1,808
Views
35
CrossRef citations to date
0
Altmetric
Review

“NextGen” Biologics: Bispecific Antibodies and Emerging Clinical Results

&
Pages 675-688 | Received 16 Nov 2015, Accepted 27 Jan 2016, Published online: 16 Mar 2016

References

  • Chan AC, Carter PJ. Therapeutic antibodies for autoimmunity and inflammation. Nat Reviews Immunol. 2010;10(5):301–316. doi:10.1038/nri2761
  • Chang CH, Rossi EA, Goldenberg DM. The dock and lock method: a novel platform technology for building multivalent, multifunctional structures of defined composition with retained bioactivity. Clin Cancer Res. 2007;13(18 Pt 2):5586s–91s. doi:10.1158/1078-0432.CCR-07-1217
  • Kontermann RE. Dual targeting strategies with bispecific antibodies. MAbs. 2012;4(2):182–197. doi:10.4161/mabs.4.2.19000
  • Byrne H, Conroy PJ, Whisstock JC, et al. A tale of two specificities: bispecific antibodies for therapeutic and diagnostic applications. Trends Biotechnol. 2013;31(11):621–632. doi:10.1016/j.tibtech.2013.08.007
  • Jost C, Pluckthun A. Engineered proteins with desired specificity: DARPins, other alternative scaffolds and bispecific IgGs. Curr Opin Struct Biol. 2014;27:102–112. doi:10.1016/j.sbi.2014.05.011.
  • Porter RR. Separation and isolation of fractions of rabbit gamma-globulin containing the antibody and antigenic combining sites. Nature. 1958;182(4636):670–671.
  • Grillo-Lopez AJ. Rituximab: an insider’s historical perspective. Semin Oncol. 2000;27(6 Suppl 12):9–16.
  • Grillo-Lopez AJ, White CA, Varns C, et al. Overview of the clinical development of rituximab: first monoclonal antibody approved for the treatment of lymphoma. Semin Oncol. 1999;26(5 Suppl 14):66–73.
  • Dudley ME, Wunderlich JR, Robbins PF, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. 2002;298(5594):850–854. doi:10.1126/science.1076514.
  • Kalos M, Levine BL, Porter DL, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3(95):95ra73.
  • Maher J. Immunotherapy of malignant disease using chimeric antigen receptor engrafted T cells. ISRN Oncol. 2012;2012:1–23. doi:10.5402/2012/278093.
  • Brentjens RJ, Davila ML, Riviere I, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med. 2013;5(177):177ra38. doi:10.1126/scitranslmed.3005930.
  • Das D, Suresh MR. Producing bispecific and bifunctional antibodies. Methods Mol Med. 2005;109:329–346.
  • Brennan M, Davison PF, Paulus H. Preparation of bispecific antibodies by chemical recombination of monoclonal immunoglobulin G1 fragments. Science. 1985;229(4708):81–83.
  • Chames P, Baty D. Bispecific antibodies for cancer therapy: the light at the end of the tunnel? MAbs. 2009;1(6):539–547.
  • Heldin CH, Rubin K, Pietras K, et al. High interstitial fluid pressure - an obstacle in cancer therapy. Nat Rev Cancer. 2004;4(10):806–813. doi:10.1038/nrc1456.
  • Shields JD, Kourtis IC, Tomei AA, et al. Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science. 2010;328(5979):749–752. doi:10.1126/science.1185837.
  • Nagaraj S, Gabrilovich DI. Myeloid-derived suppressor cells in human cancer. Cancer J. 2010;16(4):348–353. doi:10.1097/PPO.0b013e3181eb3358.
  • Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–899. doi:10.1016/j.cell.2010.01.025.
  • Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9(3):162–174. doi:10.1038/nri2506.
  • Condamine T, Gabrilovich DI. Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol. 2011;32(1):19–25. doi:10.1016/j.it.2010.10.002.
