657
Views
6
CrossRef citations to date
0
Altmetric
Review

Promising new therapies for the treatment of hypercholesterolemia

, , &
Pages 609-618 | Received 02 Oct 2015, Accepted 26 Jan 2016, Published online: 15 Feb 2016

References

  • Goff DC Jr, Lloyd-Jones DM, Bennett G, et al. American college of cardiology/American heart association task force on practice guidelines. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American college of cardiology/American heart association task force on practice guidelines. Circulation. 2014;129:S49–73.
  • Bohula EA, Giugliano RP, Cannon CP, et al. Achievement of dual low density lipoprotein cholesterol and high sensitivity c-reactive protein targets more frequent with the addition of Ezetimibe to simvastatin and associated with better outcomes in IMPROVE-IT. Circulation. 2015;132:1224–1233. doi:10.1161/CIRCULATIONAHA.115.018381.
  • Silva MA, Swanson AC, Gandhi PJ, et al. Statin-related adverse events: a meta-analysis. Clin Ther. 2006;28:26–35. doi:10.1016/j.clinthera.2006.01.005.
  • Cohen JC, Boerwinkle E, Mosley TH Jr, et al. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354:1264–1272. doi:10.1056/NEJMoa054013.
  • Abifadel M, Varret M, Rabes J-P, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34:154–156. doi:10.1038/ng1161.
  • Cohen J, Pertsemlidis A, Kotowski IK, et al. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet. 2005;37:161–165. doi:10.1038/ng1509.
  • Bjørklund MM, Hollensen AK, Hagensen MK, et al. Induction of atherosclerosis in mice and hamsters without germline genetic engineering. Circ Res. 2014;114:1684–1689.
  • Nohturfft A, DeBose‐Boyd RA, Scheek S, et al. Sterols regulate cycling of SREBP cleavage‐activating protein (SCAP) between endoplasmic reticulum and Golgi. Proc Natl Acad Sci USA. 1999;96:11235–11240.
  • Berge KE, Ose L, Leren TP. Missense mutations in the PCSK9 gene are associated with hypocholesterolemia and possibly increased response to statin therapy. Arterioscler Thromb Vasc Biol. 2006;26:1094–1100.
  • Sahebkar A, Watts GF. New LDL-cholesterol lowering therapies: pharmacology, clinical trials, and relevance to acute coronary syndromes. Clin Ther. 2013;35:1082–1098. doi:10.1016/j.clinthera.2013.06.019.
  • Chan JC, Piper DE, Cao Q, et al. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc Natl Acad Sci U S A. 2009;106:9820–9825. doi:10.1073/pnas.0903849106.
  • Koren MJ, Lundqvist P, Bolognese M, et al. MENDEL-2 Investigators. Anti-PCSK9 monotherapy for hypercholesterolemia: the MENDEL-2 randomized, controlled phase III clinical trial of evolocumab. J Am Coll Cardiol. 2014;63:2531–2540. doi:10.1016/j.jacc.2014.03.018.
  • Robinson JG, Nedergaard BS, Rogers WJ, et al. LAPLACE-2 investigators. Effect of evolocumab or ezetimibe added to moderate- or high-intensity statin therapy on LDL-C lowering in patients with hypercholesterolemia: the LAPLACE-2 randomized clinical trial. JAMA. 2014;311:1870–1882. doi:10.1001/jama.2014.4030.
  • Raal FJ, Stein EA, Dufour R, et al. RUTHERFORD-2 Investigators. PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;385:331–340. doi:10.1016/S0140-6736(14)61399-4.
  • Walton TA, Nishtar S, Lumb PJ, et al. Pro-protein convertase subtilisin/kexin 9 oncentrations correlate with coronary artery disease atheroma burden in a Pakistani cohort with chronic chest pain. Int J Clin Pract. 2015;69:738–742. doi:10.1111/ijcp.12615.
  • Kuhnast S, van der Hoorn JW, Pieterman EJ, et al. Alirocumab inhibits atherosclerosis, improves the plaque morphology, and enhances the effects of a statin. J Lipid Res. 2014;55:2103–2112. doi:10.1194/jlr.M041038.
  • Robinson JG, Farnier M, Krempf M, et al. ODYSSEY LONG TERM Investigators. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1489–1499. doi:10.1056/NEJMoa1501031.
  • Sabatine MS, Giugliano RP, Wiviott SD, et al. Open-label study of long-term evaluation against LDL cholesterol (OSLER) investigators. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1500–1509. doi:10.1056/NEJMoa1500858.
  • Blom DJ, Hala T, Bolognese M, et al. The DESCARTES Investigators. A 52-week placebo-controlled trial of evolocumab in hyperlipidemia. N Engl J Med. 2014;370:1809–1819. doi:10.1056/NEJMoa1316222.
