2,971
Views
128
CrossRef citations to date
0
Altmetric
Review

Half-life extended biotherapeutics

Pages 903-915 | Received 11 Feb 2016, Accepted 10 Mar 2016, Published online: 18 Apr 2016

References

  • Walsh G. Biopharmaceutical benchmarks 2014. Nat Biotechnol. 2014;32:992–1000. doi:10.1038/nbt.3040.
  • Tang L, Persky AM, Hochhaus G, et al. Pharmacokinetic aspects of biotechnology products. J Pharmaceut Sci. 2004;93:2184–2204. doi:10.1002/jps.20125.
  • Kontermann RE. Strategies for extended serum half-life of protein therapeutics. Curr Opin Biotechnol. 2011;22:868–876. doi:10.1016/j.copbio.2011.06.012.
  • Kontermann RE. Therapeutic proteins. Strategies to modulate their plasma half-lives. Weinheim: Wiley-Blackwell; 2012.
  • Meibohm B. Pharmacokinetics and half-life of protein therapeutics. In: Kontermann RE, editor. Therapeutic proteins. Strategies to modulate their plasma half-lives. Weinheim: Wiley-Blackwell; 2012. p. 23–38.
  • Scott RP, Quaggin SE. The cell biology of renal filtration. J Cell Biol. 2015;209:199–210. doi:10.1083/jcb.201410017.
  • Sockolosky JT, Szoka FC. The neonatal Fc receptor, FcRn, as a target for drug delivery and therapy. Adv Drug Deliv Reviews. 2015;30:109–124.
  • Tabrizi MA, Tseng CM, Roskos LK. Elimination mechanisms of therapeutic antibodies. Drug Discov Today. 2006;11:81–88. doi:10.1016/S1359-6446(05)03638-X.
  • Levy G. Pharmacologic target-mediated drug disposition. Clin Pharmacol Ther. 1994;56:248–252.
  • Mager DE. Target-mediated drug disposition and dynamics. Biochem Pharmacol. 2006;72:1–10. doi:10.1016/j.bcp.2005.12.041.
  • Li H, d’Anjou M. Pharmacological significance of glycosylation in therapeutic proteins. Curr Opin Biotechnol. 2009;20:678–684. doi:10.1016/j.copbio.2009.10.009.
  • Solá RJ, Griebenow K. Glycosylation of therapeutic proteins: an effective strategy to optimize efficacy. BioDrugs. 2010;24:9–21. doi:10.2165/11530550-000000000-00000.
  • Sinclair AM. Erythropoiesis stimulating agents: approaches to modulate activity. Biologics. 2013;7:161–174. doi:10.2147/BTT.S45971.
  • De Boer R, Clemens M, Renczes G, et al. Phase I/II randomised study of a novel erythropoiesis-stimulating agent (AMG 114) for the treatment of anaemia with concomitant chemotherapy in patients with non-myeloid malignancies. Med Oncol. 2011;28:1210–1217. doi:10.1007/s12032-010-9725-7.
  • Song K, Yoon IS, Kim NA, et al. Glycoengineering of interferon-β 1a improves its biophysical and pharmacokinetic properties. PLoS One. 2014;9:e96967. doi:10.1371/journal.pone.0096967.
  • Garcia-Campayo V, Sugahara T, Boime I. Unmasking a new recognition signal for O-linked glycosylation in the chorionic gonadotropin β subunit. Mol Cell Endocrinol. 2002;194:63–70.
  • Matzuk MM, Hsueh AJ, Lapolt P, et al. The biological role of the carboxy-terminal extension of human chorionic gonadotropin β subunit. Endocrinology. 1990;126:376–383. doi:10.1210/endo-126-1-376.
  • Bouloux PM, Handelsman DJ, Jockenhövel F, et al. FSH-CTP study group. First human exposure to FSH-CTP in hypgonadrotrophic hyogonadal males. Hum Repord. 2001;16:1592–1597. doi:10.1093/humrep/16.8.1592.
  • Patil M. Gonadotrophins: the future. J Hum Reprod Sci. 2014;7:236–248. doi:10.4103/0974-1208.147490.
  • Fares F, Ganem S, Hajouj T, et al. Development of a long-acting erythropoietin by fusing the carboxy-terminal peptide of human chorinic gonadotropin β-subunit to the coding sequence of human erythropoietin. Endocrinology. 2007;148:5081–5087. doi:10.1210/en.2007-0026.
