665
Views
28
CrossRef citations to date
0
Altmetric
Review

Prospects and progress of antibody-drug conjugates in solid tumor therapies

, &
Pages 883-893 | Received 07 Jan 2016, Accepted 29 Mar 2016, Published online: 03 May 2016

References

  • DeVita VT Jr., Chu E. A history of cancer chemotherapy. Cancer Res. 2008;68:8643–8653. doi:10.1158/0008-5472.CAN-07-6611.
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65:5–29. doi:10.3322/caac.21254.
  • Ghose T, Blair AH. The design of cytotoxic-agent-antibody conjugates. Crit Rev Ther Drug Carrier Syst. 1987;3:263–359.
  • Goldenberg DM. Current status of cancer imaging with radiolabeled antibodies. J Cancer Res Clin Oncol. 1987;113:203–208.
  • Tolcher AW, Sugarman S, Gelmon KA, et al. Randomized phase II study of BR96-doxorubicin conjugate in patients with metastatic breast cancer. J Clin Oncol. 1999;17:478–484.
  • Chan SY, Gordon AN, Coleman RE, et al. A phase 2 study of the cytotoxic immunoconjugate CMB-401 (hCTM01-calicheamicin) in patients with platinum-sensitive recurrent epithelial ovarian carcinoma. Cancer Immunol Immunother. 2003;52:243–248. doi:10.1007/s00262-002-0343-x.
  • Bross PF, Beitz J, Chen G, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001;7:1490–1496.
  • Chari RV. Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res. 2008;41:98–107. doi:10.1021/ar700108g.
  • Hills RK, Castaigne S, Appelbaum FR, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol. 2014;15:986–996. doi:10.1016/S1470-2045(14)70281-5.
  • Amadori S, Suchiu S, Selleslag D, et al. Gemtuzumab ozogamicin versus best supportive care in older patients with newly diagnosed acute myeloid leukemia unsuitable for intensive chemotherapy: results of the randomized phase III EORTC-GIMEMA AML-19 trial. J Clin Oncol. 2016;34:972–979.
  • Damle NK. Tumour-targeted chemotherapy with immunoconjugates of calicheamicin. Expert Opin Biol Ther. 2004;4:1445–1452. doi:10.1517/14712598.4.9.1445.
  • Kantarjian H, Thomas D, Jorgensen J, et al. Results of inotuzumab ozogamicin, a CD22 monoclonal antibody, in refractory and relapsed acute lymphocytic leukemia. Cancer. 2013;119:2728–2736. doi:10.1002/cncr.28136.
  • Ohanian M, Kantarjian H, Guy D, et al. Inotuzumab ozogamicin in B-cell acute lymphoblastic leukemias and non-Hodgkin’s lymphomas. Expert Opin Biol Ther. 2015;15:601–611. doi:10.1517/14712598.2015.1024652.
  • Deng C, Pan B, O’Connor OA. Brentuximab vedotin. Clin Cancer Res. 2013;19:22–27. doi:10.1158/1078-0432.CCR-12-0290.
  • Senter PD, Sievers EL. The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat Biotechnol. 2012;30:631–637. doi:10.1038/nbt.2289.
  • Amiri-Kordestani L, Blumenthal GM, Xu QC, et al. FDA approval: ado-trastuzumab emtansine for the treatment of patients with HER2-positive metastatic breast cancer. Clin Cancer Res. 2014;20:4436–4441. doi:10.1158/1078-0432.CCR-14-0012.
  • Lambert JM, Chari RV. Ado-trastuzumab emtansine (T-DM1): an antibody-drug conjugate (ADC) for HER2-positive breast cancer. J Med Chem. 2014;57:6949–6964. doi:10.1021/jm500766w.
  • Verma S, Miles D, Gianni L, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367:1783–1791. doi:10.1056/NEJMoa1209124.