  • Kiyosue A, Honarpour N, Xue A, et al. Effects of evolocumab (AMG 145) in hypercholesterolemic, statin-treated, Japanese patients at high cardiovascular risk: results from the phase III yukawa 2 study. J Am Coll Cardiol. 2015;65(A1369). doi:10.1016/j.jacc.2014.11.040.
  • Stroes E, Colquhoun D, Sullivan D, et al. GAUSS-2 Investigators. Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: the GAUSS-2 randomized, placebo-controlled phase 3 clinical trial ofevolocumab. J Am Coll Cardiol. 2014;63:2541–2548. doi:10.1016/j.jacc.2014.03.019.
  • Amgen. Further cardiovascular outcomes research with PCSK9 inhibition in subjects with elevated risk (FOURIER) [ClinicalTrials.gov identifier: NCT01764633]; [updated 2015 Oct 30]. Available from: http://clinicaltrials.gov/show/NCT01764633
  • Toth PP, Sattar N, Genest J, et al. A comprehensive safety analysis of 6026 patients from phase 2 and 3 short and long term clinical trials with evolocumab (AMG 145). J Am Coll Cardiol. 2015;65(A1351). doi:10.1016/j.jacc.2014.11.040.
  • Roth EM, Taskinen M, Ginsberg H, et al. A 24-week study of alirocumab as monotherapy versus ezetimibe: the first Phase 3 data of a proprotein convertase subtilisin/kexin type 9 inhibitor. J Am Coll Cardiol. 2014;63(12):A1370. doi:10.1016/S0735-1097(14)61370-X.
  • Moriarty PM, Thompson PD, Cannon CP, et al. ODYSSEY ALTERNATIVE: efficacy and safety of the proprotein convertase subtilisin/kexin type 9 monoclonal antibody, alirocumab, versus ezetimibe, in patients with statin intolerance as defined by a placebo run-in and statin rechallenge arm. Circulation. 2014;130:2108–2109.
  • Sanofi. Phase III study to evaluate alirocumab in patients with hypercholesterolemia not treated with a statin (ODYSSEY CHOICE II) [ClinicalTrials.gov identifier: NCT02023879]; [updated 2015 Oct 30]. Available from https://clinicaltrials.gov/ct2/show/NCT02023879
  • Kereiakes DJ, Robinson JG, Cannon CP, et al. Efficacy and safety of the proprotein convertase subtilisin/kexin type 9 inhibitor alirocumab among high cardiovascular risk patients on maximally tolerated statin therapy: the ODYSSEY COMBO I study. Am Heart J. 2015;169:906–915. doi:10.1016/j.ahj.2015.03.004.
  • Cannon CP, Cariou B, Blom D, et al. Efficacy and safety of alirocumab in high cardiovascular risk patients with inadequately controlled hypercholesterolaemia on maximally tolerated doses of statins: the ODYSSEY COMBO II randomized controlled trial. Eur Heart J. 2015;36:1186–1194. doi:10.1093/eurheartj/ehv028.
  • Bays H, Gaudet D, Weiss R, et al. Alirocumab as add-on to atorvastatin versus other lipid treatment strategies: ODYSSEY OPTIONS I randomized trial. J Clin Endocrinol Metab. 2015;100:3140–3148. doi:10.1210/jc.2014-3941.
  • Bays H, Farnier M, Gaudet D, et al. Efficacy and safety of combining alirocumab with atorvastatin or rosuvastatin versus statin intensification or adding ezetimibe in high cardiovascular risk patients: ODYSSEY OPTIONS I and II. Circulation. 2015;130:2118–2119.
  • Regeneron Pharmaceuticals Inc, Sanofi-aventis. PRALUENT (alirocumab): US prescribing Information; 2015. [updated 2015 Oct 30]. Available from http://www.regeneron.com/Praluent/Praluent-fpi.pdf
  • Ballantyne CM, Neutel J, Cropp A, et al. Results of bococizumab, a monoclonal antibody against proprotein convertase subtilisin/kexin type 9, from a randomized, placebo-controlled, dose-ranging study in statin-treated subjects with hypercholesterolemia. Am J Cardiol. 2015;115:1212–1221. doi:10.1016/j.amjcard.2015.02.006.
