143
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Recent advances in the development of a chemically synthesised anti-malarial vaccine

, &

Bibliography

  • WHO. World malaria report. WHO global malaria programme. 2013;2013
  • Patarroyo ME, Amador R, Clavijo P, et al. A synthetic vaccine protects humans against challenge with asexual blood stages of Plasmodium falciparum malaria. Nature 1988;332(6160):158-61
  • Zavala F, Tam JP, Barr PJ, et al. Synthetic peptide vaccine confers protection against murine malaria. J Exp Med 1987;166(5):1591-6
  • Nussenzweig RS, Vanderberg J, Most H, et al. Protective immunity produced by the injection of x-irradiated sporozoites of plasmodium berghei. Nature 1967;216(5111):160-2
  • Noya O, Gabaldon Berti Y, Alarcon de Noya B, et al. A population-based clinical trial with the SPf66 synthetic Plasmodium falciparum malaria vaccine in Venezuela. J Infect Dis 1994;170(2):396-402
  • Epstein JE, Tewari K, Lyke KE, et al. Live attenuated malaria vaccine designed to protect through hepatic CD8(+) T cell immunity. Science 2011;334(6055):475-80
  • Mahajan B, Berzofsky JA, Boykins RA, et al. Multiple antigen peptide vaccines against Plasmodium falciparum malaria. Infect Immun 2010;78(11):4613-24
  • Seder RA, Chang LJ, Enama ME, et al. Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science 2013;341(6152):1359-65
  • Hill AV. Vaccines against malaria. Philos Trans R Soc Lond B Biol Sci 2011;366(1579):2806-14
  • Casares S, Richie TL. Immune evasion by malaria parasites: a challenge for vaccine development. Curr Opin Immunol 2009;21(3):321-30
  • Patarroyo ME, Bermudez A, Patarroyo MA. Structural and immunological principles leading to chemically synthesized, multiantigenic, multistage, minimal subunit-based vaccine development. Chem Rev 2011;111(5):3459-507
  • Hisaeda H, Yasutomo K, Himeno K. Malaria: immune evasion by parasites. Int J Biochem Cell Biol 2005;37(4):700-6
  • Moisa AA, Kolesanova EF. Synthetic peptide vaccines biochemistry (Moscow) supplement series B. Biochemical Chemistry 2010;4(4):321-32
  • Purcell AW, McCluskey J, Rossjohn J. More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov 2007;6(5):404-14
  • Vaughan K, Blythe M, Greenbaum J, et al. Meta-analysis of immune epitope data for all Plasmodia: overview and applications for malarial immunobiology and vaccine-related issues. Parasite Immunol 2009;31(2):78-97
  • Patarroyo ME, Romero P, Torres ML, et al. Induction of protective immunity against experimental infection with malaria using synthetic peptides. Nature 1987;328(6131):629-32
  • Amador R, Moreno A, Murillo LA, et al. Safety and immunogenicity of the synthetic malaria vaccine SPf66 in a large field trial. J Infect Dis 1992;166(1):139-44
  • Patarroyo G, Franco L, Amador R, et al. Study of the safety and immunogenicity of the synthetic malaria SPf66 vaccine in children aged 1-14 years. Vaccine 1992;10(3):175-8
  • Alonso PL, Smith T, Schellenberg JR, et al. Randomised trial of efficacy of SPf66 vaccine against Plasmodium falciparum malaria in children in southern Tanzania. Lancet 1994;344(8931):1175-81
  • Sempertegui F, Estrella B, Moscoso J, et al. Safety, immunogenicity and protective effect of the SPf66 malaria synthetic vaccine against Plasmodium falciparum infection in a randomized double-blind placebo-controlled field trial in an endemic area of Ecuador. Vaccine 1994;12(4):337-42
  • Valero MV, Amador R, Aponte JJ, et al. Evaluation of SPf66 malaria vaccine during a 22-month follow-up field trial in the Pacific coast of Colombia. Vaccine 1996;14(15):1466-70
  • Acosta CJ, Galindo CM, Schellenberg D, et al. Evaluation of the SPf66 vaccine for malaria control when delivered through the EPI scheme in Tanzania. Trop Med Int Health 1999;4(5):368-76
  • D’Alessandro U, Leach A, Drakeley CJ, et al. Efficacy trial of malaria vaccine SPf66 in Gambian infants. Lancet 1995;346(8973):462-7
  • Perrin LH, Simitsek P, Fasani-Ghersa P. Asexual blood stage vaccines: from merozoites to peptides. Trans R Soc Trop Med Hyg 1989;83(Suppl):53-6
