • St-Pierre JP, Gan L, Wang J, et al. The incorporation of a zone of calcified cartilage improves the interfacial shear strength between in vitro-formed cartilage and the underlying substrate. Acta Biomater 2012;8(4):1603-15
  • Lee WD, Hurtig MB, Pilliar RM, et al. Engineering of hyaline cartilage with a calcified zone using bone marrow stromal cells. Osteoarthritis Cartilage 2015; Epub ahead of print
  • Lin H, Lozito TP, Alexander PG, et al. Stem cell-based microphysiological osteochondral system to model tissue response to interleukin-1beta. Mol Pharm 2014;11(7):2203-12
  • Boccaccio A, Ballini A, Pappalettere C, et al. Finite element method (FEM), mechanobiology and biomimetic scaffolds in bone tissue engineering. Int J Biol Sci 2011;7(1):112-32
  • Lacroix D, Planell JA, Prendergast PJ. Computer-aided design and finite-element modelling of biomaterial scaffolds for bone tissue engineering. Philos Trans Series A Math Phys Eng Sci 2009;367(1895):1993-2009
  • Hutmacher DW, Singh H. Computational fluid dynamics for improved bioreactor design and 3D culture. Trends Biotechnol 2008;26(4):166-72
  • Correia C, Grayson WL, Park M, et al. In vitro model of vascularized bone: synergizing vascular development and osteogenesis. PLoS One 2011;6(12):e28352
  • Spiller KL, Anfang RR, Spiller KJ, et al. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 2014;35(15):4477-88
  • Matta C, Zakany R. Calcium signalling in chondrogenesis: implications for cartilage repair. Front Biosci (Schol Ed) 2013;5:305-24

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.