  • Pfizer. The evaluation of PF-04950615 (RN316), in reducing the occurrence of major cardiovascular events in high risk subjects (SPIRE-1) [ClinicalTrials.gov identifier: NCT01975376];[updated 2015 Oct 30]. Available from: http://clinicaltrials.gov/ct2/show/NCT01975376
  • Pfizer. The evaluation of PF-04950615 (RN316) in reducing the occurrence of major cardiovascular events in high risk subjects (SPIRE-2) [ClinicalTrials.gov identifier: NCT01975389]; [updated 2015 Oct 30] Available from: https://clinicaltrials.gov/ct2/show/results/NCT01975389
  • Kastelein J, Nissen S, Rader D, et al. Safety and efficacy of LY3015014, a new monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9) with an inherently longer duration of action, in patients with primary hypercholesterolemia: A randomized, placebo-controlled, dose-ranging, phase 2 study. J Am Coll Cardiol. 2015;65(10_S). doi:10.1016/j.jacc.2014.11.040.
  • Tingley W, Luca D, Leabman M, et al. Effects of RG7652, a fully human mAb against proprotein convertase subtilisin/kexin type 9, on LDL-c: a Phase I, randomised, double-blind, placebo-controlled, single- and multiple-dose study. Eur Heart J. 2013;34(Suppl 1). doi:10.1093/eurheartj/eht309.P4183.
  • Mitchell T, Chao G, Sitkoffv D. Pharmacologic profile of the adnectin BMS-962476, a small protein biologic alternative to PCSK9 antibodies for LDL lowering. J Pharmacol Exp Ther. 2014;350:412–424. doi:10.1124/jpet.114.214221.
  • Stein EA, Kasichayanula S, Turner T, et al. LDL cholesterol reduction with BMS-962476, an adnectin inhibitor of PCSK9: results of a single ascending dose study. J Am Coll Cardiol. 2014;63(12 Suppl):A172. doi:10.1016/S0735-1097(14)61372-3.
  • Fitzgerald K, Frank-Kamenetsky M, Shulga-Morskaya S, et al. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration ofserum LDL cholesterol in healthy volunteers: a randomised, singleblind, placebo-controlled, phase 1 trial. Lancet. 2014;383:60–68. doi:10.1016/S0140-6736(13)61612-8.
  • Vasan RS, Pencina MJ, Robins SJ, et al. Association of circulating cholesteryl ester transfer protein with incidence of cardiovascular disease in the community. Circulation. 2009;120:14–20. doi:10.1161/CIRCULATIONAHA.109.872705.
  • Brousseau ME, Schaefer EJ, Wolfe ML, et al. Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. N Engl J Med. 2004;350:1505–1515. doi:10.1056/NEJMoa031766.
  • Barter PJ, Caulfield M, Eriksson M, et al. ILLUMINATE Investigators. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357:2109–2122. doi:10.1056/NEJMoa0706628.
  • Nissen SE, Tardif JC, Nicholls SJ, et al. Effect of torcetrapib on the progression of coronary atherosclerosis. N Engl J Med. 2007;356:1304–1316. doi:10.1056/NEJMc063190.
  • Kastelein JJ, Van Leuven SI, Burgess L, et al. Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia. N Engl J Med. 2007;356:1620–1630. doi:10.1056/NEJMc063190.
  • Barter P. Lessons learned from the investigation of lipid level management to understand its impact in atherosclerotic events (ILLUMINATE) trial. Am J Cardiol. 2009;104:10E–15E. doi:10.1016/j.amjcard.2009.09.014.
  • Kuivenhoven JA, De Grooth GJ, Kawamura H, et al. Effectiveness of inhibition of cholesteryl ester transfer protein by JTT-705 in combination with pravastatin in type II dyslipidemia. Am J Cardiol. 2005;95:1085–1088. doi:10.1016/j.amjcard.2005.01.026.
  • Schwartz G, Chaitman BBR, Holme IM, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367:2089–2099. doi:10.1056/NEJMoa1206797.
  • Fayad ZA, Mani V, Woodward M, et al. dal-PLAQUE Investigators. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomized clinical trial. Lancet. 2011;378:1547–1559. doi:10.1016/S0140-6736(11)60984-7.
  • Lu¨scher TF, Taddei S, Kaski J-C, et al. dal-VESSEL Investigators. Vascular effects and safety of dalcetrapib in patients with or at risk of coronary heart disease: the dal-VESSEL randomized clinical trial. Eur Heart J. 2012;33:857–865. doi:10.1093/eurheartj/ehs019.
  • Bloomfield D, Carlson GL, Sapre A, et al. Efficacy and safety of the cholesteryl ester transfer protein inhibitor anacetrapib as monotherapy and coadministered with atorvastatin in dyslipidemic patients. Am Heart J. 2009;157:352–360. doi:10.1016/j.ahj.2008.09.022.
  • Cannon CP, Shah S, Dansky HM, et al. Safety of anacetrapib in patients with or at high risk for coronary heart disease. Determining the Efficacy and Tolerability Investigators. N Engl J Med. 2010;363:2406–2415. doi:10.1056/NEJMoa1009744.