  • Merrifield R. Solid phase peptide synthesis. I the synthesis of a tetrapeptide. J Am Chem Soc 1963;85:2149
  • Arnon R. Chemically defined antiviral vaccines. Annu Rev Microbiol 1980;34:593-618
  • Cheung A, Leban J, Shaw AR, et al. Immunization with synthetic peptides of a Plasmodium falciparum surface antigen induces antimerozoite antibodies. Proc Natl Acad Sci USA 1986;83(21):8328-32
  • Houghten RA. General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc Natl Acad Sci USA 1985;82(15):5131-5
  • Boman HG, Wade D, Boman IA, et al. Antibacterial and antimalarial properties of peptides that are cecropin-melittin hybrids. FEBS Lett 1989;259(1):103-6
  • Francis MJ, Fry CM, Rowlands DJ, et al. Qualitative and quantitative differences in the immune response to foot-and-mouth disease virus antigens and synthetic peptides. J Gen Virol 1988;69(Pt 10):2483-91
  • Shinnick TM, Sutcliffe JG, Green N, et al. Synthetic peptide immunogens as vaccines. Annu Rev Microbiol 1983;37:425-46
  • Olive C, Toth I, Jackson D. Technological advances in antigen delivery and synthetic peptide vaccine developmental strategies. Mini Rev Med Chem 2001;1(4):429-38
  • Meloen RH, Langeveld JP, Schaaper WM, et al. Synthetic peptide vaccines: unexpected fulfilment of discarded hope? Biologicals 2001;29(3-4):233-6
  • Arnon R, Van Regenmortel MH. Structural basis of antigenic specificity and design of new vaccines. FASEB J 1992;6(14):3265-74
  • McAnally JL, Xu L, Villain M, et al. The role of adjuvants in the efficacy of a peptide vaccine for myasthenia gravis. Exp Biol Med 2001;226(4):307-11
  • Wang CY, Chang TY, Walfield AM, et al. Effective synthetic peptide vaccine for foot-and-mouth disease in swine. Vaccine 2002;20(19-20):2603-10
  • Kan SC, Yamaga KM, Kramer KJ, et al. Plasmodium falciparum: protein antigens identified by analysis of serum samples from vaccinated Aotus monkeys. Infect Immun 1984;43(1):276-82
  • Dubois P, Dedet JP, Fandeur T, et al. Protective immunization of the squirrel monkey against asexual blood stages of Plasmodium falciparum by use of parasite protein fractions. Proc Natl Acad Sci U S A 1984;81(1):229-32
  • Collins WE, Anders RF, Pappaioanou M, et al. Immunization of Aotus monkeys with recombinant proteins of an erythrocyte surface antigen of Plasmodium falciparum. Nature 1986;323(6085):259-62
  • Siddiqui WA. An effective immunization of Aotus trivirgatus monkeys against Plasmodium falciparum: a research note. Bull World Health Organ 1977;55(2-3):403
  • Zavala F, Tam JP, Hollingdale MR, et al. Rationale for development of a synthetic vaccine against Plasmodium falciparum malaria. Science 1985;228(4706):1436-40
  • Carcaboso AM, Hernandez RM, Igartua M, et al. Immune response after oral administration of the encapsulated malaria synthetic peptide SPf66. Int J Pharm 2003;260(2):273-82
  • Carcaboso AM, Hernandez RM, Igartua M, et al. Potent, long lasting systemic antibody levels and mixed Th1/Th2 immune response after nasal immunization with malaria antigen loaded PLGA microparticles. Vaccine 2004;22(11-12):1423-32
  • Mata E, Igartua M, Hernandez RM, et al. Comparison of the adjuvanticity of two different delivery systems on the induction of humoral and cellular responses to synthetic peptides. Drug Deliv 2010;17(7):490-9
  • Rosas JE, Hernandez RM, Gascon AR, et al. Biodegradable PLGA microspheres as a delivery system for malaria synthetic peptide SPf66. Vaccine 2001;19(31):4445-51
  • Rosas JE, Pedraz JL, Hernandez RM, et al. Remarkably high antibody levels and protection against P. falciparum malaria in Aotus monkeys after a single immunisation of SPf66 encapsulated in PLGA microspheres. Vaccine 2002;20(13-14):1707-10
  • Tanner M, Teuscher T, Alonso PL. SPf66-The First Malaria Vaccine. Parasitol Today 1995;11(1):10-13
  • Amador R, Moreno A, Valero V, et al. The first field trials of the chemically synthesized malaria vaccine SPf66: safety, immunogenicity and protectivity. Vaccine 1992;10(3):179-84