  • Sakuishi K, Apetoh L, Sullivan JM, et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 2010;207(10):2187–2194. doi:10.1084/jem.20100643.
  • Curran MA, Montalvo W, Yagita H, et al. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci U S A. 2010;107(9):4275–4280. doi:10.1073/pnas.0915174107.
  • Hoos A, Eggermont AM, Janetzki S, et al. Improved endpoints for cancer immunotherapy trials. J Natl Cancer Inst. 2010;102(18):1388–1397. doi:10.1093/jnci/djq310.
  • Topp MS, Gokbuget N, Zugmaier G, et al. Long-term follow-up of hematologic relapse-free survival in a phase 2 study of blinatumomab in patients with MRD in B-lineage ALL. Blood. 2012;120(26):5185–5187. doi:10.1182/blood-2012-07-441030.
  • Topp MS, Kufer P, Gokbuget N, et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol. 2011;29(18):2493–2498. doi:10.1200/JCO.2010.32.7270.
  • Bargou R, Leo E, Zugmaier G, et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science. 2008;321(5891):974–977. doi:10.1126/science.1158545.
  • Topp MS, Goekbuget N, Stein AS, et al. Confirmatory open-label, single-arm, multicenter phase 2 study of the BiTE antibody blinatumomab in patients (pts) with relapsed/refractory B-precursor acute lymphoblastic leukemia (r/r ALL). J Clin Oncol. 2014;32(15): doi:10.1200/JCO.2013.54.6911.
  • Nagorsen D, Kufer P, Baeuerle PA, et al. Blinatumomab: a historical perspective. Pharmacol Therapeutics. 2012;136(3):334–342. doi:10.1016/j.pharmthera.2012.07.013
  • Baeuerle PA, Reinhardt C. Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res. 2009;69(12):4941–4944. doi:10.1158/0008-5472.CAN-09-0547.
  • Frankel SR, Baeuerle PA. Targeting T cells to tumor cells using bispecific antibodies. Curr Opin Chem Biol. 2013;17(3):385–392. doi:10.1016/j.cbpa.2013.03.029.
  • Hoffmann P, Hofmeister R, Brischwein K, et al. Serial killing of tumor cells by cytotoxic T cells redirected with a CD19-/CD3-bispecific single-chain antibody construct. Int J Cancer. 2005;115(1):98–104. doi:10.1002/ijc.20908.
  • Offner S, Hofmeister R, Romaniuk A, et al. Induction of regular cytolytic T cell synapses by bispecific single-chain antibody constructs on MHC class I-negative tumor cells. Mol Immunol. 2006;43(6):763–771. doi:10.1016/j.molimm.2005.03.007.
  • Klinger M, Brandl C, Zugmaier G, et al. Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell-engaging CD19/CD3-bispecific BiTE antibody blinatumomab. Blood. 2012;119(26):6226–6233. doi:10.1182/blood-2012-01-400515.
  • Moore PA, Zhang W, Rainey GJ, et al. Application of dual affinity retargeting molecules to achieve optimal redirected T-cell killing of B-cell lymphoma. Blood. 2011;117(17):4542–4551. doi:10.1182/blood-2010-09-306449.
  • Portner LM, Schonberg K, Hejazi M, et al. T and NK cells of B cell NHL patients exert cytotoxicity against lymphoma cells following binding of bispecific tetravalent antibody CD19 x CD3 or CD19 x CD16. Cancer Immunol Immunother. 2012;61(10):1869–1875. doi:10.1007/s00262-012-1339-9.
  • Stanglmaier M, Faltin M, Ruf P, et al. Bi20 (fBTA05), a novel trifunctional bispecific antibody (anti-CD20 x anti-CD3), mediates efficient killing of B-cell lymphoma cells even with very low CD20 expression levels. Int J Cancer. 2008;123(5):1181–1189. doi:10.1002/ijc.23626.