  • Fares F, Guy R, Bar-Ilan A, et al. Desinging a long-acting human growth hormone (hGH) byf using the carboxy-terminal peptide of human chorinic gonadotropin β-subunit to the coding sequence of hGH. Endocrinology. 2010;151:4410–4417. doi:10.1210/en.2009-1431.
  • Dicker M, Strasser R. Using glyco-engineering to produce therapeutic proteins. Expert Opin Bio Ther. 2015;15:1501–1516. doi:10.1517/14712598.2015.1069271.
  • Jevsevar S, Kunstelj M, Porekar VG. PEGylation of therapeutic proteins. Biotechnol J. 2010;5:113–128. doi:10.1002/biot.200900218.
  • Pelegri-O’Day EM, Lin E-W, et al. Therapeutic protein-polymer conjugates: advancing beyond PEGylation. J Am Chem Soc. 2014;136:14323–14332. doi:10.1021/ja504390x.
  • Zhang F, Liu MR, Wan HT. Discussion about several potential drawbacks of PEGylated therapeutic proteins. Biol Pharm Bull. 2014;37:335–339.
  • Milla P, Dosio F, Cattel L. PEGylation of proteins and liposomes: a powerful and flexible strategy to improve the drug delivery. Curr Drug Metabol. 2012;13:105–119. doi:10.2174/138920012798356934.
  • Powell JS. Longer-acting clotting factor concentrates for hemophilia. J Thromb Haemost. 2015;13 Suppl 1:S167–75. doi:10.1111/jth.12912.
  • Stidl R, Fuchs S, Bossard M, et al. Safety of PEGylated recombinant human full-length coagulation factor VIII (BAX 855) in the overall context of PEG and PEG conjugates. Haemophilia. 2016;22:54–64. doi:10.1111/hae.12762.
  • Garay RP, El-Gewely R, Armstrong JK, et al. Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents. Expert Opin Drug Deliv. 2012;9:1319–1323. doi:10.1517/17425247.2012.720969.
  • Dozier JK, Distefano MD. Site-specific PEGylation of therapeutic proteins. Int J Mol Sci. 2015;16:25831–25864. doi:10.3390/ijms161025831.
  • Qi Y, Chilkoti A. Protein-polymer conjugation – moving beyond PEGylation. Curr Opin Chem Biol. 2015;28:181–193. doi:10.1016/j.cbpa.2015.08.009.
  • Kaneda Y, Tsutsumi Y, Yoshioka Y, et al. The use of PVP as a polymeric carrier to improve the plasma half-life of drugs. Biomaterials. 2004;25:3259–3266. doi:10.1016/j.biomaterials.2003.10.003.
  • Mero A, Fang Z, Pasut G, et al. Selective conjugation of poly82-ethyl 2-oxazoline) to granulocyte colony stimulating factor. J Control Release. 2012;159:353–361. doi:10.1016/j.jconrel.2012.02.025.
  • Lewis AG, Tang Y, Brocchini S, et al. Poly(2-methacryloyloxyethyl phosphorylcholine) for protein conjugation. Bioconjugate Chem. 2008;19:2144–2155. doi:10.1021/bc800242t.
  • Chen C, Constantinou A, Deonarain M. Modulating antibody pharmacokinetics using hydrophilic polymers. Expert Opin Drug Deliv. 2011;8:1221–1236. doi:10.1517/17425247.2011.602399.
  • Terekhov S, Smirnov I, Bobik T, et al. A novel expression cassette delivers efficient production of exclusively tetrameric human butyrylcholinesterase with improved pharmacokinetics for protection against organophosphate poisoning. Biochimie. 2015;118:51–59. doi:10.1016/j.biochi.2015.07.028.
  • Kong J-H, Oh EJ, Chae SY, et al. Long acting hyaluronate-exendin 4 conjugate for the treatment of type 2 diabetes. Biomaterials. 2010;31:4121–4128. doi:10.1016/j.biomaterials.2010.01.091.
  • Oh EJ, Choi J-S, Kim H, et al. Anti-Flt1 peptide-hyaluronate conjugate for the treatment of retinal neovascularization and diabetes retinopathy. Biomaterials. 2011;32:3115–3123. doi:10.1016/j.biomaterials.2011.01.003.
  • Liebner R, MAthaes R, Meyer M, et al. Protein HESylation for half-life extension: synthesis, characterization and pharmacokinetics of HESylated anakinra. Eur J Pharm Biopharm. 2014;87:378–385. doi:10.1016/j.ejpb.2014.03.010.