  • Valero MV, Amador LR, Galindo C, et al. Vaccination with SPf66, a chemically synthesised vaccine, against Plasmodium falciparum malaria in Colombia. Lancet 1993;341(8847):705-10
  • Graves P, Gelband H. Vaccines for preventing malaria (SPf66). Cochrane Database Syst Rev 2006(2):CD005966
  • Calvo M, Guzman F, Perez E, et al. Specific interactions of synthetic peptides derived from P. falciparum merozoite proteins with human red blood cells. Pept Res 1991;4(6):324-33
  • Rodriguez LE, Curtidor H, Urquiza M, et al. Intimate molecular interactions of P. falciparum merozoite proteins involved in invasion of red blood cells and their implications for vaccine design. Chem Rev 2008;108(9):3656-705
  • Curtidor H, Vanegas M, Alba MP, et al. Functional, immunological and three-dimensional analysis of chemically synthesised sporozoite peptides as components of a fully-effective antimalarial vaccine. Curr Med Chem 2011;18(29):4470-502
  • Garcia JE, Puentes A, Patarroyo ME. Developmental biology of sporozoite-host interactions in Plasmodium falciparum malaria: implications for vaccine design. Clin Microbiol Rev 2006;19(4):686-707
  • Rodriguez LE, Urquiza M, Ocampo M, et al. Plasmodium falciparum EBA-175 kDa protein peptides which bind to human red blood cells. Parasitology 2000;120(Pt 3):225-35
  • Urquiza M, Rodriguez LE, Suarez JE, et al. Identification of Plasmodium falciparum MSP-1 peptides able to bind to human red blood cells. Parasite Immunol 1996;18(10):515-26
  • Rudensky A, Preston-Hurlburt P, Hong SC, et al. Sequence analysis of peptides bound to MHC class II molecules. Nature 1991;353(6345):622-7
  • Hunt DF, Michel H, Dickinson TA, et al. Peptides presented to the immune system by the murine class II major histocompatibility complex molecule I-Ad. Science 1992;256(5065):1817-20
  • Brown JH, Jardetzky TS, Gorga JC, et al. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 1993;364(6432):33-9
  • Young MD, Porter JAJr, Johnson CM. Plasmodium vivax transmitted from man to monkey to man. Science 1966;153(3739):1006-7
  • Diaz D, Daubenberger CA, Zalac T, et al. Sequence and expression of MHC-DPB1 molecules of the New World monkey Aotus nancymaae, a primate model for Plasmodium falciparum. Immunogenetics 2002;54(4):251-9
  • Diaz OL, Daubenberger CA, Rodriguez R, et al. Immunoglobulin kappa light-chain V, J, and C gene sequences of the owl monkey Aotus nancymaae. Immunogenetics 2000;51(3):212-18
  • Suarez CF, Patarroyo ME, Trujillo E, et al. Owl monkey MHC-DRB exon 2 reveals high similarity with several HLA-DRB lineages. Immunogenetics 2006;58(7):542-58
  • Castillo F, Guerrero C, Trujillo E, et al. Identifying and structurally characterizing CD1b in Aotus nancymaae owl monkeys. Immunogenetics 2004;56(7):480-9
  • Moncada CA, Guerrero E, Cardenas P, et al. The T-cell receptor in primates: identifying and sequencing new owl monkey TRBV gene sub-groups. Immunogenetics 2005;57(1-2):42-52
  • Guerrero JE, Pacheco DP, Suarez CF, et al. Characterizing T-cell receptor gamma-variable gene in Aotus nancymaae owl monkey peripheral blood. Tissue Antigens 2003;62(6):472-82
  • Espejo F, Cubillos M, Salazar LM, et al. Structure, Immunogenicity, and Protectivity Relationship for the 1585 Malarial Peptide and Its Substitution Analogues. Angew Chem Int Ed Engl 2001;40(24):4654-7
  • Guzman F, Jaramillo K, Salazar LM, et al. 1H-NMR structures of the Plasmodium falciparum 1758 erythrocyte binding peptide analogues and protection against malaria. Life Sci 2002;71(23):2773-85
  • Purmova J, Salazar LM, Espejo F, et al. NMR structure of Plasmodium falciparum malaria peptide correlates with protective immunity. Biochim Biophys Acta 2002;1571(1):27-33
  • Sturchler D, Berger R, Rudin C, et al. Safety, immunogenicity, and pilot efficacy of Plasmodium falciparum sporozoite and asexual blood-stage combination vaccine in Swiss adults. Am J Trop Med Hyg 1995;53(4):423-31