  • Strop P, Ho WH, Boustany LM, et al. Generating bispecific human IgG1 and IgG2 antibodies from any antibody pair. J Mol Biol. 2012;420(3):204–219. doi:10.1016/j.jmb.2012.04.020.
  • Nagorsen D, Baeuerle PA. Immunomodulatory therapy of cancer with T cell-engaging BiTE antibody blinatumomab. Exp Cell Res. 2011;317(9):1255–1260. doi:10.1016/j.yexcr.2011.03.010.
  • Nagorsen D, Bargou R, Rüttinger D, et al. Immunotherapy of lymphoma and leukemia with T-cell engaging BiTE antibody blinatumomab. Leuk Lymphoma. 2009;50(6):886–891. doi:10.1080/10428190902943077.
  • Aigner M, Feulner J, Schaffer S, et al. T lymphocytes can be effectively recruited for ex vivo and in vivo lysis of AML blasts by a novel CD33/CD3-bispecific BiTE antibody construct. Leukemia. 2013;27(5):1107–1115. doi:10.1038/leu.2012.341.
  • Lum LG, Thakur A, Liu Q, et al. CD20-targeted t cells after stem cell transplantation for high risk and refractory non-Hodgkin’s Lymphoma. Biol Blood Marrow Transpl. 2013;19(6):925–933. doi:10.1016/j.bbmt.2013.03.010.
  • Lum LG, Thakur A, Pray C, et al. Multiple infusions of CD20-targeted T cells and low-dose IL-2 after SCT for high-risk non-Hodgkin’s lymphoma: a pilot study. Bone Marrow Transplant. 2014;49(1):73–79. doi:10.1038/bmt.2013.133.
  • McAleese F, M E. RECRUIT-TandAbs: harnessing the immune system to kill cancer cells. Future Oncol. 2012;8(6):687–695. doi:10.2217/fon.12.54.
  • Reusch U, Burkhardt C, Fucek I, et al. A novel tetravalent bispecific TandAb (CD30/CD16A) efficiently recruits NK cells for the lysis of CD30+ tumor cells. MAbs. 2014;6(3):728–739. doi:10.4161/mabs.28591.
  • Topp MS, Gokbuget N, Stein AS, et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 2015;16(1):57–66. doi:10.1016/S1470-2045(14)71170-2.
  • Viardot A, Goebeler M, Pfreundschuh M, et al. Open-label phase 2 study of the bispecific T-cell engager (BiTE (R)) blinatumomab in patients with relapsed/refractory diffuse large B-cell lymphoma. Blood. 2013;122(21): doi:10.1182/blood-2012-12-471029.
  • Rothe A, Sasse S, Topp MS, et al. A phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13 in patients with relapsed or refractory Hodgkin lymphoma. Blood. 2015;125(26):4024–4031. doi:10.1182/blood-2014-12-614636.
  • Johnson S, Burke S, Huang L, et al. Effector cell recruitment with novel Fv-based dual-affinity re-targeting protein leads to potent tumor cytolysis and in vivo B-cell depletion. J Mol Biol. 2010;399(3):436–449. doi:10.1016/j.jmb.2010.04.001.
  • Kuo SR, Wong L, Liu JS. Engineering a CD123xCD3 bispecific scFv immunofusion for the treatment of leukemia and elimination of leukemia stem cells. Protein Eng Des Sel. 2012;25(10):561–569. doi:10.1093/protein/gzs040.
  • Litowski JR, Hodges RS. Designing heterodimeric two-stranded alpha-helical coiled-coils. Effects of Hydrophobicity and Alpha-Helical Propensity on Protein Folding, Stability, and Specificity. J Biol Chem. 2002;277(40):37272–37279.
  • Chichili GR, Huang L, Li H, et al. A CD3xCD123 bispecific DART for redirecting host T cells to myelogenous leukemia: preclinical activity and safety in nonhuman primates. Sci Transl Med. 2015;7(289):289ra82. doi:10.1126/scitranslmed.aaa5693.