  • Liebner R, Meyer M, Hey T, et al. Head to head comparison of the formulation and stability of concentrated solutions of HESylated versus PEGylated anakinra. J Pharm Sci. 2015;104:515–526. doi:10.1002/jps.24253.
  • Liebner R, Bergmann S, Hey T, et al. Freeze-drying of HESylated IFN-2b: effect of HESylation on storage stability in comparison to PEGylation. Int J Pharm. 2015;495:608–611. doi:10.1016/j.ijpharm.2015.09.031.
  • Binder U, Skerra A. Half-life extension of therapeutic proteins via genetic fusion to recombinant PEG mimetics. In: Kontermann RE, editor. Therapeutic proteins. Strategies to modulate their plasma half-lives. Weinheim: Wiley-Blackwell; 2012. p. 63–80.
  • Schellenberger V, Wang C-W, Geething NC, et al. A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner. Nat Biotechnol. 2009;27:1186–1190. doi:10.1038/nbt.1588.
  • Podust VN, Balan S, Sim B-C, et al.. Extension of in vivo half-life of biologically active molecules by XTEN protein polymers. J Control Release. 2015. doi:10.1016.
  • Schlapschy M, Binder U, Börger C, et al. PASylation: a biological alternative to PEGylation for extending the plasma half-life of pharmaceutically active proteins. Protein Eng Des Sel. 2013;26:489–501. doi:10.1093/protein/gzt023.
  • Morath V, Bolze F, Schlapschy M, et al. PASylation of murine leptin leads to extended plasma half-life and enhanced in vivo efficacy. Mol Pharm. 2015;12:1431–1442. doi:10.1021/mp5007147.
  • Bolze F, Morath V, Bast A, et al. Long-acting PASylated leptin ameliorates obesity by promoting satiety and preventing hypometabolism in leptin-deficient Lep(ob/ob) mice. Endocrinology. 2016;157:233–244. doi:10.1210/en.2015-1519.
  • Harari D, Kuhn N, Abramovich R, et al. Enhanced in vivo efficacy of a type I interferon superagonist with extended plasma half-life in a mouse model of multiple sclerosis. J. Biol Chem. 2014;289:29014–29029. doi:10.1074/jbc.M114.602474.
  • Di Cesare S, Binder U, Maier T, et al.. High-yield production of PASylated human growth hormone using secretory E. coli technology. Bioprocess Int. 2014:30–38.
  • Mendler CT, Friedrich L, Laitinen I, et al. High contrast tumor imaging with radio-labeled antibody Fab fragments tailored for optimized pharmacokinetics via PASylation. MAbs. 2015;7:96–109. doi:10.4161/19420862.2014.985522.
  • MacEwan SR, Chilkoti A. Applications of elastin-like polypeptides in drug delivery. J Control Release. 2014;190:314–330. doi:10.1016/j.jconrel.2014.06.028.
  • Amiram M, Luginbuhl KM, Li X, et al. A depot-forming glucagon-like peptide-1 fusion protein reduces blood glucose for five days with a single injection. J Control Release. 2013;172:144–151. doi:10.1016/j.jconrel.2013.07.021.
  • Shamji MF, Betre H, Kraus VB, et al. Development and characterization of a fusion protein between thermally responsive elastin-like polypeptide and interleukin-1 receptor antagonist: sustained release of a local anti-inflammatory therapeutic. Arthritis Rheum. 2007;56:3650–3661. doi:10.1002/art.22952.
  • Sand KM, Bern M, Nilsen J, et al. Unraveling the interation between FcRn and albumin: opportunities for design of albumin-based therapeutics. Front Immunol. 2015;5:682.
  • Sand KM, Bern M, Nilsen J, et al. Interaction with both domain I and III of albumin is required for optimal pH-dependent binding to the neonatal Fc receptor (FcRn). J Biol Chem. 2014;289:34583–34594. doi:10.1074/jbc.M114.587675.
  • Sleep D. Albumin and its application in drug delivery. Expert Opin Drug Deliv. 2015;12:793–812. doi:10.1517/17425247.2015.993313.
  • Hollander PA. Albumin detemir for the treament of obese patients with type 2 diabetes. Diabetes Metabl Syndr Obes. 2012;5:11–19.
  • Arnolds S, Kuglin B, Kapitza C, et al. How pharmacokinetic and pharmacodynamic principles pave the way for optimal basal insulin therapy in type 2 diabetes. Int J Clin Pract. 2010;64:1415–1424. doi:10.1111/j.1742-1241.2010.02470.x.