  • Merck Sharp & Dohme Corp. Randomized EValuation of the Effects of Anacetrapib Through Lipid-modification. [ClinicalTrials.gov identifier: NCT01252953]; [updated 2015 Oct 30]. Available from: https://clinicaltrials.gov/ct2/show/results/NCT01252953
  • Gotto GM, Phil CP, Cannon MD, et al. Evaluation of lipids, drug concentrations, and safety parameters following cessation of treatment with the cholesteryl ester transfer protein inhibitor anacetrapib in patients with or at high risk for coronary heart disease. Am J Cardiol. 2014;113:76–83. doi:10.1016/j.amjcard.2013.08.041.
  • Nicholls SJ, Brewer HB, Kastelein JJP, et al. Effects of the CETP inhibitor evacetrapib administered as monotherapy or in combination with statins on HDL and LDL cholesterol. A randomized controlled trial. JAMA. 2011;306:2099–2109. doi:10.1001/jama.2011.1649.
  • Eli Lilly and Company. A Study of Evacetrapib in High-Risk Vascular Disease (ACCELERATE) [ClinicalTrials.gov identifier: NCT01687998]; [Last accessed 2015 October 30]. Available from: https://clinicaltrials.gov/ct2/show/results/NCT01687998
  • Nicholls SJ, Gordon A, Johannson J, et al. ApoA-I induction as a potential cardioprotective strategy: rationale for the SUSTAIN and ASSURE studies. Cardiovasc Drugs Ther. 2012;26:181–187. doi:10.1007/s10557-012-6373-5.
  • Nicholls SJ, Puri R, Wolski K, et al. Effect of the BET Protein Inhibitor, RVX-208, on progression of coronary atherosclerosis: results of the phase 2b, randomized, double-blind, multicenter, ASSURE trial. Am J Cardiovasc Drugs. 2016;16:55–65.
  • Pinkosky SL, Filippov S, Srivastava RA, et al. AMP-activated protein kinase and ATP-citrate lyase are two distinct molecular targets for ETC-1002, a novel small molecule regulator of lipid and carbohydrate metabolism. J Lipid Res. 2013;54:134–151. doi:10.1194/jlr.M030528.
  • Santos RD, Raal FJ, Catapano AL, et al. Mipomersen, an antisense oligonucleotide to apolipoprotein B-100, reduces lipoprotein(a) in various populations with hypercholesterolemia: results of 4 phase III trials. Arterioscler Thromb Vasc Biol. 2015;35:689–699.
  • Filippov S, Pinkosky SL, Newton RS. LDL-cholesterol reduction in patients with hypercholesterolemia by modulation of adenosine triphosphate-citrate lyase and adenosine monophosphate-activated protein kinase. Curr Opin Lipidol. 2014;25:309–315. doi:10.1097/MOL.0000000000000091.
  • Gutierrez MJ, Rosenberg NL, MacDougall DE, et al. Efficacy and safety of ETC-1002, a novel investigational low-density lipoprotein-cholesterol-lowering therapy for the treatment of patients with hypercholesterolemia and type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol. 2014;34:676–683.
  • Raal FJ, Santos RD, Blom DJ, et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomized, double-blind, placebo-controlled trial. Lancet. 2010;375:998–1006.
  • Stein EA, Dufour R, Gagne C, et al. Apolipoprotein B synthesis inhibition with mipomersen in heterozygous familial hypercholesterolemia: results of a randomized, double-blind, placebo-controlled trial to assess efficacy and safety as add-on therapy in patients with coronary artery disease. Circulation. 2012;126:2283–2292.
  • McGowan MP, Tardif JC, Ceska R, et al. Randomized, placebo-controlled trial of mipomersen in patients with severe hypercholesterolemia receiving maximally tolerated lipid-lowering therapy. PLoS One. 2012;7:e49006. doi:10.1371/journal.pone.0049006.
  • Crooke ST, Geary RS. Clinical pharmacological properties of mipomersen (Kynamro), a second generation antisense inhibitor of apolipoprotein B. Br J Clin Pharmacol. 2013;76:269–276.
  • Genzyme Corp. Kynamro (mipomersen sodium): U.S. Prescribing Information; 2013. [Last accessed 2015 Oct 30]. Available from: https://www.genzyme.com/Products/~/media/B866EE59A7C14916BFBFB4ECAA1C7087.pdf
  • Cuchel M, Bloedon LT, Szapary PO, et al. Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia. N Engl J Med. 2007;356:148–156.
  • Cuchel M, Meagher EA, Du Toit Theron H, et al. Phase 3 HoFH Lomitapide Study investigators. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet. 2013;381:40–46.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.