  • Teachey DT, Rheingold SR, Maude SL, et al. Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood. 2013;121(26):5154–5157. doi:10.1182/blood-2013-02-485623.
  • Atwell S, Ridgway JB, Wells JA, et al. Stable heterodimers from remodeling the domain interface of a homodimer using a phage display library. J Mol Biol. 1997;270(1):26–35. doi:10.1006/jmbi.1997.1116.
  • Sun LL, Ellerman D, Mathieu M, et al. Anti-CD20/CD3 T cell-dependent bispecific antibody for the treatment of B cell malignancies. Sci Transl Med. 2015;7(287):287ra70. doi:10.1126/scitranslmed.aaa4802.
  • Alderson KL, Sondel PM. Clinical cancer therapy by NK cells via antibody-dependent cell-mediated cytotoxicity. J Biomed Biotechnol. 2011;2011:1–7. doi:10.1155/2011/379123.
  • Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer. 2012;12(4):278–287. doi:10.1038/nrc3236.
  • Gleason MK, Verneris MR, Todhunter DA, et al. Bispecific and trispecific killer cell engagers directly activate human NK cells through CD16 signaling and induce cytotoxicity and cytokine production. Mol Cancer Ther. 2012;11(12):2674–2684. doi:10.1158/1535-7163.MCT-12-0692.
  • Vallera DA, Zhang B, Gleason MK, et al. Heterodimeric bispecific single-chain variable-fragment antibodies against EpCAM and CD16 induce effective antibody-dependent cellular cytotoxicity against human carcinoma cells. Cancer Biother Radiopharm. 2013;28(4):274–282. doi:10.1089/cbr.2012.1329.
  • Wiernik A, Foley B, Zhang B, et al. Targeting natural killer cells to acute myeloid leukemia in vitro with a CD16 x 33 bispecific killer cell engager and ADAM17 Inhibition. Clin Cancer Res. 2013;19(14):3844–3855. doi:10.1158/1078-0432.CCR-13-0505.
  • Reiners KS, Kessler J, Sauer M, et al. Rescue of impaired NK cell activity in hodgkin lymphoma with bispecific antibodies in vitro and in patients. Mol Ther. 2013;21(4):895–903. doi:10.1038/mt.2013.14.
  • Singer H, Kellner C, Lanig H, et al. Effective elimination of acute myeloid leukemic cells by recombinant bispecific antibody derivatives directed against CD33 and CD16. J Immunother. 2010;33(6):599–608. doi:10.1097/CJI.0b013e3181dda225.
  • Dudley ME, Wunderlich J, Nishimura MI, et al. Adoptive transfer of cloned melanoma-reactive T lymphocytes for the treatment of patients with metastatic melanoma. J Immunother. 2001;24(4):363–373.
  • Heiss MM, Murawa P, Koralewski P, et al. The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: results of a prospective randomized phase II/III trial. Int J Cancer. 2010;127(9):2209–2221. doi:10.1002/ijc.25423.
  • Garber K. Bispecific antibodies rise again. Nat Rev Drug Discov. 2014;13(11):799–801. doi:10.1038/nrd4478.
  • Lindhofer H, Mocikat R, Steipe B, et al. Preferential species-restricted heavy/light chain pairing in rat/mouse quadromas. Implications for a single-step purification of bispecific antibodies. J Immunol. 1995;155(1):219–225.
  • Ott MG, Marme F, Moldenhauer G, et al. Humoral response to catumaxomab correlates with clinical outcome: results of the pivotal phase II/III study in patients with malignant ascites. Int J Cancer. 2012;130(9):2195–2203. doi:10.1002/ijc.26258.
  • Pietzner K, Vergote I, Santoro A, et al. Results of a phase II clinical trial to evaluate a re-challenge of intraperitoneal catumaxomab for treatment of malignant ascites (MA) due to epithelial cancer (SECIMAS). J Clin Oncol. 2013;31(15). doi:10.1200/JCO.2013.49.0219.