  • Agerso H, Jensen LB, Elbrond B, et al. The pharmacokinetics, pharmacodynamics, safety and tolerability of NN2211, a new long-acting GLP-1 derivative, in healthy men. Diabetologia. 2002;45:195–202. doi:10.1007/s00125-001-0719-z.
  • Idorn T, Knop FK, Jorgensen MB, et al. Elimination and degradation of glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with end-stage renal disease. J Clin Endorcrinol Metab. 2014;99:2457–2466. doi:10.1210/jc.2013-3809.
  • Kontermann RK. Strategies to extend plasma half-lives of recombinant antibodies.. BioDrugs. 2009;23:93–109.
  • Sleep D, Cameron J, Evans LR. Albumin as a versatile platform for drug half-life extension. Biochimica Et Biophysica Acta. 2013;1830:5526–5534. doi:10.1016/j.bbagen.2013.04.023.
  • Rycroft D, Holt LJ. Methods for determining the PK parameters of AlbudAbsTM and of long serum half-life drugs made using the AlbudAbTM technology. Methods Mol Biol. 2012;911:457–473. doi:10.1007/978-1-61779-968-6_28.
  • Schmidt EM, Davies M, Mistry P, et al. Selective blockade of tumor necrosis factor receptor I inhibits proinflammatory cytokine and chemokine production in human rheumatoid arthritis synovial membrane cell cultures. Arthritis Rheumat. 2013;65:2262–2273. doi:10.1002/art.38055.
  • Goodall LH, Ovecka M, Rycroft D, et al. Pharmacokinetic and pharmacodynamic characterisation of an anti-mouse TNF receptor 1 domain antibody formatted for in vivo half-life extension. PLoS One. 2015;10:e137065.
  • Bao W, Holt LH, Prince RD, et al. Novel fusion of GLP-1 with a domain antibody to serum albumin prolongs protection against myocardial ischemia/reperfusion injury in the rat. Cardiovasc Diabetol. 2013;12:148. doi:10.1186/1475-2840-12-148.
  • O’Connor-Semmes RL, Lin J, Hodge RJ, et al. GSK2374697, a novel albumin-binding domain antibody (albudAb), extends systemic exposure of exendin-4: first in humans - PK/PD and safety. Clin Pharmacol. 2014;96:704–712.
  • Lin J, Hodge RK, O’Connor-Semmes RL, et al. GSK2374697, a long duration glucagon-like peptide-1 (GLP-1) receptor agonist, reduces postprandial circulating endogenous total GLP-1 and peptide YY in healthy subjects. Diabetes Obes Metab. 2015;17:1007–1010. doi:10.1111/dom.12533.
  • Tijink BM, Laeremans T, Budde M, et al. Improved tumor targeting of anti-epidermal growth factor receptor Nanobodies through albumin binding: taking advantage of modular Nanobody technology. Mol Cancer Ther. 2008;7:2288–2297. doi:10.1158/1535-7163.MCT-07-2384.
  • Van Roy M, Ververken C, Beirnaert E, et al. The preclinical pharmacology of the high affinity anti-IL-6R Nanobody ALX-0061 supports its clinical development in rheumatoid arthritis. Arthritis Res Ther. 2015;17:135. doi:10.1186/s13075-015-0651-0.
  • Terryn S, Francart A, Lamoral S, et al. Protective effect of different anti-rabies virus VHH constructs against rabies disease in mice. PLoS One. 2014;9:e109367. doi:10.1371/journal.pone.0109367.
  • Stork R, Müller D, Kontermann RE. A novel tri-functional antibody fusion protein with improved pharmacokinetic properties generated by fusing a bispecific single-chain diabody with an albumin-binding domain from streptococcal protein G. Protein Eng Des Sel. 2007;20:569–576. doi:10.1093/protein/gzm061.
  • Jonsson A, Dogan J, Herne N, et al. Engineering of a femtomolar affinity binding protein to human serum albumin. Protein Eng Des Sel. 2008;21:515–527. doi:10.1093/protein/gzn028.
  • Stork R, Zettlitz KA, Müller D, et al. N-glycosylation as novel strategy to improve pharmacokinetic properties of bispecific single-chain diabodies. J Biol Chem. 2008;283:7804–7812. doi:10.1074/jbc.M709179200.
  • Orlova A, Jonsson A, Rosik D, et al. Site-specific radiometal labeling and improved biodistribution using ABY-027, a novel HER2-targeting affibody molecule-albumin-binding domain fusion protein. J Nucl Med. 2013;54:961–968. doi:10.2967/jnumed.112.110700.