  • Herrington DA, Clyde DF, Davis JR, et al. Human studies with synthetic peptide sporozoite vaccine (NANP)3-TT and immunization with irradiated sporozoites. Bull World Health Organ 1990;68(Suppl):33-7
  • Patthy L. Protein evolution. 2nd edition. Blackwell Publishing Ltd; 1999
  • Allen PM, Matsueda GR, Adams S, et al. Enhanced immunogenicity of a T cell immunogenic peptide by modifications of its N and C termini. Int Immunol 1989;1(2):141-50
  • Patarroyo ME, Alba MP, Vargas LE, et al. Peptides inducing short-lived antibody responses against Plasmodium falciparum malaria have shorter structures and are read in a different MHC II functional register. Biochemistry 2005;44(18):6745-54
  • Patarroyo ME, Patarroyo MA. Emerging rules for subunit-based, multiantigenic, multistage chemically synthesized vaccines. Acc Chem Res 2008;41(3):377-86
  • Cifuentes G, Bermudez A, Rodriguez R, et al. Shifting the polarity of some critical residues in malarial peptides’ binding to host cells is a key factor in breaking conserved antigens’ code of silence. Med Chem 2008;4(3):278-92
  • Satterthwait AC, Chiang LC, Arrhenius T, et al. The conformational restriction of synthetic vaccines for malaria. Bull World Health Organ 1990;68(Suppl):17-25
  • Alba MP, Salazar LM, Purmova J, et al. Induction and displacement of a helix in the 6725 SERA peptide analogue confers protection against P. falciparum malaria. Vaccine 2004;22(9-10):1281-9
  • Patarroyo ME, Cifuentes G, Martinez NL, et al. Atomic fidelity of subunit-based chemically-synthesized antimalarial vaccine components. Prog Biophys Mol Biol 2010;102(1):38-44
  • Hamaoka BY, Ghosh P. Structure of the essential Plasmodium host cell traversal protein SPECT1. PLoS One 2014;9(12):e114685
  • Patarroyo ME, Alba MP, Reyes C, et al. The Malaria Parasite’s Achilles’ Heel: Functionally-relevant Invasion Structures. Curr Issues Mol Biol 2015;18:11-20
  • Tolia NH, Enemark EJ, Sim BK, et al. Structural basis for the EBA-175 erythrocyte invasion pathway of the malaria parasite Plasmodium falciparum. Cell 2005;122(2):183-93
  • Salazar LM, Alba MP, Torres MH, et al. Protection against experimental malaria associated with AMA-1 peptide analogue structures. FEBS Lett 2002;527(1-3):95-100
  • Alba MP, Salazar LM, Vargas LE, et al. Modifying RESA protein peptide 6671 to fit into HLA-DRbeta1* pockets induces protection against malaria. Biochem Biophys Res Commun 2004;315(4):1154-64
  • Patarroyo ME, Bermudez A, Alba MP. The high immunogenicity induced by modified sporozoites’ malarial peptides depends on their phi (varphi) and psi (psi) angles. Biochem Biophys Res Commun 2012;429(1-2):81-6
  • Patarroyo ME, Moreno-Vranich A, Bermudez A. Phi (Phi) and psi (Psi) angles involved in malarial peptide bonds determine sterile protective immunity. Biochem Biophys Res Commun 2012;429(1-2):75-80
  • Adzhubei AA, Sternberg MJ. Left-handed polyproline II helices commonly occur in globular proteins. J Mol Biol 1993;229(2):472-93
  • Adzhubei AA, Sternberg MJ, Makarov AA. Polyproline-II helix in proteins: structure and function. J Mol Biol 2013;425(12):2100-32
  • Patarroyo ME, Cifuentes G, Vargas LE, et al. Structural modifications enable conserved peptides to fit into MHC molecules thus inducing protection against malaria. ChemBioChem 2004;5(11):1588-93
  • Bermudez A, Vanegas M, Patarroyo ME. Structural and immunological analysis of circumsporozoite protein peptides: a further step in the identification of potential components of a minimal subunit-based, chemically synthesised antimalarial vaccine. Vaccine 2008;26(52):6908-18
  • Patarroyo ME, Cifuentes G, Pirajan C, et al. Atomic evidence that modification of H-bonds established with amino acids critical for host-cell binding induces sterile immunity against malaria. Biochem Biophys Res Commun 2010;394(3):529-35
  • Patarroyo ME, Cifuentes G, Rodriguez R. Structural characterisation of sporozoite components for a multistage, multi-epitope, anti-malarial vaccine. Int J Biochem Cell Biol 2008;40(3):543-57