  • Ruf P, Lindhofer H. Induction of a long-lasting antitumor immunity by a trifunctional bispecific antibody. Blood. 2001;98(8):2526–2534.
  • Eissler N, Ruf P, Mysliwietz J, et al. Trifunctional bispecific antibodies induce tumor-specific T cells and elicit a vaccination effect. Cancer Res. 2012;72(16):3958–3966. doi:10.1158/0008-5472.CAN-12-0146.
  • Goere D, Flament C, Rusakiewicz S, et al. Potent immunomodulatory effects of the trifunctional antibody catumaxomab. Cancer Res. 2013;73(15):4663–4673. doi:10.1158/0008-5472.CAN-12-4460.
  • Kepp O, Galluzzi L, Martins I, et al. Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy. Cancer Metastasis Rev. 2011;30(1):61–69. doi:10.1007/s10555-011-9273-4.
  • Thurin J, Thurin M, Kimoto Y, et al. Monoclonal antibody-defined correlations in melanoma between levels of GD2 and GD3 antigens and antibody-mediated cytotoxicity. Cancer Res. 1987;47(5):1229–1233.
  • Ruf P, Jager M, Ellwart J, et al. Two new trifunctional antibodies for the therapy of human malignant melanoma. Int J Cancer. 2004;108(5):725–732. doi:10.1002/ijc.11630.
  • Thurin J, Thurin M, Herlyn M, et al. GD2 ganglioside biosynthesis is a distinct biochemical event in human melanoma tumor progression. FEBS Lett. 1986;208(1):17–22.
  • Miescher GC, Schreyer M, MacDonald HR. Production and characterization of a rat monoclonal antibody against the murine CD3 molecular complex. Immunol Lett. 1989;23(2):113–118.
  • Lindhofer H, Hess J, Ruf P. Trifunctional triomab (R) antibodies for cancer therapy. In Kontermann RE, editor, Bispecific antibodies. Berlin, Heidelberg, Germany: Springer; 2011:289–312.
  • Ruf P, Schafer B, Eissler N, et al. Ganglioside GD2-specific trifunctional surrogate antibody Surek demonstrates therapeutic activity in a mouse melanoma model. J Transl Med. 2012;10:219. doi:10.1186/1479-5876-10-233.
  • Eissler N, Mysliwietz J, Deppisch N, et al. Potential of the trifunctional bispecific antibody surek depends on dendritic cells: rationale for a new approach of tumor immunotherapy. Molecular Medicine. 2013;19:54–61. doi:10.2119/molmed.2012.00140.
  • Staerz UD, Kanagawa O, Bevan MJ. Hybrid antibodies can target sites for attack by T cells. Nature. 1985;314:628–631.
  • Valone FH, Kaufman PA, Guyre PM, et al. Phase Ia/Ib trial of bispecific antibody MDX-210 in patients with advanced breast or ovarian cancer that overexpresses the proto-oncogene HER-2/neu. JClinOncol. 1995;13:2281–2292.
  • Lum LG, Thakur A, Al-Kadhimi Z, et al. Targeted T-cell therapy in stage IV breast cancer: a phase I clinical trial. Clin Cancer Res. 2015;21(10):2305–2314. doi:10.1158/1078-0432.CCR-14-2280.
  • Vaishampayan UN, Thakur A, Rathore R, et al. Phase I study of anti-CD3 x anti-her2 bispecific antibody in metastatic castrate resistant prostate cancer patients. Prostate Cancer. 2015;2015:1–10. doi:10.1155/2015/285193.
  • Jagtap D, Rathore R, Thakur A, et al. Phase Ia/Ib Trial of Taxol, Adriamycin, and Cytoxan (TAC) followed by multiple Infusions of Activated T Cells (ATC) Armed with OKT3 (anti-CD3) x Herceptin (anti-HER2/neu)bispecific antibody, IL-2 and GM-CSF for Stage II/ III, HER2+ or HER2- high risk breast cancer (> 4+ Nodes). AACR Annual Meeting; 2014; San Diego, CA; 2014.