  • Hoop J, Hornig N, Zettlitz KA, et al. The effects of affinity and valency of an albumin-binding domain (ABD) on the half-life of a single-chain diabody-ABD fusion protein. Protein Eng Des Sel. 2010;23:827–834. doi:10.1093/protein/gzq058.
  • Jacobs SA, Gibbs AC, Conk M, et al. Fusion to a highly stable consensus albumin binding domain allows for tunable pharmacokinetics. Protein Eng Des Sel. 2015;28:385–393. doi:10.1093/protein/gzv040.
  • Löfblom J, Frejd FY, Stahl S. Non-immunoglobulin based protein scaffolds. Curr Opin Biotechnol. 2011;22:843–848. doi:10.1016/j.copbio.2011.06.002.
  • Andersen JT, Dalhus B, Viuff D, et al. Extending serum half-life of albumin by engineering neonatal Fc receptor (FcRn) binding. J Biol Chem. 2014;289:13492–13502. doi:10.1074/jbc.M114.549832.
  • Müller D, Karle A, Meissburger B, et al. Improved pharmacokinetics of recombinant bispecific antibody molecules by fusion to human serum albumin. J Biol Chem. 2007;282:12650–12660. doi:10.1074/jbc.M700820200.
  • McDonagh CF, Huhalov A, Harms BD, et al. Antitumor activity of a novel bispecific antibody that targets the ErbB2/ErbB3 oncogenic unit and inhibits heregulin-induced activation of ErbB3. Mol Cancer Ther. 2012;11:582–593. doi:10.1158/1535-7163.MCT-11-0820.
  • Rogers B, Dong D, Li Z, et al. Recombinant human serum albumin fusion proteins and novel applications in drug delivery and therapy. Curr Pharm Des. 2015;21:1899–1907.
  • Strohl WR. Fusion proteins for half-life extension of biologics as a strategy to make biobetters. BioDrugs. 2015;29:215–239. doi:10.1007/s40259-015-0133-6.
  • Trujillo JM, Nuffer W. Albiglutide: a new GLP-1 receptor agonist for the treatment of type 2 diabetes. Ann Pharmacother. 2014;48:1494–1501. doi:10.1177/1060028014545807.
  • Bush MA, Matthews JE, De Boever EH, et al. Safety, tolerability, pharmacodynamics and pharmacokinetics of albiglutide, a long-acting glucagon-like peptide-1 mimetic, in healthy subjects. Diabetes Obes Metab. 2009;11:498–505. doi:10.1111/j.1463-1326.2008.00992.x.
  • Tiede A. Half-life extended factor VIII for the treatment of hemophilia A. J Thromb Haemost. 2015;13(Suppl 1):S176–9. doi:10.1111/jth.12929.
  • Schulte S. Pioneering designs for recombinant coagulation factors. Thromb Res. 2011;128 Suppl 1:S9–12. doi:10.1016/S0049-3848(12)70003-8.
  • Schulte S. Half-life extension through albumin fusion technologies. Throm Res. 2009;124(Suppl 2):S6–8. doi:10.1016/S0049-3848(09)70157-4.
  • Metzner HJ, Weimer T, Kronthaler U, et al. Genetic fusion to albumin improves the pharmacokinetic properties of factor IX. Thromb Haemost. 2009;102:634–644. doi:10.1160/TH09-04-0255.
  • Santagostino E, Negrier C, Klamroth R, et al. Safety and pharmacokinetics of a novel recombinant fusion protein linking coagulation factor IX with albumin (rXI-FP) in hemophilia B patients. Blood. 2012;120:2405–2411. doi:10.1182/blood-2012-05-429688.
  • Santagostino E, Martinowitz U, Lissitchkov T, et al. Long acting recombinant coagulation factor IX albumin fusion protein (rIX-FP) in hemophilia B: results of a phase 3 trial. Blood. 2016. Epub ahead of print
  • Björkman S, Folkesson A, Jönsson S. Pharmacokinetics and dose requirements of factor VIII over the age range 3-74 years: a population analysis based on 50 patients with long-term prophylactic treatment for haemophilia A. Eur J Clin Pharmacol. 2009;65:989–998. doi:10.1007/s00228-009-0676-x.
  • Zollner S, Raquet E, Claar P, et al. Non-clinical pharmacokinetics and pharmacodynamics of rVIII-Single-Chain, a novel recombinant single-chain factor VIII. Thromb Res. 2014;134:125–131. doi:10.1016/j.thromres.2014.03.028.