  • Ellis PA, Barrios CH, Eiermann W, et al. Phase III randomized study of trastuzumab emtansine (T-DM1) ± pertuzumab (P) vs trastuzumab + taxane (HT) for first-line treatment of HER2-positive MBC: Preliminary study from the MARIANNE study. J Clin Oncol. 2015;33. (suppl., abstr. 507).
  • Chari RV, Miller ML, Widdison WC. Antibody-drug conjugates: an emerging concept in cancer therapy. Angew Chem Int Ed Engl. 2014;53:3796–3827. doi:10.1002/anie.201307628.
  • Drake PM, Rabuka D. An emerging playbook for antibody-drug conjugates: lessons from the laboratory and clinic suggest a strategy for improving efficacy and safety. Curr Opin Chem Biol. 2015;28:174–180. doi:10.1016/j.cbpa.2015.08.005.
  • Mack F, Ritchie M, Sapra P. The next generation of antibody drug conjugates. Semin Oncol. 2014;41:637–652. doi:10.1053/j.seminoncol.2014.08.001.
  • Peters C, Brown S. Antibody-drug conjugates as novel anti-cancer chemotherapeutics. Biosci Rep 2015;35. doi:10.1042/BSR20150111.
  • Sievers EL, Senter PD. Antibody-drug conjugates in cancer therapy. Annu Rev Med. 2013;64:15–29. doi:10.1146/annurev-med-050311-201823.
  • Teicher BA. Antibody drug conjugates. Curr Opin Oncol. 2014;26:476–483. doi:10.1097/CCO.0000000000000108.
  • Deslandes A. Comparative clinical pharmacokinetics of antibody-drug conjugates in first-in-human Phase 1 studies. MAbs. 2014;6:859–870. doi:10.4161/mabs.28965.
  • Fujimori K, Covell DG, Fletcher JE, et al. Modeling analysis of the global and microscopic distribution of immunoglobulin G, F(ab’)2, and Fab in tumors. Cancer Res. 1989;49:5656–5663.
  • van Osdol W, Fujimori K, Weinstein JN. An analysis of monoclonal antibody distribution in microscopic tumor nodules: consequences of a “binding site barrier”. Cancer Res. 1991;51:4776–4784.
  • Weinstein JN, Van OW. Early intervention in cancer using monoclonal antibodies and other biological ligands: micropharmacology and the “binding site barrier”. Cancer Res. 1992;52:2747s–2751s.
  • Juweid M, Neumann R, Paik C, et al. Micropharmacology of monoclonal antibodies in solid tumors: direct experimental evidence for a binding site barrier. Cancer Res. 1992;52:5144–5153.
  • Vasalou C, Helmlinger G, Gomes B. A mechanistic tumor penetration model to guide antibody drug conjugate design. PLoS One. 2015;10:e0118977. doi:10.1371/journal.pone.0118977.
  • Claus V, Jahraus A, Tjelle T, et al. Lysosomal enzyme trafficking between phagosomes, endosomes, and lysosomes in J774 macrophages. Enrichment of cathepsin H in early endosomes. J Biol Chem. 1998;273:9842–9851.
  • Dawidczyk CM, Kim C, Park JH, et al. State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicines. J Control Release. 2014;187:133–144. doi:10.1016/j.jconrel.2014.05.036.
  • Li G. Patient-derived xenograft models for oncology drug discovery. J Cancer Metastasis Treat. 2015;1:8–15.
  • Jeffrey SC, Burke PJ, Lyon RP, et al. A potent anti-CD70 antibody-drug conjugate combining a dimeric pyrrolobenzodiazepine drug with site-specific conjugation technology. Bioconjug Chem. 2013;24:1256–1263. doi:10.1021/bc400217g.
  • Mathijssen RH, Van Alphen RJ, Verweij J, et al. Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Cancer Res. 2001;7:2182–2194.
  • Govindan SV, Goldenberg DM. Designing immunoconjugates for cancer therapy. Expert Opin Biol Ther. 2012;12:873–890. doi:10.1517/14712598.2012.685153.