  • Thakur A, Lum LG, Kondadasule V, et al. Vaccination with bispecific antibody armed T cells (BATs) in metastatic breast cancer patients and transfer of anti-breast cancer immunity in primed T cells after stem cell transplant: a proof of principle study. J ImmunoTherap Cancer. 2015;3(Suppl 2):56.
  • Choi M, Dyson G, Thakur A, et al. Phase I study of anti-CD3 x anti-EGFR–armed activated T-cells for treatment of advanced colorectal or pancreatic cancer. J Clin Oncol. 2015;33(suppl 3): 698.
  • Sen M, Wankowski DM, Garlie NK, et al. Use of anti-CD3 x anti-HER2/neu bispecific antibody for redirecting cytotoxicity of activated T cells toward HER2/neu+ tumors. J Hematother Stem Cell Res. 2001;10(2):247–260. doi:10.1089/15258160151134944.
  • Lum HE, Miller M, Davol PA, et al. Preclinical studies comparing different bispecific antibodies for redirecting T cell cytotoxicity to extracellular antigens on prostate carcinomas. Anticancer Res. 2005;25(1A):43–52.
  • Lum LG, Davol P, Grabert R, et al. Targeting pancreatic cancer with armed activated T cells directed at her2/neu receptors. Exp Hematol. 2002;30:77A.
  • Grabert RC, Smith J, Tiggs J, et al. Anti-CD3 activated T cells armed with OKT3 x herceptin bispecific antibody, survive and divide, and secrete cytokines and chemokines after multiple cycles of killing directed at her2/neu+ tumor targets. Am Assoc Cancer Res. 2003;44:656a.
  • Davol PA, Smith JA, Kouttab N, et al. Anti-CD3 x anti-HER2 bispecific antibody effectively redirects armed T cells to inhibit tumor development and growth in hormone-refractory prostate cancer-bearing severe combined immunodeficient beige mice. Clin Prostate Cancer. 2004;3(2):112–121.
  • Fong D, Moser P, Krammel C, et al. High expression of TROP2 correlates with poor prognosis in pancreatic cancer. Br J Cancer. 2008;99(8):1290–1295. doi:10.1038/sj.bjc.6604677.
  • Iacobuzio-Donahue CA, Maitra A, Shen-Ong GL, et al. Discovery of novel tumor markers of pancreatic cancer using global gene expression technology. Am J Pathol. 2002;160(4):1239–1249. doi:10.1016/S0002-9440(10)62551-5.
  • Kapoor S. TROP2 expression and its evolving role in tumor pathogenesis in systemic tumors. Tumour Biol: J Int Soc Oncodev Biol Med. 2013;34(3):1967–1968. doi:10.1007/s13277-012-0586-x.
  • Muhlmann G, Spizzo G, Gostner J, et al. TROP2 expression as prognostic marker for gastric carcinoma. J Clin Pathol. 2009;62(2):152–158. doi:10.1136/jcp.2008.060590.
  • Stein R, Basu A, Chen S, et al. Specificity and properties of MAb RS7-3G11 and the antigen defined by this pancarcinoma monoclonal antibody. Int J Cancer. 1993;55(6):938–946.
  • Rossi EA, Rossi DL, Cardillo TM, et al. Redirected T-cell killing of solid cancers targeted with an anti-CD3/Trop-2-bispecific antibody is enhanced in combination with interferon-alpha. Mol Cancer Ther. 2014;13(10):2341–2351. doi:10.1158/1535-7163.MCT-14-0345.