  • Patarroyo ME, Almonacid H, Moreno-Vranich A. The role of amino acid electron-donor/acceptor atoms in host-cell binding peptides is associated with their 3D structure and HLA-binding capacity in sterile malarial immunity induction. Biochem Biophys Res Commun 2012;417(3):938-44
  • Rath A, Davidson AR, Deber CM. The structure of "unstructured" regions in peptides and proteins: role of the polyproline II helix in protein folding and recognition. Biopolymers 2005;80(2-3):179-85
  • Stern LJ, Brown JH, Jardetzky TS, et al. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature 1994;368(6468):215-21
  • Smith KJ, Pyrdol J, Gauthier L, et al. Crystal structure of HLA-DR2 (DRA*0101, DRB1*1501) complexed with a peptide from human myelin basic protein. J Exp Med 1998;188(8):1511-20
  • Dessen A, Lawrence CM, Cupo S, et al. X-ray crystal structure of HLA-DR4 (DRA*0101, DRB1*0401) complexed with a peptide from human collagen II. Immunity 1997;7(4):473-81
  • Patarroyo MA, Bermudez A, Lopez C, et al. 3D analysis of the TCR/pMHCII complex formation in monkeys vaccinated with the first peptide inducing sterilizing immunity against human malaria. PLoS One 2010;5(3):e9771
  • Ghosh P, Amaya M, Mellins E, et al. The structure of an intermediate in class II MHC maturation: CLIP bound to HLA-DR3. Nature 1995;378(6556):457-62
  • Jardetzky TS, Brown JH, Gorga JC, et al. Crystallographic analysis of endogenous peptides associated with HLA-DR1 suggests a common, polyproline II-like conformation for bound peptides. Proc Natl Acad Sci U S A 1996;93(2):734-8
  • Rossmeisl J, Kristensen I, Gregersen M, et al. Beta-sheet preferences from first principles. J Am Chem Soc 2003;125(52):16383-6
  • Patarroyo ME, Bermudez A, Alba MP, et al. IMPIPS: The immune protection-inducing protein structure concept in the search for steric-electron and topochemical principles for complete fully-protective chemically synthesised vaccine development. PLoS One 2015;10(4):e0123249
  • Bermudez A, Calderon D, Moreno-Vranich A, et al. Gauche(+) side-chain orientation as a key factor in the search for an immunogenic peptide mixture leading to a complete fully protective vaccine. Vaccine 2014;32(18):2117-26
  • Fattom A, Cho YH, Chu C, et al. Epitopic overload at the site of injection may result in suppression of the immune response to combined capsular polysaccharide conjugate vaccines. Vaccine 1999;17(2):126-33
  • Hunt JD, Jackson DC, Brown LE, et al. Antigenic competition in a multivalent foot rot vaccine. Vaccine 1994;12(5):457-64
  • Sedegah M, Charoenvit Y, Minh L, et al. Reduced immunogenicity of DNA vaccine plasmids in mixtures. Gene Ther 2004;11(5):448-56
  • Marti M, Good RT, Rug M, et al. Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science 2004;306(5703):1930-3
  • Tossavainen H, Pihlajamaa T, Huttunen TK, et al. The layered fold of the TSR domain of P. falciparum TRAP contains a heparin binding site. Protein Sci 2006;15(7):1760-8
  • Hadders MA, Beringer DX, Gros P. Structure of C8alpha-MACPF reveals mechanism of membrane attack in complement immune defense. Science 2007;317(5844):1552-4
  • Patarroyo ME, Alba MP, Curtidor H. Biological and structural characteristics of the binding peptides from the sporozoite proteins essential for cell traversal (SPECT)-1 and -2. Peptides 2011;32(1):154-60
  • Pizarro JC, Chitarra V, Verger D, et al. Crystal structure of a Fab complex formed with PfMSP1-19, the C-terminal fragment of merozoite surface protein 1 from Plasmodium falciparum: a malaria vaccine candidate. J Mol Biol 2003;328(5):1091-103
  • Hodder AN, Malby RL, Clarke OB, et al. Structural insights into the protease-like antigen Plasmodium falciparum SERA5 and its noncanonical active-site serine. J Mol Biol 2009;392(1):154-65
  • Bermudez A, Moreno-Vranich A, Patarroyo ME. Protective immunity provided by a new modified SERA protein peptide: its immunogenetic characteristics and correlation with 3D structure. Amino Acids 2012;43(1):183-94

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.