  • Cardillo TM, Govindan SV, Sharkey RM, et al. Sacituzumab govitecan (IMMU-132), an anti-Trop-2/SN-38 antibody-drug conjugate: characterization and efficacy in pancreatic, gastric, and other cancers. Bioconjug Chem. 2015;26:919–931. doi:10.1021/acs.bioconjchem.5b00223.
  • Starodub AN, Ocean AJ, Shah MA, et al. First-in-human trial of a novel anti-Trop-2 antibody-SN-38 conjugate, sacituzumab govitecan, for the treatment of diverse metastatic solid tumors. Clin Cancer Res. 2015;21:3870–3878. doi:10.1158/1078-0432.CCR-14-3321.
  • Yao Y, Yu L, Su X, et al. Synthesis, characterization and targeting chemotherapy for ovarian cancer of trastuzumab-SN-38 conjugates. J Control Release. 2015;220:5–17. doi:10.1016/j.jconrel.2015.09.058.
  • Kovtun YV, Audette CA, Ye Y, et al. Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res. 2006;66:3214–3221. doi:10.1158/0008-5472.CAN-05-3973.
  • Francisco JA, Cerveny CG, Meyer DL, et al. cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood. 2003;102:1458–1465. doi:10.1182/blood-2003-01-0039.
  • Doronina SO, Mendelsohn BA, Bovee TD, et al. Enhanced activity of monomethylauristatin F through monoclonal antibody delivery: effects of linker technology on efficacy and toxicity. Bioconjug Chem. 2006;17:114–124. doi:10.1021/bc0502917.
  • Lewis Phillips GD, Li G, Dugger DL, et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 2008;68:9280–9290. doi:10.1158/0008-5472.CAN-08-1776.
  • Cardillo TM, Govindan SV, Sharkey RM, et al. Humanized anti-Trop-2 IgG-SN-38 conjugate for effective treatment of diverse epithelial cancers: preclinical studies in human cancer xenograft models and monkeys. Clin Cancer Res. 2011;17:3157–3169. doi:10.1158/1078-0432.CCR-10-2939.
  • Goldenberg DM, Cardillo TM, Govindan SV, et al. Trop-2 is a novel target for solid cancer therapy with sacituzumab govitecan (IMMU-132), an antibody-drug conjugate (ADC). Oncotarget. 2015;6:22496–22512. doi:10.18632/oncotarget.4318.
  • Hamblett KJ, Senter PD, Chace DF, et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res. 2004;10:7063–7070. doi:10.1158/1078-0432.CCR-04-0789.
  • Behrens CR, Liu B. Methods for site-specific drug conjugation to antibodies. MAbs. 2014;6:46–53. doi:10.4161/mabs.26632.
  • Hallam TJ, Wold E, Wahl A, et al. Antibody conjugates with unnatural amino acids. Mol Pharm. 2015;12:1848–1862. doi:10.1021/acs.molpharmaceut.5b00082.
  • Kline T, Steiner AR, Penta K, et al. Methods to make homogenous antibody drug conjugates. Pharm Res. 2015;32:3480–3493. doi:10.1007/s11095-014-1596-8.
  • Panowksi S, Bhakta S, Raab H, et al. Site-specific antibody drug conjugates for cancer therapy. MAbs. 2014;6:34–45. doi:10.4161/mabs.27022.
  • Shen BQ, Xu K, Liu L, et al. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat Biotechnol. 2012;30:184–189. doi:10.1038/nbt.2108.
  • Lyon RP, Setter JR, Bovee TD, et al. Self-hydrolyzing maleimides improve the stability and pharmacological properties of antibody-drug conjugates. Nat Biotechnol. 2014;32:1059–1062. doi:10.1038/nbt.2968.