  • Friedrich M, Raum T, Lutterbuese R, et al. Regression of human prostate cancer xenografts in mice by AMG 212/BAY2010112, a novel PSMA/CD3-Bispecific BiTE antibody cross-reactive with non-human primate antigens. Mol Cancer Ther. 2012;11(12):2664–2673. doi:10.1158/1535-7163.MCT-12-0042.
  • Rossi EA, Goldenberg DM, Cardillo TM, et al. Stably tethered multifunctional structures of defined composition made by the dock and lock method for use in cancer targeting. Proc Natl Acad Sci U S A. 2006;103(18):6841–6846. doi:10.1073/pnas.0600982103.
  • Rossi DL, Rossi EA, Cardillo TM, et al. A new class of bispecific antibodies to redirect T cells for cancer immunotherapy. MAbs. 2014;6(2):381–391. doi:10.4161/mabs.27385.
  • Hurwitz H, Crocenzi T, Lohr J, et al. A Phase I, first-in-human, open label, dose escalation study of MGD007, a humanized gpA33 × CD3 dual-affinity re-targeting (DART®) protein in patients with relapsed/refractory metastatic colorectal carcinoma. J ImmunoTher Cancer. 2014;2(Suppl 3):P86. doi:10.1186/2051-1426-2-S3-P86.
  • Grosse-Hovest L, Hartlapp I, Marwan W, et al. A recombinant bispecific single-chain antibody induces targeted, supra-agonistic CD28-stimulation and tumor cell killing. EurJ Immunol. 2003;33(5):1334–1340. doi:10.1002/eji.200323322.
  • Oates J, Hassan NJ, Jakobsen BK. ImmTACs for targeted cancer therapy: Why, what, how, and which. Mol Immunol. 2015;67(2 Pt A):67–74. doi:10.1016/j.molimm.2015.01.024.
  • Middleton MR, Corrie P, Sznol M, et al. A phase I/IIa study of IMCgp100: Partial and complete durable responses with a novel first-in-class immunotherapy for advanced melanoma. AACR Annual Meet. 2015;75:CT106–CT106. doi:10.1158/1538-7445.AM2015-CT106.
  • Michalk I, Feldmann A, Koristka S, et al. Characterization of a novel single-chain bispecific antibody for retargeting of T cells to tumor cells via the TCR co-receptor CD8. PLoS One. 2014;9(4):e95517. doi:10.1371/journal.pone.0095517.
  • Motz GT, Coukos G. The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nat Rev Immunol. 2011;11(10):702–711. doi:10.1038/nri3064.
  • Savoldo B, Ramos CA, Liu E, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest. 2011;121(5):1822–1826. doi:10.1172/JCI46110.
  • Barrett DM, Grupp SA, June CH. Chimeric antigen receptor- and TCR-modified t cells enter main street and wall street. J Immunol. 2015;195(3):755–761. doi:10.4049/jimmunol.1500751.
  • June CH. Serial killers and mass murderers: engineered T cells are up to the task. Cancer Immunol Res. 2015;3(5):470–472. doi:10.1158/2326-6066.CIR-15-0075.
  • June CH, Riddell SR, Schumacher TN. Adoptive cellular therapy: a race to the finish line. Sci Transl Med. 2015;7(280):280ps7. doi:10.1126/scitranslmed.aaa3643.
  • Kochenderfer JN, Dudley ME, Feldman SA, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood. 2012;119(12):2709–2720. doi:10.1182/blood-2011-10-384388.
  • Brentjens RJ, Riviere I, Park JH, et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood. 2011;118(18):4817–4828. doi:10.1182/blood-2011-04-348540.
  • Jensen MC, Popplewell L, Cooper LJ, et al. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol Blood Marrow Transplant: J Am Soc Blood Marrow Transplant. 2010;16(9):1245–1256. doi:10.1016/j.bbmt.2010.03.014.
  • Kochenderfer JN, Wilson WH, Janik JE, et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood. 2010;116(20):4099–4102. doi:10.1182/blood-2010-04-281931.