  • Weimer T, Wormsbächer W, Kronthaler U, et al. Prolonged in-vivo half-life of factor VIIa by fusion to albumin. Thromb Haemost. 2008;99:659–667. doi:10.1160/TH07-08-0525.
  • Golor G, Bensen-Kennedy D, Haffner S, et al. Safety and pharmacokinetics of a recombinant fusion protein linking coagulation factor VIIa with albumin in healthy volunteers. J Thromb Haemost. 2013;11:1977–1985. doi:10.1111/jth.12409.
  • Cohen-Barak O, Sakov A, Rasamoelisolo M, et al. Safety, pharmacokinetic and pharmacodynamic properties of TV-1106, a long-acting GH treatment for GH deficiency.. Eur J Endocrinol. 2015;173:541–551. doi:10.1530/EJE-15-0554.
  • Huang C. Receptor-Fc fusion therapeutics, traps, and MIMETIBODY technology. Curr Opin Biotechnol. 2009;20:692–699. doi:10.1016/j.copbio.2009.10.010.
  • Keizer RJ, Huitema AD, Schellens JH, et al. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49:493–507. doi:10.2165/11531280-000000000-00000.
  • Rath T, Baker K, Dumont JA, et al. Fc-fusion proteins and FcRn: structural insights for longer-lasting and more effective therapeutics. Crit Rev Biotechnol. 2013;35:235–254. doi:10.3109/07388551.2013.834293.
  • Suzuki T, Ishii-Watabe A, Tada M, et al. Importance of neonatal FcR in regulating the serum half-life of therapeutic proteins containing the Fc domain of human IgG1: a comparative study of the affinity of monoclonal antibodies and Fc-fusion proteins to human neonatal FcR. J Immunol. 2010;184:1968–1976. doi:10.4049/jimmunol.0903296.
  • Souders CA, Nelson SC, Wang Y, et al. A novel in vitro assay to predict neonatal Fc receptor-mediated human IgG half-life. MAbs. 2015;7:912–921. doi:10.1080/19420862.2015.1054585.
  • Schoch A, Kettenberger H, Mundigl O, et al. Charge-mediated influence of the antibody variable domain on FcRn-dependent pharmacokinetics. Proc Natl Acad Sci USA. 2015;112:5997–6002. doi:10.1073/pnas.1408766112.
  • Unverdorben F, Richter F, Hutt M, et al. Pharmacokinetic properties of IgG and various Fc fusion proteins in mice. MAbs. 2016;8:120–128. doi:10.1080/19420862.2015.1113360.
  • Jazayeri JA, Carroll GJ. Fc-based cytokines: prospects for engineering superior therapeutics. BioDrugs. 2008;22:11–26.
  • Dumont JA, Low S, Peters RT, et al. Monomeric Fc fusions: impact on pharmacokinetic and biological activity of protein therapeutics. BioDrugs. 2006;20:151–160.
  • Ishino T, Wang M, Mosyak L, et al. Engineering a monomeric Fc domain modality by N-glycosylation for the half-life extension of biotherapeutics. J Biol Chem. 2013;288:16529–16537. doi:10.1074/jbc.M113.457689.
  • Ducharme E, Weinberg JM. Etanercept. Expert Opin Biol Ther. 2008;8:491–502. doi:10.1517/14712598.8.4.491.
  • Holash J, Davis S, Papadopoulos N, et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA. 2002;99:11393–11398. doi:10.1073/pnas.172398299.
  • Trichonas G, Kaiser PK. Aflibercept for the treatment of age-related macular degeneration. Ophthalmol Ther. 2013;2:89–98. doi:10.1007/s40123-013-0015-2.
  • Balaratnasingam C, Dhrami-Gavazi E, McCann JT, et al. Aflibercept: a review of its use in the treatment of choroidal neovascularization due to age-related macular degeneration.. Clin Ophthalmol. 2015;9:2355–2371. doi:10.2147/OPTH.S80040.
  • Perkins SL, Cole SW. Ziv-aflibercept (Zaltrap) for the treatment of metastatic colorectal cancer. Ann Pharmacother. 2013;48:93–98. doi:10.1177/1060028013506562.
  • Ciombor KK, Berlin J, Chan E. Aflibercept. Clin Cancer Res. 2013;19:1920–1925. doi:10.1158/1078-0432.CCR-12-2911.