  • Govindan SV, Stein R, Qu Z, et al. Preclinical therapy of breast cancer with a radioiodinated humanized anti-EGP-1 monoclonal antibody: advantage of a residualizing iodine radiolabel. Breast Cancer Res Treat. 2004;84:173–182. doi:10.1023/B:BREA.0000018417.02580.ef.
  • Stein R, Govindan SV, Mattes MJ, et al. Improved iodine radiolabels for monoclonal antibody therapy. Cancer Res. 2003;63:111–118.
  • Lyon RP, Bovee TD, Doronina SO, et al. Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index. Nat Biotechnol. 2015;33:733–735. doi:10.1038/nbt.3212.
  • Golfier S, Kopitz C, Kahnert A, et al. Anetumab ravtansine: a novel mesothelin-targeting antibody-drug conjugate cures tumors with heterogeneous target expression favored by bystander effect. Mol Cancer Ther. 2014;13:1537–1548. doi:10.1158/1535-7163.MCT-13-0926.
  • Hassan R, Bendell JC, Blumenschein G Jr, et al. Phase I study of anti-mesothelin antibody drug conjugate anetumab ravtansine. 16th World Conference on Lung Cancer; 2015 Sep 6–9; Denver, CO (abstract ORAL11.02).
  • Weekes CD, Lamberts LE, Borad MJ, et al. Phase I study of DMOT4039A, an antibody-drug conjugate targeting mesothelin, in patients with unresectable pancreatic or platinum-resistant ovarian cancer. Mol Cancer Ther. 201615:439–447.
  • Yardley DA, Weaver R, Melisko ME, et al. EMERGE: A randomized phase II study of the antibody-drug conjugate glembatumumab vedotin in advanced glycoprotein NMB-expressing breast cancer. J Clin Oncol. 2015;33:1609–1619. doi:10.1200/JCO.2014.56.2959.
  • Ott PA, Hamid O, Pavlick AC, et al. Phase I/II study of the antibody-drug conjugate glembatumumab vedotin in patients with advanced melanoma. J Clin Oncol. 2014;32:3659–3666. doi:10.1200/JCO.2013.54.8115.
  • Breij EC, De Goeij BE, Verploegen S, et al. An antibody-drug conjugate that targets tissue factor exhibits potent therapeutic activity against a broad range of solid tumors. Cancer Res. 2014;74:1214–1226. doi:10.1158/0008-5472.CAN-13-2440.
  • Lassen UN, Hong DS, Diamantis N, et al. A phase I, first-in-human study to evaluate the tolerability, pharmacokinetics and preliminary efficacy of HuMax-tissue factor-ADC (TF-ADC0 in patients with solid tumors. J Clin Oncol. 2015;33. (suppl; abstr 2570).
  • Govindan SV, Cardillo TM, Moon SJ, et al. CEACAM5-targeted therapy of human colonic and pancreatic cancer xenografts with potent labetuzumab-SN-38 immunoconjugates. Clin Cancer Res. 2009;15:6052–6061. doi:10.1158/1078-0432.CCR-09-0586.
  • Govindan SV, Cardillo TM, Rossi EA, et al. Improving the therapeutic index in cancer therapy by using antibody-drug conjugates designed with a moderately cytotoxic drug. Mol Pharm. 2015;12:1836–1847. doi:10.1021/mp5006195.
  • Dotan E, Starodub A, Berlin J, et al. A new anti-CEA-SN-38 antibody-drug conjugate (ADC), IMMU-130, is active in controlling metastatic colorectal cancer (mCRC) in patients (pts) refractory or relapsing after irinotecan-containing chemotherapies: initial results of a phase I/II study. J Clin Oncol. 2015;33. (suppl; abstr 2505).
  • Ab O, Whiteman KR, Bartle LM, et al. IMGN853, a folate receptor-alpha (FRalpha)-targeting antibody-drug conjugate, exhibits potent targeted antitumor activity against FRalpha-expressing tumors. Mol Cancer Ther. 2015;14:1605–1613. doi:10.1158/1535-7163.MCT-14-1095.