  • Porter DL, Levine BL, Kalos M, et al. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. New England J Med. 2011;365(8):725–733. doi:10.1056/NEJMoa1103849.
  • Garfall AL, Maus MV, Hwang WT, et al. Chimeric antigen receptor T cells against CD19 for multiple myeloma. N Engl J Med. 2015;373(11):1040–1047. doi:10.1056/NEJMoa1504542.
  • Porter DL, Hwang WT, Frey NV, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015;7(303):303ra139. doi:10.1126/scitranslmed.aac5415.
  • Rapoport AP, Stadtmauer EA, Binder-Scholl GK, et al. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med. 2015;21(8):914–921. doi:10.1038/nm.3910.
  • Till BG, Jensen MC, Wang J, et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood. 2008;112(6):2261–2271. doi:10.1182/blood-2007-12-128843.
  • Till BG, Jensen MC, Wang J, et al. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood. 2012;119(17):3940–3950. doi:10.1182/blood-2011-10-387969.
  • Warren RS, Fisher GA, Bergsland EK, et al. Clinical studies of regional and systemic gene therapy with autologous CC49-z modified T cells in colorectal cancer metastatic to the liver. Cancer Gene Ther. 1998;5(6):S1a.
  • Ma Q, Gonzalo-Daganzo RM, Junghans RP. Genetically engineered T cells as adoptive immunotherapy of cancer. Cancer Chemother Biol Response Modif. 2002;20:315–341.
  • Park JR, Digiusto DL, Slovak M, et al. Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol Ther: J Am Soc Gene Ther. 2007;15(4):825–833. doi:10.1038/sj.mt.6300104.
  • Lamers CH, Sleijfer S, Vulto AG, et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol. 2006;24(13):e20–2. doi:10.1200/JCO.2006.05.9964.
  • Louis CU, Savoldo B, Dotti G, et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood. 2011;118(23):6050–6056. doi:10.1182/blood-2011-05-354449.
  • Parkhurst MR, Yang JC, Langan RC, et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther: J Am Soc Gene Ther. 2011;19(3):620–626. doi:10.1038/mt.2010.272.
  • Palmer DC, Chan CC, Gattinoni L, et al. Effective tumor treatment targeting a melanoma/melanocyte-associated antigen triggers severe ocular autoimmunity. Proc Natl Acad Sci U S A. 2008;105(23):8061–8066. doi:10.1073/pnas.0710929105.
  • Morgan RA, Chinnasamy N, Abate-Daga D, et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother. 2013;36(2):133–151. doi:10.1097/CJI.0b013e3182829903.
  • Zsiros E, Duttagupta P, Dangaj D, et al. The ovarian cancer chemokine landscape is conducive to homing of vaccine-primed and CD3/CD28-costimulated T cells prepared for adoptive therapy. Clin Cancer Res. 2015;21(12):2840–2850. doi:10.1158/1078-0432.CCR-14-2777.
  • Weiner LM, Clark JI, Davey M, et al. Garcia de Palazzo I, Ring DB, et al. Phase I trial of 2B1, a bispecific monoclonal antibody targeting c-erbB-2 and Fc gamma RIII. Cancer Res. 1995;55(20):4586–4593.
  • Thakur A, Lum LG. Bispecific targeted T cell therapy in breast cancer. Oncoimmunology. 2015 doi:10.1080/2162402X.2015.1055061.
  • Bhatnagar PK, Das D, Suresh MR. Sequential affinity purification of peroxidase tagged bispecific anti-SARS-CoV antibodies on phenylboronic acid agarose. J Chromatogr B, Analyt Technol Biomed Life Sci. 2008;863(2):235–241. doi:10.1016/j.jchromb.2008.01.003.
  • Sharkey RM, Cardillo TM, Rossi EA, et al. Signal amplification in molecular imaging by pretargeting a multivalent, bispecific antibody. Nat Med. 2005;11(11):1250–1255.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.