  • Wu B, Sun Y-N. Pharmacokinetics of peptide-Fc fusion proteins. J Pharmaceut Sci. 2014;103:53–64. doi:10.1002/jps.23783.
  • Molineux G. The development of romiplostim for patients with immune thrombocytopenia. Ann N Y Acad Sci. 2011;1222:55–63. doi:10.1111/j.1749-6632.2011.05975.x.
  • Chalmers S, Tarantino MD. Romiplostim as a treatment for immune thrombocytopenia: a review. J Blood Med. 2015;6:37–44. doi:10.2147/JBM.S47240.
  • Ciurea SO, Hoffman R. Cytokines for the treatment of thrombocytopenia. Semin Hematol. 2007;44:166–182. doi:10.1053/j.seminhematol.2007.04.005.
  • Peters RT, Low SC, Kamphaus GD, et al. Prolonged activity of factor IX as a monomeric Fc fusion protein. Blood. 2010;115:2057–2064. doi:10.1182/blood-2009-08-239665.
  • Ducore JM, Miguelino MG, Powell JS. Alprolix (recombinant factor IX Fc fusion protein): extended half-life product for the prophylaxis and treatment of hemophilia B. Expert Rev Hematol. 2014;7:559–571. doi:10.1586/17474086.2014.951322.
  • Miguelino MG, Powell JS. Clinical utility and patient perspectives on the use of extended half-life rFIXFc in the management of hemophilia B. Patient Prefer Adherence. 2014;8:1073–1083. doi:10.2147/PPA.S54951.
  • Peters RT, Toby G, Lu Q, et al. Biochemical and functional characterization of a recombinant monomeric factor VIII-Fc fusion protein. J Thromb Haemost. 2013;11:132–141. doi:10.1111/jth.12076.
  • Mahlangu J, Powell JS, Ragni MV, et al. A-LONG Investigators. Phase 3 study of recombinant factor VIII Fc fusion protein in server hemophilia A. Blood. 2014;123:317–325. doi:10.1182/blood-2013-10-529974.
  • Salas J, Liu T, Lu Q, et al. Enhanced pharmacokinetics of factor VIIa as a monomeric Fc fusion. Thromb Res. 2015;135:970–976. doi:10.1016/j.thromres.2014.12.018.
  • Mahlangu JN, Coetzee MJ, Laffan M, et al. Phase I, randomized, double-blind, placebo-controlled, single-dose escalation study of the recombinant factor VIIa variant BAY 86-6150 in hemophilia. J Thromb Haemost. 2012;10:773–780. doi:10.1111/j.1538-7836.2012.04667.x.
  • Mahlangu JN, Weldingh KN, Lentz SR, et al. Changes in the amino acid sequence of the recombinant human factor VIIa analog, vatreptacog alfa, are associated with clinical immunogenicity.. J Thromb Haemost. 2015;13:1989–1998. doi:10.1111/jth.13141.
  • Glaesner W, Vick AM, Millican R, et al. Engineering and characterization of the long-acting glucagon-like peptide-1 analogue LY2189265, an Fc fusion protein. Diabetes Metab Res Rev. 2010;26:287–296. doi:10.1002/dmrr.1080.
  • Zhu EF, Gai SA, Opel CF, et al. Synergistic innate and adaptive immune response to combination immunotherapy with anti-tumor antigen antibodies and extended serum half-life IL-2. Cancer Cell. 2015;27:489–501. doi:10.1016/j.ccell.2015.03.004.
  • Moore KN, Sill MW, Tenney ME, et al. A phase II trial of trebananib (AMG 386; IND#111071), a selective angiopoietin 1/2 neutralizing peptibody, in patients with persistent/recurrent carcinoma of the endometrium: an NRG/Gynecologic Oncology Group trial. Gynecol Oncol. 2015;138:513–518. doi:10.1016/j.ygyno.2015.07.006.
  • Yang SH, Yang SI, Chung Y-K. A long-acting erythropoietin fused with noncytolytic human Fc for the treatment of anemia. Arch Pharm Res. 2012;35:757–759. doi:10.1007/s12272-012-0500-5.
  • Tuettenberg J, Seiz M, Debatin K-M, et al. Pharmacokinetics, pharmacodynamics, safety and tolerability of APG101: a CD95-Fc fusion protein, in healthy volunteers and two glioma patients. Int Immunopharmacol. 2012;13:93–100. doi:10.1016/j.intimp.2012.03.004.