  • Borghaei H, O’Malley DM, Seward SM, et al. Phase I study of IMGN853, a folate receptor alpha (FRa)-targeting antibody-drug conjugate (ADC) in patients (Pts) with epithelial ovarian cancer (EOC) and other FRA-positive solid tumors. J Clin Oncol. 2015;33. (suppl; abstr 5558).
  • Martin LP, Moore K, O’Malley DM, et al. Association of folate receptor alpha (FRa) expression level and clinical activity of IMGN853 (mirvetuximab soravtansine), a FRa-targeting antibody-drug conjugate (ADC), in FRa-expressing platinum-resistant epithelial ovarian cancer (EOC) patients (pts). AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics; 2015 Nov 5–9; Boston, MA (abstract C47).
  • Petrylak DP, Vogelzang NJ, Chatta GS, et al. A phase 2 study of prostate specific membrane antigen antibody drug conjugate (PSMA ADC) in patients (pts) with progressive metastatic castration-resistant prostate cancer (nCRPC) following abiraterone and/or enzalutamide (abi/enz). J Clin Oncol. 2015;33. (suppl 7; abstr 144).
  • Saunders LR, Bankovich AJ, Anderson WC, et al. A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. Sci Transl Med. 2015;7:302ra136. doi:10.1126/scitranslmed.aac9459.
  • Pietanza MC, Spigek D, Bauer TM, et al. Safety, activity, and response durability assessment of single agent rovalpituzumab tesirine, a delta-like protein 3 (DLL3)-targeted antibody drug conjugate (ADC), in small cell lung cancer (SCLC). The European Cancer Congress; 2015 Sep 25–29; Vienna, Austria. (abstr 7LBA). 10.1016/S0959-8049(16)31931-1
  • Sharkey RM, McBride WJ, Cardillo TM, et al. Enhanced delivery of SN-38 to human tumor xenografts with an anti-Trop-2-SN-38 antibody conjugate (sacituzumab govitecan). Clin Cancer Res. 2015;21:5131–5138. doi:10.1158/1078-0432.CCR-15-0670.
  • Bardia A, Vahdat LT, Diamond JR, et al. Therapy of refractory/relapsed metastatic triple-negative breast cancer (TNBC) with an anti-Trop-2-SN-38 antibody-drug conjugate (ADC), sacituzumab govitecan (IMMU-132): Phase I/II clinical experience. J Clin Oncol. 2015;33. (suppl; abstr 1016).
  • Guarino MJ, Starodub A, Masters GA, et al. Therapy of advanced metastatic lung cancer with an anti-Trop-2-SN-38 antibody-drug conjugate (ADC), sacituzumab govitecan (IMMU-132): phase I/II clinical experience. J Clin Oncol. 2015;33. (suppl; abstr 2504).
  • Bardia A, Mayer I, Diamond J, et al. Safety and tumor responses of the anti-Trop-2-antibody drug conjugate, sacituzumab govitecan (IMMU-132), in refractory, metastatic, triple-negative breast cancer (TNBC): an ongoing Phase II trial. AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics; 2015 Nov 5–9; Boston, MA (abstract LB-C16).
  • Bardia A, Diamond JR, Mayer IA, et al. Safety and efficacy of anti-Trop-2 antibody drug conjugate, sacituzumab govitecan (IMMU-132), in heavily pretreated patients with TNBC. San Antonio Breast Cancer Symposium; 2015 Dec 8–12; San Antonio, TX; 2015. (abstract PD3-06).
  • Camidge R, Starodub AN, Ocean A, et al. Therapy of advanced metastatic lung cancers with an anti-Trop-2-SN-38 antibody-drug conjugate, IMMU-132: Interim Phase II clinical results. 16th World Conference on Lung Cancer; 2015 Sep 6–9; Denver, CO (abstract ORAL01.02).