  • Wick W, Fricke H, Junge K, et al. A phase II, randomized, study of weekly APG101+reirradiation versus reirradiation in progressive glioblastoma.. Clin Cancer Res. 2014;20:6304–6313. doi:10.1158/1078-0432.CCR-14-0951-T.
  • Mezo AR, McDonnell KA, Low SC, et al. Atrial natriuretic peptide-Fc, ANP-Fc, fusion proteins: semisynthesis, in vitro activity and pharmacokinetics in rats. Bioconjug Chem. 2012;23:518–526. doi:10.1021/bc200592c.
  • Presta LG. Molecular engineering and design of therapeutic antibodies. Curr Opin Immunol. 2008;20:460–470. doi:10.1016/j.coi.2008.06.012.
  • Kuo TT, Aveson VG. Neonatal Fc receptor and IgG-based therapeutics. MAbs. 2011;3:422–430. doi:10.4161/mabs.3.5.16983.
  • Wang Y, Tian Z, Thirumalai D, et al. Neonatal Fc receptor (FcRn): a novel target for therapeutic antibodies and antibody engineering. J Drug Target. 2014;22:269–278. doi:10.3109/1061186X.2013.875030.
  • Robbie GJ, Criste R, Dall’acqua WF, et al. A novel investigational Fc-modified humanized monoclonal antibody, motavizumab-YTE, has an extended half-life in healthy adults. Antimicrob Agents Chemother. 2013;57:6147–6153. doi:10.1128/AAC.01285-13.
  • Unverdorben F, Färber-Schwarz A, Richter F, et al. Half-life extension of a single-chain diabody by fusion to domain B of staphylococcal protein A. Protein Eng Des Sel. 2012;25:81–88. doi:10.1093/protein/gzr061.
  • Hutt M, Färber-Schwarz A, Unverdorben F, et al. Plasma half-life extension of small recombinant antibodies by fusion to immunoglobulin-binding domains. J Biol Chem. 2012;287:4462–4469. doi:10.1074/jbc.M111.311522.
  • Unverdorben F, Hutt M, Seifert O, et al. A Fab-selective immunoglobulin-binding domain from streptococcal protein G with improved half-life extension properties. PLoS One. 2015;10:e139838. doi:10.1371/journal.pone.0139838.
  • Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2007;7:715–725. doi:10.1038/nri2155.
  • Seijsing J, Lindborg M, Höidén-Guthenberg I, et al. An engineered affibody molecule with pH-dependent binding to FcRn mediates extended circulatory half-life of a fusion protein. Proc Natl Acad Sci USA. 2014;111:17110–17115. doi:10.1073/pnas.1417717111.
  • Sockolosky JT, Tiffany MR, Szoka FC. Engineering neonatal Fc receptor-mediated recycling and transcytosis in recombinant proteins by short terminal peptide extensions.. Proc Natl Acad Sci USA. 2012;109:16095–16100. doi:10.1073/pnas.1208857109.
  • Li H, Qian ZM. Transferrin/transferrin receptor-mediated drug delivery. Med Res Rev. 2002;22:225–230.
  • Kim B-J, Zhou J, Martin B, et al. Transferrin fusion technology: a novel approach to prolonging biological half-life of insulinotropic peptides. J Pharmacol Exp Ther. 2010;334:682–692. doi:10.1124/jpet.110.166470.
  • Wang Y, Shao J, Zaro JL, et al. Proinsulin-transferrin fusion protein as a novel long-acting insulin analog for the inhibition of hepatic glucose production. Diabetes. 2014;63:1779–1788. doi:10.2337/db13-0973.
  • Chen X, Lee H-F, Zaro JL, et al. Effects of receptor binding on plasma half-life of bifunctional transferrin fusion proteins.. Mol Pharm. 2011;8:457–465. doi:10.1021/mp1003064.
  • De Kort M, Gianotten B, Wisse JA, et al. Conjugation of ATIII-binding pentasaccharides to extend the half-life of proteins. long-acting insulin. ChemMedChem. 2008;3:1189–1193. doi:10.1002/cmdc.200800053.
  • Miltenburg AM, Prohn M, Van Kuijk JH, et al. Half-life prolongation of therapeutic proteins by conjugation to ATIII-binding pentasaccharides: a first-in-human study of CarboCarrier insulin. Br J Clin Pharmacol. 2015;75:1221–1230. doi:10.1111/j.1365-2125.2012.04460.x.
  • Harenberg J, Marx S, Krejczy M, et al. New anticoagulants - promising and failed developments. Br J Pharmcol. 2012;165:363–372. doi:10.1111/j.1476-5381.2011.01578.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.