  • Goldenberg DM. Durable responses in patients with advanced solid cancers after therapy with sacituzumab govitecan. 6th World ADC Summit; 2015 Oct 19–22; San Diego, CA (oral presentation).
  • Starodub A, Ocean AJ, Messersmith WA, et al. Therapy of gastrointestinal malignancies with an anti-Trop-2-SN-38 antibody drug conjugate (ADC) sacituzumab govitecan: phase I/II clinical experience. J Clin Oncol. 2015;33. (suppl; abstr 3546)
  • Faltas B, Goldenberg DM, Ocean AJ, et al. Sacituzumab govitecan, a novel antibody-drug conjugate, in patients with metastatic platinum-resistant urothelial carcinoma. Clin Genitourin Cancer. 2015. doi:10.1016/j.clgc.2015.10.002.
  • Infante JR, Sandhu SK, McNeil CM, et al. A first-in-human phase I study of the safety and pharmacokinetic (PK) activity of DEDN6526A, an anti-endothelin B receptor (ETBR) antibody-drug conjugate (ADC), in patients with metastatic or unresectable melanoma (abstract). Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5–9; San Diego, CA (abstract # CT233). 10.1158/1538-7445.AM2014-CT233
  • Hong DS, Garrido-Laguana I, Krop IE, et al. First-in-human dose escalation, safety, and PK study of a novel EFNA4-ADC in patients with advanced solid tumors. J Clin Oncol. 2015;33. (suppl; abstr 2520)
  • Available from http://adcreview.com/news/ado-trastuzumab-emtansine-fails-phase-iiiii-gatsby-trial/ 2015.
  • Wright A, Sato Y, Okada T, et al. In vivo trafficking and catabolism of IgG1 antibodies with Fc associated carbohydrates of differing structure. Glycobiology. 2000;10:1347–1355.
  • Kaminski MS, Estes J, Zasadny KR, et al. Radioimmunotherapy with iodine (131)I tositumomab for relapsed or refractory B-cell non-Hodgkin lymphoma: updated results and long-term follow-up of the University of Michigan experience. Blood. 2000;96:1259–1266.
  • Govindan SV, Cardillo TM, Sharkey RM, et al. Milatuzumab-SN-38 conjugates for the treatment of CD74+ cancers. Mol Cancer Ther. 2013;12:968–978. doi:10.1158/1535-7163.MCT-12-1170.
  • Cardillo TM, Govindan SV, Zalath M, et al. Combining an anti-Trp-2 antibody-SN-38 conjugate (sacituzumab govitecan) with microtubule inhibitors (paclitaxel and eribulin mesylate) or PARP inhibitor (olaparib) significantly improves therapeutic outcome in experimental triple-negative breast cancer (TNBC). AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics; 2015 Nov 5–9; Boston, MA (abstract C166).
  • Goldenberg DM, Cardillo TM, Govindan SV, et al. Synthetic lethality in TNBC mediated by an anti-Trop-2 antibody-drug conjugate, sacituzumab govitecan (IMMU-132), when combined with paclitaxel or the PARP inhibitor, olaparib. San Antonio Breast Cancer Symposium; 2015 Dec 8–12; San Antonio, TX (abstract P6-15-02).
  • Ponte JF, Coccia J, Lanieri L, et al. Preclinical evaluation of mirvetuximab soravtansine (IMGN853) combination therapy in ovarian cancer xenograft models. AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics; 2015 Nov 5–9; Boston, MA (abstract C170).
  • Muller P, Kreuzaler M, Khan T, et al. Trastuzumab emtansine (T-DM1) renders HER2+ breast cancer highly susceptible to CTLA-4/PD-1 blockade. Sci Transl Med. 2015;7:315ra188. doi:10.1126/scitranslmed.aac4925.
  • Bander NH. Antibody-drug conjugate target selection: critical factors. Methods Mol Biol. 2013;1045:29–40. doi:10.1007/978-1-62703-541-5_2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.